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Abstract— Entering the era of cloud computing, data centers
are scaling in a fast pace. However, as the increasing number
of servers being deployed in data centers, the data center power
distribution systems have already approached peak capacities.
Since the upgrades of the power systems are extremely expensive,
power oversubscription has become a trend in modern data
centers as a cost-effective way to handle power provisioning.
Under benign workload of data centers, power oversubscription
works well as servers rarely peak simultaneously. However, power
oversubscription makes data centers vulnerable to malicious
workload that can generate power spikes on multiple servers at
the same time, which may cause branch circuit breakers to trip
and lead to undesired power outages. In this paper, we introduce
a new security concept called power attack and exploit the attack
vectors in platform as a service (PaaS), infrastructure as a service
(IaaS), and software as a service (SaaS) cloud environments,
respectively. To demonstrate the feasibility of launching a power
attack, we conduct series of hardware experiments and data-
center-level simulations. Moreover, we give a detailed analysis on
how different power management methods can affect a power
attack and how to mitigate such an attack. Our experimental
results and analysis show that power attacks will pose a serious
threat to modern data centers and should be taken into account
while deploying new high-density servers and power management
techniques.

I. INTRODUCTION

With the ever-increasing demand of cloud services, data
centers have experienced significant growth in their scale. The
number of servers in data centers has surged from 24 million
in 2008 to over 35 million in 2012 [5]. Correspondingly,
the power consumption of data centers has increased by 56
percent from 2005 to 2010 [22], with an even faster speed in
recent years. Thus, the rapid server deployment in data centers
has caused their power distribution and cooling systems to
approach peak capacity [14]. However, it is very expensive
to upgrade the power infrastructures of data centers and the
related cost is commonly in hundreds of millions of dollars.

To support more servers with the existing power infras-
tructures, power oversubscription has become a trend in data
centers [12], [27], [17]. The key feature of oversubscription

is to place more servers on the power infrastructure of a
data center than it can support if all the servers would
not reach their maximum power consumption at the same
time. Since servers rarely peak simultaneously with normal
workloads, oversubscription allows many more servers to be
hosted than traditional provisioning that relies on the server
nameplate power ratings, without the need of upgrading the
power infrastructure. However, power oversubscription makes
it a possibility that the power consumption of servers might
exceed power capacity, resulting in an increasing risk of power
outages.

From the security perspective, this hidden risk induced by
power oversubscription leaves data centers vulnerable to ma-
licious workloads that can generate power spikes on multiple
servers at the same time. We define the creation of such a
malicious workload as a power attack. Without obtaining a
privileged access, an attacker can launch a power attack as a
regular user. The simultaneously occurred power peaks could
produce the overloading of electrical circuits and then trigger
the trip of circuit breakers (CBs) at the rack level or even a
higher level of power facilities, leading to undesired power
outages. The ultimate goal of a power attack is to fail the
victim’s power facility and cause an interruption or termination
of the computing services running on the blackout servers.
The damage of a power attack is twofold: both cloud service
providers and the owners of other computing services running
on the blackout servers suffer from service interruptions and
financial losses.

In this paper, we systematically investigate the feasibility
of launching power attacks in three main-stream cloud service
business models: platform as a service (PaaS), infrastructure as
a service (IaaS), and software as a service (SaaS), respectively.
In the case of PaaS, we choose high performance computing
(HPC) as one of its typical workloads, and conduct a set of
experiments based on HPC benchmarks. We observe that an
attacker can generate power spikes by adjusting workloads
but those system-utilization-based load balancing mechanisms
can hardly detect such an attack. In the case of IaaS, we
introduce a new concept called parasite attacks that leverage
controlled virtual machines (VMs) to significantly increase the
power consumption of the host physical machine. Moreover,
we demonstrate that VM migration can trigger high power
spikes by conducting a set of experiments. If the VM migration
routine can be inferred by attackers, the power spikes generated
during migration can be exploited to help trip the CBs. In the
case of SaaS, we use web services as its typical workload
and conduct a set of experiments to demonstrate that specially
crafted web requests can trigger power spikes and consequently
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Fig. 1. A typical data center power distribution from [12]

trip the CBs.

Based on our rack-level experimental results, we further
conduct a series of data-center-level simulations by using
traces and configurations of the Google’s data center at Lenoir,
North Carolina, USA. The simulation results show that by
injecting malicious workload, an attacker can generate power
spikes in a data center scale, which pose a serious threat to the
availability and reliability of data centers. While the focus of
this work is on the attacking side, we also present different
approaches to mitigate the power attacks in an effective
manner.

The remainder of the paper is structured as follows. Section
II introduces the background of power infrastructures in a
data center. Section III presents our threat model of power
attacks. Sections IV, V, and VI present how to launch a
power attack in the PaaS environments, IaaS environments, and
SaaS environments, respectively. Section VII shows the data
center level simulation results. Section VIII provides a detailed
discussion on how some new power management techniques
will affect power attacks. Section IX presents the defense
against power attacks. Section X surveys related work, and
finally Section XI draws the conclusion.

II. BACKGROUND

In this section, we introduce a typical power infrastructure
employed in most data centers. We then discuss the practice
of power oversubscription in data centers for cost reduction
and its implications on the power security of data centers.

Today’s data centers commonly have a three-tier power dis-
tribution infrastructure to support hosted computer servers [6],
though the exact architecture may vary for different sites.
Figure 1 shows a simplified illustration of the three-tier hierar-
chy in a typical data center. High-voltage power (60-400 kV)
from the utility grid is scaled to medium voltage (typically
10-20 kV) through an outside transformer and then fed to
an Automatic Transfer Switch (ATS). The ATS connects to
both the utility power grid and on-site power (e.g., diesel)
generators. From the ATS, the primary switchgear of the
data center scales the voltage down to 400-600 V, which is
supplied to Uninterruptible Power Supplies (UPS) via multiple
independent routes for fault tolerance. To protect the power

infrastructure against electrical faults, the switchgear is nor-
mally equipped with a circuit breaker (CB) that would trip
if the total power consumption of the data center exceeds
its rated capacity. Each UPS supplies a series of Power
Distribution Units (PDUs), which are rated on the order of
75-200 kW each. A PDU breaks up the incoming power feed
into multiple branch circuits and has a breaker panel where
circuit breakers protect individual circuits from ground short
or power overload. The PDUs further transform the voltage to
support a group of server racks. It is important to note that
many components in a data center power system have limited
capacities. For example, a PDU can generally handle 75-225
kW of load and a rack-level branch circuit typically has a
capacity of 6 kW [6]. Violating such capacities may cause
circuit breakers to trip, leading to the shutdown of the servers
connected to a branch circuit or even the entire data center.
A typical 1 MW data center may house ten or more PDUs.
Each PDU can support approximately 20 to 60 racks while
each rack can include about 10 to 80 computer servers [36].

As mentioned before, many data centers keep deploying
new high-density servers (e.g., blade servers) to support their
rapidly growing business. As a result, their power distribution
systems have already approached the peak capacity. In order
to minimize the high capital expenses of upgrading their
power infrastructures, data centers recently started to adopt
power oversubscription as an important methodology to fully
utilize their existing power infrastructures [6]. For example,
Google, HP, and IBM researchers have proposed various ways
to implement power oversubscription in data centers [12],
[27], [17]. Google recently conducts analysis on three kinds
of workload traces they collected from real data centers:
search, webmail, and MapReduce [12]. Their study shows
that the peak power is as high as 96% of the rated capacity
at the rack level, but much lower (72%) at the data center
level, because the power consumption of different racks rarely
peak simultaneously. Therefore, they conclude that there is a
substantial oversubscription opportunity, which would allow
38% more servers to be safely hosted in their existing data
center, without spending a huge amount of money to either
upgrade the power infrastructure or build new data centers.

It is important to note that traditional data centers com-
monly adopt a conservative provisioning methodology to host
servers based on their nameplate power rating and thus have
very small probability for power overloading. However, today’s
data centers increasingly rely on power oversubscription to
avoid or defer the costly power infrastructure upgrades, which
significantly increases the opportunity of having undesired
power capacity violations.

