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Abstract

Information security and privacy in general are major

concerns that impede enterprise adaptation of shared or

public cloud computing. Specifically, the concern of vir-

tual machine (VM) physical co-residency stems from the

threat that hostile tenants can leverage various forms of

side channels (such as cache covert channels) to exfil-

trate sensitive information of victims on the same physi-

cal system. However, on virtualized x86 systems, covert

channel attacks have not yet proven to be practical, and

thus the threat is widely considered a “potential risk”.

In this paper, we present a novel covert channel attack

that is capable of high-bandwidth and reliable data trans-

mission in the cloud. We first study the application of

existing cache channel techniques in a virtualized envi-

ronment, and uncover their major insufficiency and dif-

ficulties. We then overcome these obstacles by (1) re-

designing a pure timing-based data transmission scheme,

and (2) exploiting the memory bus as a high-bandwidth

covert channel medium. We further design and imple-

ment a robust communication protocol, and demonstrate

realistic covert channel attacks on various virtualized x86

systems. Our experiments show that covert channels do

pose serious threats to information security in the cloud.

Finally, we discuss our insights on covert channel miti-

gation in virtualized environments.

1 Introduction

Cloud vendors today are known to utilize virtualization

heavily for consolidating workload and reducing man-

agement and operation cost. However, due to the relin-

quished control from data owners, data in the cloud is

more susceptible to leakage by operator errors or theft

attacks. Cloud vendors and users have used a number

of defense mechanisms to prevent data leakage, ranging

from network isolation to data encryption. Despite the

efforts being paid on information safeguarding, there re-

main potential risks of data leakage, namely the covert

channels in the cloud [14, 18, 24, 30, 31].

Covert channels exploit imperfections in the isolation

of shared resources between two unrelated entities, and

enable communications between them via unintended

channels, bypassing mandatory auditing and access con-

trols placed on standard communication channels. Pre-

vious research has shown that on a non-virtualized sys-

tem, covert channels can be constructed using a variety of

shared media [3, 12, 16, 19, 23]. However, to date there

is no known practical exploit of covert channels on vir-

tualized x86 systems.

Exposing cloud computing to the threat of covert

channel attacks, Ristenpart et al. [18] have implemented

an L2 cache channel in Amazon EC2 [18], achieving a

bandwidth of 0.2 bps (bits-per-second), far less than the

one bps “acceptable” threshold suggested by the Trusted

Computer System Evaluation Criteria (TCSEC, a.k.a. the

“Orange Book”) [5]. A subsequent measurement study

of cache covert channels [30] has achieved slightly im-

proved speeds—a theoretical channel capacity of 1.77

bps1. Given such low reported channel capacities from

previous research, it is widely believed that covert chan-

nel attacks could only do very limited harm in the cloud

environment. Coupled with the fact that the cloud ven-

dors impose non-trivial extra service charges for provid-

ing physical isolation, one might be tempted to disregard

the concerns of covert channels as only precautionary,

and choose the lower cost solutions.

In this paper, we show that the threat of covert channel

attacks in the cloud is real and practical. We first study

existing cache covert channel techniques and their ap-

plications in a virtualized environment. We reveal that

these techniques are rendered ineffective by virtualiza-

tion, due to three major insufficiency and difficulties,

namely, addressing uncertainty, scheduling uncertainty,

1This value is derived from the results presented in the original

paper—a bandwidth of 3.20 bps with an error rate of 9.28%, by as-

suming a binary symmetric channel.



and cache physical limitations. We tackle the address-

ing and scheduling uncertainty problems by designing

a pure timing-based data transmission scheme with re-

laxed dependencies on precise cache line addressing and

scheduling patterns. Then, we overcome the cache phys-

ical limitations by discovering a high-bandwidth mem-

ory bus covert channel, exploiting the atomic instructions

and their induced cache–memory bus interactions on x86

platforms. Unlike cache channels, which are limited to a

physical processor or a silicon package, the memory bus

channel works system-wide, across physical processors,

making it a very powerful channel for cross–VM covert

data transmission.

We further demonstrate the real world exploitability

of the memory bus covert channel by designing a ro-

bust data transmission protocol and launching realistic

attacks on our testbed server as well as in the Amazon

EC2 cloud. We observe that the memory bus covert chan-

nel can achieve (1) a bandwidth of over 700 bps with

extremely low error rate in a laboratory setup, and (2) a

real world transmission rate of over 100 bps in the Ama-

zon EC2 cloud. Our experimental results show that, con-

trary to previous research and common beliefs, covert

channels are able to achieve high bandwidth and reliable

transmission on today’s x86 virtualization platforms.