As we can see, a strong assumption made for power over-
subscription is that the power consumption of most racks or
PDUs in the data center never peak at the same time, which has
been demonstrated to be valid with normal data center work-
loads in numerous studies (e.g., [6], [12], [15]). Unfortunately,
an unsafe implementation of power oversubscription could lead
to a serious vulnerability for data centers, e.g., a malicious
attacker may manipulate many servers to have their power
peak simultaneously, which can then lead to the violation of
some rated power capacities in a data center. As a result, the
overloading of electrical circuits could trigger branch circuit
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breakers to trip, leading to undesired outages and then the
disruption of important services. To prevent undesired power
overload, the power consumption of each rack enclosure, each
Power Distribution Unit (PDU), and the entire data center
must be carefully provisioned and then properly controlled
at runtime, in order to stay below the desired power limits
at each level [36]. With the pervasion of outsourcing cloud
services such as infrastructure as a service (IaaS), platform as
a service (PaaS) and software as a service (SaaS), the workload
of the data center will be impacted severely by the cloud
service users. When all the users of cloud services are benign,
the workload of a data center will follow the normal pattern
and power oversubscription can be applied safely. However,
an adversary can gain access to data center resources and
make changes to workload easily. By deliberately adjusting the
workload of the servers within a rack, an adversary can make
all servers reach power peaks simultaneously and the circuit
breaker might be tripped. Moreover, a more advanced attacker
may even generate power spikes in servers within same PDU
or even UPS to cause higher level utility failure.

In this paper, we will demonstrate how an adversary can
generate power spikes in three main-stream cloud business
models, PaaS, IaaS and SaaS, respectively. Our observations
and experiments will prove that current power management
strategies in a data center will face the serious threat of a
power attack.

III. THREAT MODEL

In this section, we describe the threat model of power
attacks. In particular, we present the reasonable assumptions
we made for the study of power attacks.

The target of a power attack can be a rack, a PDU, or
even the entire data center, and we assume that the victim has
the following configuration features. (1) The target is running
certain cloud services that are available to public. The target
can run IaaS, PaaS and SaaS, and any users including an
attacker can subscribe the services. (2) The target data center
deploys power oversubscription as its power management
solutions. (3) The target data center monitors and manages
power consumption at the rack or PDU level. In a large data
center, it is very difficult to monitor power consumption of
all servers in a very fine-grained manner. And the accurate
power sampling for thousands or tens of thousands servers will
induce high overhead [24]. Therefore, power monitoring is at
the rack or PDU level, instead of the server level. (4) The target
data center performs certain routines such as virtual machine
migration and deploys basic load balancing systems.

The adversary who launches a power attack could be
an individual hacker, a botnet master, a competing cloud
service provider, or an organization for committing cyber-
crime/cyberwarfare. However, we assume that the attacker is
always from outside. The resources and capabilities of the
attacker has are detailed as follows. (1) The attacker commu-
nicates with the target via the public service interface provided
by the cloud. The attacker accesses the target as a regular user,
and no additional privilege is available to the attacker. (2) The
attacker has sufficient resources to launch a large scale attack.
The attacker has the capability of subscribing the target’s

service with a large number of user accounts and generating
a large amount of malicious workload/requests to the target.
(3) The attacker can infer internal information of the target by
exploiting certain probing techniques. Some network probing
tools have been leveraged to infer the physical topology of
a data center [29], revealing the connection between the IP
address of a machine and its physical location, as well as
verifying if two VMs reside in the same physical machine.
Moreover, for easy management, normally data center admin-
istrators place the servers that provide the computing services
for the same enterprise or group of users in the same rack.
Also, the IP addresses of the physical machines that connect to
the same rack share the same network ID and hence are close
to each other. Therefore, we assume that the attacker is able
to approximately locate the target machines that are within the
same rack or PDU1. On the other hand, to successfully launch
a power attack at the rack level, it is not required to pinpoint
all these servers belong to the same sack. As long as attackers
know one target and its IP address, they could simply launch
a mini brute-force attack by injecting malicious workloads to
a range of IP addresses, which cover the target and most of
the other machines in the same rack.

The process of launching a power attack is also the process
of consuming the services provided by the target, and the
attacker must pay for the computing services. Thus, there is
a cost related to launch a power attack. However, the damage
caused by a power attack could be catastrophic. Once a CB
is tripped, all servers connected will be blacked out and all
services running will be interrupted. Such damage is much
more severe than that caused by traditional attacks such as
DoS attacks. Therefore, for those attackers who commit a
cybercrime or cyberwarfare, we assume that they have a strong
motivation and rich resources to launch a power attack.

In different cloud environments, the attacker has different
control over the target’s computing resources and services.
For instance, in IaaS, the attacker can obtain the full control
over owned virtual machines. But in SaaS, the attacker can
only access the target by issuing network requests. Therefore,
the key technical challenge of launching a power attack is
how to construct effective attack vectors in different cloud
environments, i.e., how to generate more power consumption
of the target in different circumstances. In the following three
sections, we detail the attack vectors in three main-stream
cloud business models, PaaS, IaaS, and SaaS, respectively.

IV. POWER ATTACK IN PAAS

In this section, we investigate the attack vectors in PaaS
environments and design corresponding experiments to evalu-
ate the power attacks. Based on the experimental results, we
further conduct damage assessment and analysis.

A. PaaS and attack vectors

Platform as a service (PaaS) provides computing platform
to users. The service vendor will manage the hard devices,
OS, and middleware, but users can customize the applications
running on the platform. With PaaS, application developers are

1An example in Amazon EC2 is shown in Appendix.
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TABLE I. CONFIGURATION OF SERVERS USED IN EXPERIMENTS.

Server A Server B Server C Server D Server E Server F Server G

CPU 2*Xeon W3540
Dual Core

2*Xeon 5520
Quad Core

2*Xeon 5130
Dual Core 2*Intel E4600 2*Intel E4600 2*Xeon Dual

Core
2*Xeon Dual
Core

Memory 2*1GB DDR2 6*1GB DDR3 4*1GB DDR2 2*1GB DDR2 2*1GB DDR2
2*512MB
DDR, 6*1GB
DDR

16*1GB DDR2

Hard Disk 1*7200RPM
SATA

6*7200RPM
SATA

4*7200RPM
SATA

2*7200RPM
SATA

2*7200RPM
SATA

2*7200RPM
SATA

2*7200RPM
SATA

Host OS
Ubuntu
12.10/3.5.0-
17 kernel

Ubuntu
12.10/3.5.0-
17 kernel

Ubuntu
12.10/3.5.0-
17 kernel

Ubuntu
12.10/3.5.0-
17 kernel

Ubuntu
12.10/3.5.0-
17 kernel

Ubuntu
12.10/3.5.0-
17 kernel

Ubuntu
12.10/3.5.0-
17 kernel

VMM Xen 4.1.2 Xen 4.1.2 Xen 4.1.2 Xen 4.1.2 Xen 4.1.2 Xen 4.1.2 Xen 4.1.2

able to save considerable cost and complexity of running the
underlying computing platforms.

In a PaaS environment, a user can run various applications
flexibly on the platform, i.e., the user can get full control
over the workload pattern. This feature of PaaS provides an
attacker the opportunity to launch a power attack. The attacker
can subscribe the platform from the service provider and run
specially crafted workload. The malicious workload can lead
to a significant rise of power consumption.

Some PaaS providers [1] deploy load balancing mecha-
nisms to prevent a workload burst. A load balancing system
normally monitors the system utilization of the servers and
dynamically schedules workload. However, load balancing is
not equal to power balancing. It is very hard to accurately
model the power consumption of a machine with respect
to system utilization. With these characteristics of PaaS, we
present a potential attack vector as follows: an attacker can
subscribe multiple servers that are within the same rack
(connected by same breaker) from providers and run specially
crafted applications/workload on them.

The attack workload should be designed to significantly
increase the power consumption of victim servers in two
phases. First, a heavy workload is generated to exercise system
utilization to a high level. This will directly increase the power
consumption of victim servers. The system utilization should
reach a certain cap under such a high workload, e.g. the
system utilization may reach the cap of load balancer or CPU
utilization reaches the 100% cap. In the second phase, after
reaching system utilization cap, the workload is no longer
increased. Instead, the patterns or configurations of the work-
load will be adjusted. Since different workload configurations
yield different power consumptions, by adjusting workload
patterns or configurations, the power consumption of victim
servers will be further increased to an even higher level without
increasing system utilization. In this way, the target CB could
be overloaded.

B. Attack evaluation

To evaluate the feasibility and effect of power attack in
PaaS, we conduct experiments in a testbed that simulates
the PaaS environment. The configuration of all the servers
used in our experiments can be found in Table I. While high
performance computing (HPC) has become a pervasive service
nowadays, the demand of tremendous resources and parallel
computing makes HPC a suitable candidate of PaaS. Thus, we
use HPC as the workload of PaaS in our study.

1) Single Server: First, we conduct single server experi-
ments to figure out how different workloads may affect the
power consumption and system utilization of a server. The
testbed of this round of experiments is Server A in Table I.
SPECCPU2006 is used as the benchmark in our experiments.
SPECCPU2006 is a CPU intensive benchmark that is widely
used as HPC benchmark. There are different benchmarks in
SPECCPU that perform different computations. Since these
benchmarks will yield different workload patterns, we can
regard them as different HPC applications running in PaaS
environments.

Figures 2 and 3 illustrate power consumption and memory
utilization of different benchmarks in SPECCPU2006. These
benchmarks are carefully selected so that they consume similar
amount of memory. Since our testbed has four cores, we
run four copies of SPEC benchmarks in parallel to fully
exercise all cores. Since all benchmarks can exercise the
CPU to reach the same utilization, we do not show CPU
utilization in the figure. As Figure 2 shows, different workloads
yield very different power consumptions. Figure 3 illustrates
the memory consumptions of these benchmarks. Note that
SPECCPU involves negligible disk and network activities, so
their impact on power consumption is insignificant and can be
ignored.

As Figure 3 shows, while all these benchmarks induce
the same CPU utilization, benchmark 465 consumes the least
memory. However, benchmark 465 consumes more power
than many other benchmarks. For instance, while benchmark
462 consumes around 150 W power, benchmark 465 has
power spikes up to 175 W, which is over 15% more than
that of benchmark 462. We can also see that the memory
consumption of benchmark 462 and that of benchmark 456
are very close. The average memory utilization for 462 is
24%, while the average memory utilization for 456 is around
25%. With the same CPU utilization, similar memory usage,
and negligible I/O activity, we can regard that benchmark 462
and benchmark 456 consume very similar amount of system
resources. However, from Figure 2 we can see that benchmark
456 consumes over 20% more power than benchmark 465.
Our observations indicate that system utilization, i.e, resource
consumption, cannot accurately determine power consumption.

We also run another HPC benchmark, High Performance
Linpack (HPL) on the testbed. HPL is a benchmark to calculate
random matrix production. It has multiple parameters to con-
figure, which will affect the performance of the benchmark.
In our experiments, we take the following root parameters
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Fig. 2. Power consumption of the server with
different SPECCPU workloads.
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Fig. 3. Memory consumption of the server with
different SPECCPU workloads.
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Fig. 4. Power consumption of the server running
HPL benchmark with different configurations.

into consideration: the processor grid, i.e., the number of
processors, the problem size N which is the size of input
matrix, and the block size NB which determines how HPL
solves the matrix production problem. Since our testbed is a
4-core machine, we fix the number of processors to be 4. To
make the input size consistent, i.e., make HPL consume the
same amount of memory, we fix the parameter N as 9000. We
adjust the value of NB among 200, 40, 20, and 1. As the CPU
utilization and memory utilization remain the same in these
experiments, we do not present their results here.

Figure 4 illustrates the power consumption of our testbed
while running HPL with different configurations. The adjusted
parameter, NB, will determine the way HPL solves the prob-
lem. From the figure we can see, with a different value of
NB, the power consumption of our testbed differs significantly.
When the block size is set to 1, the testbed only consumes
less than 150 W power. By contrast, the testbed has power
consumption near 190 W when the block size is set to 20. Such
results indicate that even for the same application, different
parameters or configurations can yield considerably different
power consumption.

2) Rack-level Cluster: To verify if an attacker can generate
significant power rise by adjusting the workload beyond a
single server, we further conduct experiments in a rack-level
cluster. We setup a 4-server rack with Server D, Server E,
Server F, and Server G in Table I. These four servers are
connected to the same switch and circuit breaker, resembling
a rack in a real world data center.

We run SPECCPU2006 on all servers in the rack. The
overall power consumption of the entire rack is recorded.
These benchmarks are configured to exercise CPU to full
utilization (reaching the cap) and the memory usage percentage
of each server on these benchmarks are the same as those
in our single-server experiments. Therefore, we only present
the results of power consumption at the rack level, which are
illustrated in Figure 5.

As Figure 5 shows, the rack level results concur with
our single server results. While the CPU utilizations in all
cases reach the cap, some benchmarks generate more power
consumption than others. Such an observation indicates that
even after the system utilization reaches a cap, an attacker
has the potential to increase the power consumption of target
by adjusting the workload, e.g., the attacker can change the
workload from benchmark 462 to benchmark 456 to further
increase power consumption.

Then we design two malicious traces to launch a power
attack against a rack in PaaS environments. The first trace
is based on SPECCPU2006. At the beginning, the workload
behaves as a normal workload that generates moderate system
utilization and power consumption. We use benchmark 462
with light workload configuration to represent such a moderate
workload. Next, the attacker can change the workload to
exercise the system utilization to a certain level to significantly
increase power consumption. We use benchmark 462 with
heavy workload to represent the malicious workload during
this phase. Finally, after system utilization reaches the cap,
the attacker tunes the workload to further increase power
consumption. Here we use benchmark 456 to represent the
malicious workload of this phase.

The second malicious trace is based on High Performance
Linpack (HPL). While SPECCPU2006 can be used as running
independent workloads on different machines, we use HPL to
simulate the scenario where multiple servers are coordinated
to run the same task in PaaS. Each of the four servers works
as a node in the working cluster and they communicate with
each other via OpenMPI. HPL will distribute the workload to
each node for high performance computation. In this round of
experiments, we configure HPL with different problem sizes
(N) and different block sizes (NB). The power attack based on
HPL is mounted as follows. Fist, the input size of the workload
is set to be moderate, we use HPL with N set to 1000 and NB
set to 5 to represent the moderate workload. Next, the attacker
can enlarge the input size to increase the system utilization.
In our experiments, we increase the block size to 4000 during
this phase and more CPU cores are exercised. At last, the
attacker can change the workload pattern to further increase
power consumption. In our case, we modify NB from 5 to
100.

The evaluation results of the malicious workload are illus-
trated in Figure 6. It is evident that both malicious traces can
generate a significant rise in the overall power consumption of
the rack. As Figure 6 shows, the power attack can trigger over
30% increase in power consumption.

C. Damage assessment and analysis

Our experimental results above validate that in PaaS envi-
ronments, an attacker can generate abnormal high power con-
sumption by adjusting workload running on target machines.

The damage caused by such a power attack is at two levels.
A relatively light damage can be overheating the IT equipments
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Fig. 5. Power consumption of the rack while
running different benchmarks from SPECCPU.
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parasite attack.

and degrading the performance of the victim servers. During
our experiments, when launching a power attack against the
rack with our malicious traces, the CPU cores of server E were
overheated, resulting in system failure. In a rack where power
is aggressively oversubscribed, a power attack can lead to more
serious consequence: the trip of circuit breaker (CB). The 4-
machine rack used in our experiments is located in a server
room with the total number of 16 servers. The entire server
room can be regarded as a PaaS rack, where all servers are
connected by the same CB. Users can run different applications
on the servers in the room and only the four servers in
our small rack are under our control. When we conducted
experiments that run the SPECCPU 456 benchmarks, the CB
of the server room was tripped. This accident indicates that
power attacks can be a serious threat in real world.