The remainder of this paper is structured as follows.

Section 2 surveys related work on covert channels. Sec-

tion 3 describes our analysis of the reasons that existing

cache covert channels are impractical in the cloud. Sec-

tion 4 details our exploration of building high-speed, re-

liable covert channels in a virtualized environment. Sec-

tion 5 presents our evaluation of launching covert chan-

nel attacks using realistic setups. Section 6 provides a

renewed view of the threats of covert channels in the

cloud, and discusses plausible mitigation avenues. Sec-

tion 7 concludes this paper.

2 Related Work

Covert channel is a well known type of security attack

in multi-user computer systems. Originated in 1972 by

Lampson [12], the threats of covert channels are preva-

lently present in systems with shared resources, such

as file system objects [12], virtual memory [23], net-

work stacks and channels [3, 19, 20], processor caches

[16, 24], input devices [21], etc. [5, 13].

Compared to other covert channel media, the proces-

sor cache is more attractive for exploitation, because

its high operation speed could yield high channel band-

width and the low level placement in the system hierar-

chy can bypass many high level isolation mechanisms.

Thus, cache-based covert channels have attracted serious

attention in recent studies.

Percival [16] introduced a technique to construct inter-

process high bandwidth covert channels using the L1 and

L2 caches, and demonstrated a cryptographic key leak-

age attack through the L1 cache side channel. Wang and

Lee [24] deepened the study of processor cache covert

channels, and pointed out that the insufficiency of soft-

ware isolation in virtualization could lead to cache-based

cross–VM covert channel attacks. Ristenpart et al. [18]

further exposed cloud computing to covert channel at-

tacks by demonstrating the feasibility of launching VM

co-residency attacks, and creating an L2 cache covert

channel in the Amazon EC2 cloud. Xu et al. [30] con-

ducted a follow up measurement study on L2 cache

covert channels in a virtualized environment. Based on

their measurement results, they concluded that the harm

of data exfiltration from cache covert channels is quite

limited due to low achievable channel capacity.

In response to the discovery of cache covert channel

attacks, a series of architectural solutions have been pro-

posed to limit cache channels, including RPcache [24],

PLcache [11], and Newcache [25]. RPcache and New-

cache employ randomization to prevent data transmis-

sion by establishing a location-based coding scheme.

PLcache, however, is based on enforcing resource iso-

lation by cache partitioning.

One drawback of hardware-based solutions is their

high adaptation cost and latency. With the goal of of-

fering immediately deployable protection, HomeAlone

[31] proposes to proactively detect the co-residence of

unfriendly VMs. Leveraging the knowledge of existing

cache covert channel techniques [16, 18], HomeAlone

detects the presence of a malicious VM by acting like

a covert channel receiver and observing cache timing

anomalies caused by another receiver’s activities.

The industry has taken a more pragmatic approach

to mitigating covert channel threats. The Amazon EC2

cloud provides a featured service called dedicated in-

stances [1], which ensures VMs belonging to each tenant

of this service do not share physical hardware with any

other cloud tenants’ VMs. This service effectively elimi-

nates various covert channels induced by the shared plat-

form hardware, including cache covert channel. How-

ever, in order to enjoy this service, the cloud users have

to pay a significant price premium2.

Of historical interest, the study of covert channels in

virtualized systems is far from a brand new research

topic—legacy research that pioneered this field dates

back over 30 years. During the development of the VAX

security kernel, a significant amount of effort has been

2As of the time of writing (January, 2012), each dedicated instance
incurs a 23.5% higher per-hour cost than regular usage. In addition,

there is a $10 fee per hour/user/region. Thus, for a user of 20 small

instances, the overall cost of using dedicated instances is 6.12 times

more than that of using regular instances.



Algorithm 1 Classic Cache Channel Protocol

Cache[N]: A shared processor cache, conceptually divided into N regions;

Cache[N]: Each cache region can be put in one of two states, cached or flushed.

DSend [N], DRecv[N]: N bit data to transmit and receive, respectively.