However, our experimental results do not stand for the
most powerful power attack in real world. First, the HPC
benchmarks we used are only CPU-intensive. The memory and
I/O devices are not fully exercised in our experiments, leaving
space for further increase of power consumption. In real world,
an attacker can include memory and I/O intensive workloads to
further increase power consumption. Second, the servers used
in our experiments have poor power proportionality. These
servers consume over 60% of peak power when being idle.
Such poor power proportionality will significantly reduce the
effects of power attack because there is not much room for the
increase of power consumption. In real world, a power attack
against data centers with more advanced servers should be
able to produce more significant impacts than our experimental
results.

V. POWER ATTACK IN IAAS

This section describes the potential attack vectors in the
IaaS environment and presents the experimental results and
analysis of evaluation on two attack vectors: parasite attack
and VM migration.

A. IaaS and attack vectors

Known as infrastructure as a service, IaaS is a cloud-service
model in which the provider offers physical or virtualized
infrastructure along with other resources to users. Amazon’s
Elastic Cloud (EC2) is a popular IaaS service. In the EC2
environment, a user can instantiate virtual machines (VMs)
via the interface or API provided by EC2. The booted VMs
are under full control of the user. In other words, while the

service vendor manages the hypervisor and physical devices,
the user can determine the OS, middleware, application and
data running on the VMs. IaaS provides a cost-effective way
for enterprises to modernize and expand their IT capabilities
without spending capital resources on infrastructure. However,
IaaS-based data centers are also exposed to the threat of power
attack.

First of all, the IaaS business model allows an attacker to
have more control over the target. The attacker can instantiate
many VMs with minor cost and run any kind of workloads on
the VMs.

Second, IaaS divulges a considerable amount of internal
data center information to the attacker. For the convenience in
management, an IaaS data center often uses some well-known
topology and networking configuration strategies [29]. Thus,
the attacker can infer the internal structure of the data center
and locate the target inside the data center via network probing.

Third, the widely used virtualization techniques in IaaS
expose performance vulnerability to malicious attackers. In
particular, the additional layer introduced by virtualization
makes many system activities such as I/O operations more
costly. The induced high overhead can be exploited by attack-
ers to generate power spikes.

Based on these vulnerabilities of IaaS, we propose two
attack vectors to launch a power attack in IaaS environments.

The first attack vector is parasite attack that leverages con-
trolled VMs to attack the host physical machine from inside,
resembling a parasite consuming its host from inside. On one
hand, the controlled VMs can directly run intensive workloads
to increase the power consumption of the host. On the other
hand, the controlled VMs can exploit the vulnerability of
virtualization to further abuse more resources and power of the
host system. For instance, DoS attacks towards a parasite VM
can consume considerable resources of the hypervisor [30],
potentially increasing the power consumption of the host.
Using these two attack strategies together, a parasite attack
can significantly increase the power consumption of a target
system.

The second vector is VM migration that is a routine
operation in the cloud. Certain VMs require live migration
to perform maintenance and update. VM migration is a high
power consuming operation. If an attacker can understand
how VM migration is performed in an IaaS data center, VM
migration can be exploited to help launch a power attack.
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Knowing that a number of VMs are being migrated to a rack,
the attacker can launch a power attack like a parasite attack
against the rack at the same time period. Since VM migration
itself can cause high power spikes, it will greatly aggravate
the power attack and cause the trip of CB.

B. Evaluation of parasite attack

The complete process of a parasite attack is as follows.
First the attacker keeps instantiating VMs and infers their
physical locations with the strategies mentioned above. In this
way, the attacker can finally place many VMs on the physical
machines within a target rack. Then, the attacker can run
intensive workloads on the controlled VMs to increase the
power consumption of the host systems. During this phase,
the parasites fully consume the resources that are allocated to
them by the hosts. Finally, the attacker can launch some special
attacks, e.g., DoS attacks towards the parasite VMs. Since the
parasite VMs are under full control of the attacker, an attack
towards parasites can ensure a success. Due to the performance
penalty of virtualization, such an attack can trigger unexpected
system activities at the hypervisor level, leading to resource
abuse of the host system. As a result, the power consumption
of the entire host system can be further increased to a higher
level.

To evaluate the feasibility of a parasite attack, we build
up a virtualized system with multiple VMs and launch attacks
against one of the VMs. The host machine is Server B in
Table I. We run 4 virtual machines over the host, including
the ”parasite VM” controlled by the attacker. These VMs are
installed with Ubuntu 12.10 and they are configured with 512
MB memory and 4 vcpus. The open-source tool hping3 is used
to launch DoS attacks. Three different types of DoS attacks
are launched: TCP SYN flood, Smurf, and LAND attacks. The
power consumption of the host machine is recorded.

At the beginning, all these 4 VMs are running certain
workloads so that their system utilizations remain around 25%,
which is normal in real world. Under this scenario, the host
consumes around 180 W of power. In the next step, we run
intensive workload on the VM controlled by the attacker. With
the parasite VM being fully exercised, the power consumption
of the host is increased to around 200 W. Then, we launch DoS
attacks against the parasite VM. Under DoS-based parasite
attacks, the power consumption of the host is increased to
above 230 W, with power spikes that can reach 245 W.
The experimental results are shown in Figure 7, and they
clearly demonstrate that parasite attacks can increase the power
consumption of the host by over 30%.

C. Exploiting VM migration

Since users have more control over VMs and more in-
ternal information is available in IaaS, VM migration can be
exploited to help launch a power attack in IaaS. To measure the
power consumption spikes generated during a VM migration,
we conduct three rounds of experiments. First, a basic VM
migration is conducted to verify that for a server involved in
the migration, it will experience a power rise. In the second
round, the scenario where VMs are migrated within a rack is
emulated to show the impact of intra-rack VM migration on

the overall power consumption of a rack. Finally, we emulate
the scenario where multiple VMs are simultaneously migrated
from other racks to a target rack to demonstrate the threat
caused by inter-rack VM migration.

In the first round of experiments, Server B and Server C in
Table I are used as our testbed. The VMs running on the servers
are initialized with 512MB memory, 8G image size, 4 vcpus
and default credits (512). We set server B as the monitored
server whose power consumption will be recorded. We first
set server B as the destination server, migrating 1 idle VM
from server C to server B. Then we set server B as the source
server, migrating 1 idle VM from it to server C.

Figure 8 illustrates the power consumption of the moni-
tored server. The figure demonstrates that during the migra-
tion, as either the source or the destination, the server will
experience a rise of power consumption. The cause of a short
period of power spike is the initialization and operation of
VM migration. At the source side, the memory contents need
to be duplicated; additional computation is required to prepare
the transition; and networking devices are also exercised to
transfer VM information. At the destination side, additional
resources are allocated to the new incoming VM, increasing
the server’s power consumption.

In the second round, we emulate the intra-rack VM migra-
tion as following. We connect Server A, Server B, and Server
C to the same circuit breaker, making up an IaaS rack. We boot
8 VMs in each of the 3 servers with the SPECCPU benchmarks
running on them. In this round of migration, we migrate 4 VMs
from server A to server B, 4 VMs from server B to server C,
and 4 VMs from server C to server A.

The power consumption of the entire rack during the
migration is illustrated in Figure 9. We can see that there
are several crests of power consumption. This is due to
the different configurations of the servers in our testbed.
Although all the migrations are started at the same time,
different configurations lead to different migration time and
different power consumption. These results indicate that when
multiple VMs are migrated together as in our experiments,
the rack will experience some unexpected power spikes. In
our experiments, the rack has already been working in a high
power consumption state. During the migration, the power
consumption of the rack further rises from 560 W to 640
W. The power spikes over 600 W last for over 15 seconds.
Suppose the CB of the rack has a rated power capacity of
600 W, as the power consumption of the rack is below 560 W
both before and after migration. If the migration strategies do
not take the migration power spikes into a serious account [8],
[32], the power spikes will trip the CB of the rack, resulting
in disastrous server shutdowns.