Sender Operations: Receiver Operations:

(Wait for receiver to initialize the cache)

for i := 0 to N −1 do

{Put Cache[i] into the cached state}
Access memory maps to Cache[i];

end for

for i := 0 to N −1 do

if DSend [i] = 1 then

{Put Cache[i] into the flushed state}
Access memory maps to Cache[i];

end if

end for

(Wait for sender to prepare the cache)

(Wait for receiver to read the cache)

for i := 0 to N −1 do

Timed access memory maps to Cache[i];
{Detect the state of Cache[i] by latency}
if AccessTime > T hreshold then

DRecv[i] := 1; {Cache[i] is flushed}
else

DRecv[i] := 0; {Cache[i] is cached}
end if

end for

paid to limit covert channels within the Virtual Machine

Monitor (VMM). Hu [8, 9] and Gray [6, 7] have pub-

lished a series of follow up research on mitigating cache

channels and bus contention channels, using timing noise

injection and lattice scheduling techniques. However,

this research field has lost its momentum until recently,

probably due to the cancellation of the VAX security ker-

nel project, as well as the lack of ubiquity of virtualized

systems in the past.

3 Struggles of the Classic Cache Channels

Existing cache covert channels (namely, the classic cache

channels) employ variants of Percival’s technique, which

uses a hybrid timing and storage scheme to transmit in-

formation over a shared processor cache, as described in

Algorithm 1.

The classic cache channels work very well on hyper-

threaded systems, achieving transmission rates as high as

hundreds of kilobytes per second [16]. However, when

applied in today’s virtualized environments, the achiev-

able rates drop drastically, to only low single-digit bits

per second [18, 30]. The multiple orders of magnitude

reduction in channel capacity clearly indicates that the

classic cache channel techniques are no longer suit-

able for cross–VM data transmission. In particular, we

found that on virtualized platforms, the data transmis-

sion scheme of a classic cache channel suffers three ma-

jor obstacles—addressing uncertainty, scheduling uncer-

tainty, and cache physical limitation.

3.1 Addressing Uncertainty

Classic cache channels modulate data by the states of

cache regions, and hence a key factor affecting chan-

nel bandwidth is the number of regions a cache being

divided. From information theory’s perspective, a spe-

cific cache region pattern is equivalent to a transmitted

symbol. And the number of regions in a cache thus cor-

responds to the number of symbols in the alphabet set.

The higher symbol count in an alphabet set, the more in-

formation can be passed per symbol.

On hyper-threaded single processor systems, for

which classic cache channels are originally designed, the

sender and receiver are executed on the same processor

core, using the L1 cache as the transmission medium.

Due to its small capacity, the L1 cache has a special

property that its storage is addressed purely by virtual

memory addresses, a technique called VIVT (virtually

indexed, virtually tagged). With a VIVT cache, two pro-

cesses can impact the same set of associative cache lines

by performing memory operations with respect to the

same virtual addresses in their address spaces, as illus-

trated in Figure 1(a). This property enables processes to

precisely control the status of the cache lines, and thus
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Figure 1: Memory Address to Cache Line Mappings for L1 and L2 Caches

allows for the L1 cache to be finely divided, such as 32

regions in Percival’s cache channel [16].

However, on today’s production virtualization sys-

tems, hyper-threading is commonly disabled for security

reasons (i.e., eliminating hyper-threading induced covert

channels). Therefore, the sender and receiver could only

communicate by interleaving their executions. Since the

L1 cache is completely flushed at context switches, only

those higher level caches (e.g., the L2 cache) whose con-

tents are preserved across a context switch can be lever-

aged for classic cache channel transmission. Unlike the

L1 cache, the storage in these higher level caches is

not addressed purely by virtual memory addresses, but

either by physical memory addresses (PIPT, physically

indexed, physically tagged), or by a mixture of virtual

and physical memory addresses (VIPT, virtually indexed,

physically tagged). With physical memory addresses in-

volved in cache line addressing, given only knowledge of

its virtual address space, a process cannot be completely

certain of the cache line a memory access would affect

due to address translation.

Server virtualization has further complicated the ad-

dressing uncertainty by adding another layer of indirec-

tion to memory addressing. As illustrated in Figure 1(b),

the “physical memory” of a guest VM is still virtualized,

and access to it must be further translated. As a result, it

is very difficult, if not impossible, for a process in a guest

VM (especially for a full virtualization VM) to discover

the actual physical memory addresses of a memory re-

gion. Due to the addressing uncertainty, for classic covert

channels on virtualized systems, the number of cache re-

gions is reduced to a minimum of only two [18, 30].