In the third round, we emulate the inter-rack VM migration.
In real world data centers, it is common that a number of vir-
tual machines are migrated simultaneously, probably towards
the same rack. For example, periodic live VM migration has
been commonly adopted as an effective way to perform server
consolidation for higher resource utilizations in data centers
[33], [34]. In our experiments, we set server B in a separate
rack and set servers A and C in the other racks. Therefore,
the power consumption of server B is recorded as the power
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Fig. 10. Power consumption of the target rack
during inter-rack VM migration

consumption of the target rack. We migrate 2 VMs from server
A to server B and another 2 VMs from server C to server B in
parallel. Server B originally runs 4 VMs with the SPECCPU
workload and all the VMs that are migrated to server B also
run SPECCPU on them.

Figure 10 illustrates the power consumption of the target
rack during the migration. At the beginning, the target rack has
power consumption around 225 W. When the migration begins,
the power consumption of the target begins to rise rapidly.
Within a short period, the target can reach a power peak over
280 W. After the migration ends, the power consumption of the
target rack reduces to around 260 W. Such results indicate that
if there are multiple VMs migrated to one rack simultaneously,
the target rack will experience significant power spikes and
such power spikes can be exploited by an attacker to trip the
CB of the target rack.

D. Damage assessment and discussion

Our experimental results verify the feasibility of launching
a power attack in IaaS. With one parasite VM residing in the
host, a parasite attack can increase the power consumption
of a virtualized system by more than 30%. Such an attack is
as powerful as the attack in PaaS. In real world, the parasite
attack effect can be higher than what we achieved in the
experiments since the attacker is able to place more than one
parasite VMs on a target. More parasite VMs imply that more
controlled VMs on the host run in full utilization, generating
more power consumption. In addition, more parasite VMs can
also make DoS attacks more powerful. As Figure 7 shows,
Smurf attack incurs more power consumption than TCP SYN
flood and LAND attacks. The reason is that TCP SYN flood
and LAND attacks can only affect one victim VM, but Smurf
attack broadcasts packets to a range of IP addresses and makes
VMs communicate with each other, which can affect multiple
VMs. Thus, if the attacker is able to launch DoS attacks to
multiple parasite VMs, the impact of a power attack upon the
host will be more significant.

In addition to parasite attacks, we also demonstrate that
VM migration can be exploited to help launch a power attack.
Although attackers can hardly directly manipulate the VM
migration routine in a data center, they can infer how and when
VM migration is conducted and launch a power attack against
the rack that is conducting VM migration. As our experimental
results demonstrate, VM migration can increase the power
consumption of a rack by over 30% even when the rack is

already imposed with heavy workload. Therefore, launching
a power attack against a rack conducting VM migration can
amplify the damage caused the power attack and trip the CB
more easily. VM migration can also be leveraged to help
mount a power attack in PaaS and SaaS environments, where
virtualization and VM migration are used.

VI. POWER ATTACK IN SAAS

With SaaS being the most popular cloud service model, we
exploit the attack vectors in SaaS scenarios and conduct a set
of experiments to verify their feasibility.

A. SaaS and attack vectors

Software as a service (SaaS) delivers the application man-
aged by third-party vendors to cloud clients, and users can
access the applications via client-side interfaces. The most
typical SaaS service is web service. Compared with PaaS
and IaaS, the users of SaaS have much less control over
the infrastructure. The service vendor manages the underlying
hardware, middleware, OS and applications, which are trans-
parent to users. A user can access the application only via
the interfaces provided. Therefore, standing at the perspective
of power attacker, SaaS provides very limited control over
the target. The attacker can only access the target via certain
APIs or interfaces (usually web browser). However, as pointed
out by many previous works, certain specially crafted web
service requests will consume more system resources, therefore
resulting in the potential of a power attack.

In a typical web service, HTML pages are dynamically
generated when receiving requests. Some contents of the
requested web page need to be constructed on the fly or fetched
from database. During this process, two levels of caching,
object cache and in-memory cache, are used to help to optimize
the performance. Normally many cache misses can produce
considerable negative impact on the system performance and
lead to the increase of power consumption. Thus, an attacker
will attempt to generate requests that trigger a large number
of cache misses to launch a power attack.

Moreover, different computation will induce different
power consumption for a system. For instance, floating point
operations may consume more power consumption than integer
operations. In modern processors such as x86 processors,
Arithmetic Logic Unit (ALU) performs integer operations
while the Floating-Point Unit (FPU) takes the responsibility of
executing floating point operations. FPU is more power hungry
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Fig. 13. Power consumption of the server under
power attack.

than ALU, indicating that floating point operations are more
power expensive than integer operations. Meanwhile, different
arithmetic computation will consume different amount of re-
sources as well, e.g., division operation is more costly than
add and multiplication operations. Such power consumption
discrepancy in computation provides another attack vector. An
attacker can launch a power attack by sending requests that
involve a large number of expensive floating point operations.

B. Attack evaluation

To evaluate a power attack in SaaS environments, we set
up a testbed to deploy web services and conduct a series of
experiments to generate power spikes. The server used in the
evaluation is Server B in Table I.

The RUBiS benchmark is used in our evaluation. RUBiS is
a web benchmark that emulates online-shopping web services.
RUBiS provides various features of classic online shopping
websites such as browsing goods, selling items, bidding on
items, registration and viewing user information. Meanwhile,
RUBiS also provides client emulators that behave as real world
users. The “transition table” defined by RUBiS describes the
behaviors of the emulated clients. By modifying the transi-
tion table, the client emulator can generate different request
patterns.

We deploy RUBiS as a 3-tier web service, in which Apache
2, Tomcat7, and MySQL are used as the web server, the
application server, the database, respectively. We populate
the database with 100,000 unique items and 50,000 different
users. To Make RUBiS more suitable for our experiments, we
modify the source code of RUBiS to include some additional
functionalities. For instance, we make RUBiS capable of
performing “discount” operations, i.e., a user can have coupons
to get discount, reducing the buy-out prices of items by certain
percentage. The users can purchase multiple items or a certain
number of one item, and RUBiS will calculate the overall price.
We also modify the client emulator to make it more flexible
and capable of generating specially crafted requests.

In our experiments, we first explore the requests that will
trigger cache misses. RUBiS provides a “default” transition
table that defines the normal traffic, so we use it to represent
the normal workload of RUBiS. During the experiments, 4,000
clients are emulated. To generate the malicious cache-miss
traffic, we modify the transition table so that the clients will
continuously browse items in a totally random manner. In
this way, both of the object caches and in-memory caches

will be flushed frequently, resulting in considerable cache
misses. Figure 11 shows the comparison of power consumption
between normal traffic and cache-miss traffic. The results
demonstrate that cache-miss traffic can generate significantly
more (over 15%) power consumption than normal traffic.

We also conduct experiments to verify that floating point
operations generate more power consumption than integer
operations. First, we populate the database to set the prices
of all items to be integer numbers. Then we emulate 4,000
clients to browse and purchase items with the access pattern
provided by the default transition table. Such requests represent
the normal workload of the web service. After that, we update
the prices of all items to be floating point numbers. While the
requests still follow the access pattern provided by the default
transition table, the clients are crafted to purchase multiple
items and use coupons while checking out. Such malicious
requests cause the server to perform a considerable amount
of floating point operations. The experimental results are
illustrated in Figure 12. Compared with the normal workload,
it is evident that those malicious requests generating a large
number of floating point operations can force the web server
to experience a significant rise of power consumption.

Finally, we combine the two attack vectors mentioned
above to generate a malicious trace and then launch a more
powerful attack. Again, we use the trace of 4,000 emulated
clients generated by the default transition table to represent
a normal workload of the server. To launch the attack, we
craft the malicious requests to trigger both cache misses
and expensive floating point operations. While running the
normal workload, we launch the power attack by injecting
crafted requests from 2,000 malicious clients. These malicious
clients perform browse-and-purchase operations. Each of the
malicious client first browses random goods with floating point
prices, then purchases a random number of the browsed items.
Meanwhile, the client uses coupons to get discount on the
items bought. In this way, the server has to perform numerous
add, multiplication and division floating point operations.
Moreover, since the clients are browsing and purchasing items
in a random fashion, a large number of cache misses are
triggered. Figure 13 illustrates the power consumption of the
victim server under the power attack, which is mounted at
180s. The results clearly demonstrate that our power attack
can induce a significant rise in power consumption of servers
in SaaS environments.
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TABLE II. SIMULATION ENVIRONMENT SETUP.

Parameter Value

# of Servers 139,200
# of racks approximate 700
# of PDU approximate 20
# of CBs approximate 30 (per PDU + per DC )
Capacity of PDU-level CB 150kW
Capacity of DC-level CB 1MW
CPU Per Server dual-core 2.0GHz Xeon
DRAM Per Server 16GB
Disk Per Server 2TB
Est. Peak Power per Server 240Watt

C. Damage assessment and discussion

Our experimental results verify that specially crafted web
requests can generate significantly more power consumption of
servers in SaaS than normal requests. In our SaaS experiments,
the power attack can increase the power consumption of a
victim server by 30 to 40 percent, which is even more signifi-
cant than those in PaaS and IaaS environments. Therefore, the
damage caused by a power attack in SaaS can be as great as in
PaaS and IaaS. In general, the attack impact upon SaaS mainly
depends on three factors, the per-request power consumption,
the malicious request rate, and the attack duration. To make
an attack powerful and stealthy, seeking an attack vector with
high per-request power consumption is the key.

Besides the attack vectors mentioned above, certain web
applications expose particular vulnerabilities that can be ex-
ploited by attackers. For instance, an attacker can launch
algorithmic complexity attacks [10] against web applications
that involve with many hash table operations. Algorithmic
complexity attacks can make hash table operations always
suffer from the worst case complexity, therefore consuming
much more resources. For web applications deployed with
large databases, requests that compete on database locks can
also generate significantly more resource consumption [26].

VII. DATACENTER LEVEL SIMULATION

While we have shown the feasibility of mounting a power
attack at the server and rack levels, such attacks could be
spawned to the data center level, which may lead to more
severe and disastrous consequences. In this section, we study
the impact of power attacks at the data center level (DC-level)
including the large size PDU-level based on simulations. We
first introduce the setup of simulations and then present the
simulation results and analysis.

A. Simulation Setup

1) Platform: Based on our server-level and rack-level ex-
perimental results, we build the simulation models and config-
ure the data center parameters following the description of the
Google data center in Lenoir, North Carolina, USA [11]. We
assume there exists a simple workload management scheme
in the data center, which can distribute all workloads to each
PDU evenly. All simulation parameters and their values are
shown in Table II.

In the simulation, we build the similar power infrastructure
as in Figure 1. Based on our threat model, a power attacker
can obtain the knowledge of racks and servers in the same

PDU to launch attacks to each single PDU inside the power
infrastructure. We use a boolean checker as the CB in the
simulation implementation. Once a PDU-level CB is tripped,
servers connected to the corresponding branch circuit shut
down consequently. As a result, we can observe that the
monitored victim PDU power drops down to zero. All services
dispatched to servers in this PDU will be redistributed to
other servers with stable power supply from different PDUs.
A similar CB is implemented for the whole data center. From
the public information of the Google data center, we find that
the nameplate capacity of the DC-level CB is smaller than
the sum of all capacity of PDU-level CBs. The reason is due
mainly to the unplanned capacity increase of the Google DC
(adding more servers and PDUs) without updating the whole
power infrastructure. Thus, there exists a possibility that the
DC-level CB could be tripped without failing any PDU-level
CBs, which is confirmed by our simulation results shown in
Figure 17.

2) Workloads: Two workload traces are used in our simu-
lation, named as “Original” and “Attack” representing normal
and attack activities, respectively. The original trace consists of
the daily workloads of the Google data center [11]. The attack
trace includes the workloads similar to HPC workloads, which
can increase the power consumption of a target by up to 30%2

in a short time. As a sample of the daily workload, we show
a three-day workload trace from Google in Figure 14. Note
that, in Figure 14, we define three regions as peak, medium,
and valley, with respect to the workload dynamics. The peak
region is above the top 10-percentile of the workload, e.g.,
the workload density of 30,000 queries per second (qps) is
the top 4-percentile of the workload. By contrast, the valley
region is below the 90-percentile of the workload. The rest in
between is the medium region. The three regions represent the
three typical running states of a data center, busy, normal, and
idle. We design simulations that launch the power attacks in
these three regions, respectively, to examine the power attack
impact at the DC level under different running states of the
data center.

B. Simulation results

Prior to the simulation of the DC level power attacks, we
first simulate the power attacks at the PDU level to demonstrate
the impact of power attacks on a victim PDU and how PDU
level attacks can affect the power consumption of the entire
data center.

When an attacker acquires the information of those servers
located in the same PDU, the attacker can launch a power
attack against this PDU to trigger a power outage. We simulate
this scenario where the power attacker targets several particular
PDUs. The capacity of the PDU-level CB is shown in Table
II.

First, we show a snapshot of the power attack on a large
size PDU (including 40 racks, 650 machines) in Figure 15.
The attack begins at time 12min and lasts for 22 minutes till
the PDU-level CB is tripped. The whole PDU fails and all the
servers powered by this PDU are shut down completely. Thus,

2 The number is based on our experimental results in Sections IV,V, andVI.
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Fig. 14. The workload trace of a three-day period
in May 2011 from the Google cluster in [11].
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Fig. 16. The snapshot of continuous power attacks
on multiple PDUs in the scale of data center. There
are multiple attacks launched at time between 9-
10(1st), 24-25(2nd), 43-44(3rd) and 49-50(4th).

compared with the power behavior of the original workloads,
the power consumption of the PDU drops immediately after
the success of the power attack. In our simulation, we have
performed four similar power attack attempts to four different
PDUs sequentially at the scale of a data center. The results are
shown in Figure 16, in which each attack is represented as an
arrow and the first arrow is the attack shown in Figure 15.

All attacks successfully trip the targeted PDU-level CBs.
However, the power curve of the entire data center recovers
shortly after the first three attacks. This is because when one
PDU fails, the workload manager in DC restarts and evenly
redistributes those workloads from the servers lost power to
other servers with stable power supply. Thus, the impact of
PDU-level power attacks is reduced at a certain degree at the
cost of power load increase in other PDUs. However, after
the fourth attack in 49-50 hour, the computing capacity of
whole data center (i.e., the number of available servers) is
greatly diminished due to the power outages. The remainder
of available servers cannot support the significant increase of
original workload density starting at 58th hour, regardless of
the workload management. Thus, the load balancer of the data
center starts to reject service requests and the rejection ends
till 69th hour. During this period of time (i.e., from 58th to
69th hours), only about 53% of service requests are processed
and the rest are rejected. As a result, the DC-level power
consumption is just half of the original amount, which is
clearly shown in the area of the oscillating power curve in
Figure 16. The entire data center finally resumes to normal
between 69th and 70th hours with the significant decrease of
workload supply.

Next, we target at tripping the DC-level CB. As afore-
mentioned, it is possible that the DC-level CB is tripped
without the trip of any PDU-level CBs. Here we illustrate
three power attacks that target at the DC-level CB in three
workload regions, respectively, in Figure 17. When DC is
processing workloads in the peak region, it is defenseless to
the 30% power increase, as shown in Figure 17(a). Although
the impact of the power attack is mitigated by the load balancer
at some degree, the margin to the power threshold of the DC-
level CB is very small. As a result, the whole data center
quickly fails under the power attack. For the power attack in
the medium region, in Figure 17(b), we observe the similar
results. Especially, when the original workload increases uphill
and still in the medium region, the power attack successfully
shuts down the entire data center. However, unlike the power
attack in the peak region, there exist possibilities that power

attacks could fail in this region as the total power consumption
(i.e., Original+Attack) is smaller than the capacity of the DC-
level CB. Attackers could either increase the size of attack
workloads (at a risk of being discovered by the data center
administrators) or find the right time to launch such an attack
again. For the power attack in the valley region, due to the
same reason as the failed attack attempts in the medium region,
we have not succeeded in triggering a power outage in the DC
with the same malicious workloads. Although not all power
attempts lead to power outages of the target, our simulation
shows two observations: (1) there is a noticeable possibility of
a power attack success at the data center level, especially at
peak times, which leads to disastrous consequences. (2) The
damage of power attacks could be weakened by pre-defined
DC management policies to some extent. Next, we discuss
those results in details.

C. Damage assessment and discussion

Our simulation results further demonstrate the potential
threat of power attacks. For example, the PDU-level simulation
shows that a power attack can trip the CB at the PDU level. The
data center-level simulation demonstrates that a power attack
could potentially shut down the entire data center. Table III lists
some statistics of all the simulated power attacks. The attack
against the entire data center succeeds when the workload is
in the peak and medium regions, but fails in the valley region.
Moreover, the power attack in the medium region takes several
attempts and lasts longer than that in the peak region, due to the
workload management policies commonly employed in a data
center, such as load balancing. It is important to note that such
management policies are not originally designed to defend
against power attacks, though they could slightly weaken the
impacts of a power attack only to a limited degree. On the
other hand, from an attacker’s perspective, our results suggest
that a power attack is more effective when the data center
workload is in the peak region. Since the workload traces of
many data centers are accessible to the public and usually
follow a well-known diurnal pattern, it is not difficult for the
attacker to figure out when it is the best time to launch an
effective power attack.

Comparing the number of accessible servers and the attack
duration (Table III) at both the DC and PDU levels, it is
obvious that a power attack requires less resources at a lower
(i.e., the PDU) level. To attack a rack or all racks in a PDU, the
attacker only needs to access a moderate number of servers.
However, the attacker would need to have the knowledge that
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Fig. 17. Power attack launched at the DC level in three regions, (a) peak,
(b) medium, and (c) valley. Each red arrow in (c) represents one power attack
attempt.

those servers are located within the target rack/PDU. On the
contrary, to launch a power attack against the entire data center,
the attacker does not need to know such location information.
In our simulation at the DC level, we assume that all the servers
are accessible to the attacker. However, in the real world, such
an assumption may not be true. For example, some servers in
a data center may be disconnected from the Internet or have
some strong security protection, so the attacker cannot gain the
access to them. However, as discussed in previous sections, a
30% power increase is not the greatest amount of increase a
power attack can generate. Therefore, even if a power attacker
can only access just a portion of servers within a PDU or a data
center, it is still possible that the overall power consumption
would be increased by about 30%, leading to the disastrous
server shutdowns.

VIII. IMPACT OF NEW POWER MANAGEMENT
SOLUTIONS

In this section, we discuss the impacts of some new
power management strategies on power attack. Although these
strategies have not yet been widely deployed, it is highly likely
that they could be employed in future data centers. Some of
the strategies may mitigate the threat of power attack while
the others may increase the risk.

A. Power capping

Power capping is a solution that can limit the maximum
power consumption of a target unit within a user-specified
power cap in a data center. For example, server-level power
capping [18] leverages feedback control theory to limit the
power consumption of a server. Similarly, the power con-
sumption of multiple servers in a rack or PDU can also be
capped [27], [28], [35]. For an entire data center, a hierarchical
power control solution called SHIP [36] has been proposed to
provide power capping hierarchically at three different levels:
rack, PDU, and the whole data center. For all those power
capping strategies, the power consumption of the target is
monitored periodically in real time and dynamically controlled

TABLE III. ATTACK STATISTICS.

Scenario Infected Machines Attack Duration (min)

DC Peak 139200 27
DC Medium 139200 182
DC Valley 139200 N/A 3

PDU Peak 231 13
PDU Medium 445 16
PDU Valley 698 17

to ensure that it stays below the specified power cap. For
instance, Dynamic Voltage and Frequency Scaling (DVFS) is
commonly used to lower the CPU frequencies (and voltage) of
selected servers when the current power consumption is higher
than the cap. In the meantime, within the cap, power capping
tries to run the servers at their highest possible frequencies
for optimizing system performance. Power capping can also
allow a data center operator to host more servers (i.e., power
oversubscription), without upgrading the power infrastructure,
by having a power cap that is just slightly lower than the rated
capacity of the corresponding CB.

Power capping can definitely help to defend against power
attack, because power attack is to generate power spikes while
power capping is to shave power spikes. However, in practice,
there are three major challenges that prevent power capping
from becoming an effective defense solution: reactive manner,
the selection of control period, and long settling time. First,
power capping works in a reactive manner because its periodic
power sampling determines that it can only respond to any
power budget violation. Any power spikes occur between
two consecutive power sampling points (i.e., within a control
period) cannot be detected by power capping. Since the control
period can be as long as several minutes at the data center
level [36], a power attacker can easily launch an attack success-
fully before power capping can even detect it. Second, in power
capping, the selection of control period is a trade-off between
system responsiveness and computation/communication over-
heads. A power capping controller needs to periodically collect
the power and performance information from all the controlled
servers through the data center network, make centralized
and computational-intensive capping decisions, and then send
the decisions back to the servers to change their hardware
DVFS levels for power capping. A control period has to
be long enough for all those steps to finish. Therefore, the
control period can be longer than 2 minutes for the SHIP
hierarchical controller [36]. However, 2 minutes is already
long enough for a CB to trip even when it has only a 25%
power overload [13]. As shown in our hardware experiments,
a 30% or higher power rise can be easily generated by an
attacker through various ways such as parasite attack. Finally,
a power capping controller normally cannot immediately drag
the power consumption lower than the CB capacity within
one control period, even if it detects a power attack. Most
controllers need a settling time of at least six or more control
periods [36], which means a total time interval of 12 minutes
(with a control period of 2 minutes), for power to return after
a power spike. Clearly, a power attacker can launch multiple
attacks within such a long interval.

In summary, although power capping can mitigate power
attack to some extent, it cannot completely prevent power

3 No attack at valley is successful.
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attack due to the three reasons discussed above. More im-
portantly, power capping is mainly designed to allow more
aggressive power oversubscription in data centers [12], which
can actually lead to a greater risk of power attack.

B. Server consolidation and energy proportionality

Servers are well known to consume too much power even
when they are idling. Some recent studies show that current
servers still draw about 60% of their peak power at idle [23].
This fact is far away from the ideal case where a server’s
energy consumption can be proportional to its workload, which
is called energy proportionality. An energy-proportional server
would consume little energy at idle and its energy consumption
would increase proportionally to its workload intensity. Since
the average server utilization in typical data centers is only
20-30% [23], energy-proportional servers would lead to a
significant amount of energy savings. While today’s servers
are still not yet energy-proportional by themselves, a recently
proposed power management strategy, called server consolida-
tion, can help make a data center more energy-proportional by
dynamically migrating and consolidating the workloads onto
a small number of servers and shutting down other servers for
energy savings. For example, some recent studies [33], [8],
[32], [34] have proposed VM placement solutions that rely on
live VM migration for server consolidation.

While these server consolidation solutions can indeed re-
duce the overall energy consumption of a data center, they may
actually also increase the risk of having power attacks. The key
idea of server consolidation is to consolidate workload, so that
only a smaller number of servers are used with high utilization,
which generally comes with high power consumption for each
server. In addition, most server consolidation solutions try
to put consolidated workload on servers in the same rack
or connected to the same PDU for easier management. This
strategy could also lead to less cooling costs, because only
those Computer Room Air Conditioning (CRAC) units that are
near this rack/PDU needs to be running, while other CRACs
near those shutdown racks/PDUs can be turned off as well
for energy savings [4]. Therefore, server consolidation clearly
would increase the power consumption of the rack or PDU
that is selected to run the consolidated workload. This thus
would push them further to the edge of having a power outage,
providing an attacker a better opportunity to launch power
attacks.

Whereas future server hardware will certainly become
more energy proportional to their workloads, energy propor-
tionality may also provide more opportunities for a power
attacker. The key reason is that energy proportionality can
allow more aggressive power oversubscription, which in turn
increases the likelihood of having power outages. For instance,
for a today’s server that is not energy proportional, suppose its
peak power is 200 W and it consumes 80% of the peak power,
i.e., 160 W, when it works at a 20% utilization. Therefore, for
a rack equipped with a CB that has a 2000 W of rated power
limit, the rack is likely to host 12 such servers with power
oversubscription based on the power values at 20% utilization.
Now, let us suppose that we have energy-proportional servers
that consume only 40 W (20% of peak) of power at a 20%
utilization. With aggressive power oversubscription, now the

rack can host up to 50 servers. In such a case, an attacker
can more easily increase the power consumption of the rack
to about 4000 W, simply by increasing the server utilization
to only 40%, resulting in significant overload and immediate
trip of the CB and thus the shutdown of the rack.

IX. MITIGATION METHODS

The difficulty of defending against a power attack roots
in three aspects. First, although power oversubscription is the
major vulnerability exposed to power attacks, it is also one
of the key techniques to reduce the operational cost of a data
center. As data centers continue to scale up in a fast speed
and it is extremely expensive to upgrade data center power
infrastructures, power oversubscription has become the trend
and will be more aggressive to accommodate more servers
in a data center. Second, it is challenging to monitor power
consumption of each server accurately in a large scale data
center. Since deploying power meters for every server in a
data center is too costly [9], [24], current power management
solutions tend to approximate the power consumption of each
server via utilization-based modeling. However, our work
demonstrates that system utilization cannot precisely reflect
power consumption. Without accurate and timely measurement
of power consumption of servers, it will be difficult to detect
and prevent power attacks. Third, with the pervasion and
easy access of cloud services, an attacker can consume the
computing resources of a data center like a normal user.
Although the intention of attackers is very different from that
of normal users, it is very difficulty to distinguish attackers
from normal users and deny their service requests at the
beginning.

In spite of these difficulties, there exist feasible approaches
to mitigating the consequence of a power attack. Tracking
down the power consumption of individual incoming requests
and taking corresponding reaction can be a promising way
to defend against a power attack at the server level. Shen
et al. [31] built models estimating the power consumption
of requests throughout their execution life in a very fine-
grained fashion. Such an approach can effectively throttle
high-consumption request rate and thus suppress power spikes,
which will mitigate power attacks to some extent. It also has
minor impact on the service performance.

At the cluster and data center levels, we propose a new load
balancing strategy, called power balancing, that uses the esti-
mated power consumption as an important factor (along with
CPU utilization or throughput) to distribute incoming service
requests. Different from traditional load balancing algorithms
that are based on system utilization and amount of workload,
power balancing captures service requests that consume a
large amount of power and evenly distributes them to servers
connected to different branch circuits in a data center. As
a result, the chance of tripping a branch circuit breaker is
minimized. We leave the detailed design, implementation, and
evaluation of the power balancing mechanism as our future
work.

The deployment of per-server UPS is an alternative way
to defend against power attacks. When each server contains
a mini-UPS, a short period of power outage will not bring
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down the server. Besides, per-server UPS is also promising to
improve energy efficiency [6]. However, replacing data-center-
level UPS with tens of thousands of mini-UPSes is not an
easy task. Different UPS deployment mechanisms will bring
in great impact on data centers, and hence it will take time to
have per-server UPSes be widely deployed in data centers.

X. RELATED WORK

While we are the first to propose the concept of power
attack, there are numerous research works studying power
management in different computing environments.

A number of studies focus on improving power man-
agement in data centers. Some works seek to save energy
by adjusting workload distribution algorithms in a data cen-
ter [39], [20], while some other works aim at reducing power
consumption of individual servers [7], [37]. However, even
with these solutions, data centers are still under high power
provisioning pressure and rely on power oversubscription to
handle this pressure.

A research conducted by Fu et al. [13] demonstrates how
much power consumption and how long such consumption
lasts will trip a CB in a data center. Their study shows that the
time to trip a CB has functional relationship with the amount
of power that exceeds the rated power of the CB. The more
power consumption exceeds the rated power of CB, the less
time it takes to trip the CB. Their study provides the theoretical
support for more aggressive power oversubscription.

A study on power consumption of high performance
computation benchmarks is conducted by Kamil et al. [16].
They analyzed the power consumption patterns of different
HPC benchmarks including NAS [2], STREAM [3], and
High Performance Linpack (HPL). Their work supports our
argument that different computation workloads will lead to
considerably different power consumption patterns. Their study
also demonstrates that HPL is the benchmark whose power
consumption is the closest to that of real world computation-
intensive scientific workload.

Although many server consolidation solutions only take
resource consumption into account [19], [8], there exist pre-
vious works studying the power and energy savings brought
by server consolidation [25], [32]. While these studies focus
on the power consumption before and after VM migration,
we demonstrate that the additional power consumption during
migration can be exploited by a malicious attacker. The work
of Liu et al. [21] models the power consumption during VM
migration. They demonstrated that different VM migration
mechanisms and configurations will lead to different migration
power consumptions. Their work implies that an attacker can
impose additional workload to the to-be-migrated VMs to
increase power consumption during migration.

Some of the previous studies on web services demon-
strate that there are different ways to increase resource/power
consumption with specially crafted web requests. The work
of Wu et al. [38] observes that cache misses generate more
power consumption at a web server. A research conducted
by Crosby et al. [10] introduces the computational attack
against web servers. By sending requests with certain data

sequence, an attacker can force some data structure operations
to suffer the worst case algorithm complexity, therefore costing
extra computing resources and thus resulting in more power
consumption.

Wu et al. [38] introduced a concept called energy attack.
While energy attack also attempts to increase power consump-
tion of a target, it is a different concept from power attack.
The goal of energy attack is to enlarge the operational cost
of a victim (usually a web service provider) by increasing
overall energy consumption, but our power attack can trip CBs
in a data center, which can lead to more disastrous damage.
Normally an energy attack increases the power consumption of
victim moderately for a long period, which has high demand
of stealthiness. In contrast, a power attack needs to generate
significant power spikes in a relatively short period.

XI. CONCLUSION

In this paper, we investigate the vulnerability of power
oversubscription in data centers and introduce the concept of
power attack. We explore different attack vectors in PaaS, IaaS
and SaaS environments, respectively. In PaaS, we demonstrate
that an attacker can manipulate running workloads to signif-
icantly increase power consumption. In IaaS, we propose the
concept of parasite attack and further show that VM migration
can be exploited for helping to mount a power attack. In SaaS,
we craft high power consumption requests that can trigger
cache misses and intensive floating point operations to launch
a power attack. Our experimental results show that a power
attack can easily increase power consumption of a target by
over 30% in different environments and our power attack trips
the CB of our server room. We further conduct a data center
level simulation based on real world traces. The simulation
results indicate that a power attack can bring down a PDU or
even an entire data center. Moreover, we discuss the impact of
various power management schemes upon power security of
data centers and propose effective defenses to mitigate power
attacks.

As the future work, on one hand, we will further explore
more efficient and stealthy power attack vectors in different
data center environments; on the other hand, we will sys-
tematically study defense techniques, develop prototypes, and
conduct experiments to evaluate their effectiveness against
power attacks in real scenarios.
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APPENDIX

In Amazon EC2, the physical location of a VM can be
associated with the its type, “zone”, and IP address. An
attacker can customize the VMs by specifying in which zone
the VM will be instantiated and what is the instance type so
that the VM will be located in a certain physical area. After
the VM is booted, the attacker can further infer the “location”
of the booted VMs as well as their host physical machines via
IP address and packet round time information [29]. Since the
VM will change its IP address, i.e., its physical location every
time it is rebooted, the attacker can place a VM to a target
machine or rack by keeping rebooting the VM until it reaches
the desired location. In this way, the attacker can deploy many
VMs on those physical machines that are within the same rack.
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