3.2 Scheduling Uncertainty

Classic cache channel data transmission depends on a

cache pattern “round-trip”—the receiver completely re-

sets the cache and correctly passes it to the sender; and

the sender completely prepares the cache pattern and cor-

rectly passes it back to the receiver. Therefore, to suc-

cessfully transmit one cache pattern, the sender and re-

ceiver must be strictly round-robin scheduled.

However, without special scheduling arrangements

(i.e., collusion) from the hypervisor, such idealistic

scheduling rarely happens. On production virtualized

systems, the physical processors are usually oversub-

scribed in order to increase utilization. In other words,

each physical processing core serves more than one vir-

tual processor from different VMs. As a result, there exist

many scheduling patterns that prevent successful cache

pattern “round-trip”, such as:

∗ Channel not cleared for send: The receiver is de-

scheduled before it finishes resetting the cache.

∗ Channel invalidated for send: The receiver finishes

resetting the cache, but another unrelated VM is

scheduled to run immediately after.

∗ Sending incomplete: The sender is de-scheduled be-

fore it finishes preparing the cache.

∗ Symbol destroyed: The sender finishes preparing the

cache, but another unrelated VM is scheduled to run

immediately after.

∗ Receiving incomplete: The receiver is de-scheduled

before it finishes reading the cache.

∗ Channel access collision: The sender and receiver

are executed in parallel on processor cores that share

the L2 cache.

Xu et al. [30] have clearly illustrated the problem of

scheduling uncertainty in two of their measurements.

First, in a laboratory setup, the error rate of their covert

channel increases from near 1% to 20–30% after adding

just one non-participating VM with moderate workload.

Second, in the Amazon EC2 cloud, they have discov-

ered that only 10.5% of the cache measurements at the

receiver side are valid for data transmission, due to the

fact that the hypervisor’s scheduling is different from the

idealistic scheduling.



Algorithm 2 Timing-based Cache Channel Protocol

CLines: Several sets of associative cache lines picked by both the sender and the receiver;

CLines: These cache lines can be put in one of two states, cached or flushed.

DSend [N], DReceive[N]: N bit data to transmit and receive, respectively.

Sender Operations: Receiver Operations:

for i := 0 to N −1 do

if DSend [i] = 1 then

for an amount of time do

{Put CLines into the flushed state}
Access memory maps to CLines;

end for

else

{Leave CLines in the cached state}
Sleep of an amount of time;

end if

end for

for i := 0 to N −1 do

for an amount of time do

Timed access memory maps to CLines;

end for

{Detect the state of CLines by latency}
if Mean(AccessTime) > T hreshold then

DReceive[i] := 1; {CLines is flushed}
else

DReceive[i] := 0; {CLines is cached}
end if

end for

3.3 Cache Physical Limitation

Besides the two uncertainties, classic cache channels also

face an insurmountable limitation—the necessity of a

shared and stable cache.

If the sender and receiver of classic cache channels are

executed on processor cores that do not share any cache,

obviously no communication could be established. On a

multi-processor system, it is quite common to have pro-

cessor cores that do not share any cache, since there is

usually no shared cache between different physical pro-

cessors. And sometimes even processor cores residing on

the same physical processor do not share any cache, such

as an Intel Core2 Quad processor, which contains two

dual-core silicon packages with no shared cache in be-

tween.

Even if the sender and receiver could share a cache,

external interferences can make the cache unstable. Mod-

ern multi-core processors often include a large last-level

cache (LLC) shared between all processor cores. To fa-

cilitate a simpler cache coherence protocol, the LLC usu-

ally employs an inclusive principle, which requires that

all data contained in the lower level caches must also

exist in the LLC. In other words, when a cache line

is evicted from the LLC, it must also be evicted from

all the lower level caches. Thus, any non-participating

processes executing on those processor cores that share

the LLC with the sender and receiver can interfere with

the communication by indirectly evicting the data in the

cache used for the covert channel. The more cores on a

processor, the higher the interference.

Overall, virtualization induced changes to cache oper-

ations and process scheduling render the data transmis-

sion scheme of classic cache channels obsolete. First, the

effectiveness of data modulation is severely reduced by

addressing uncertainty. Second, the critical procedures of

signal generation, delivery, and detection are frequently

interrupted by less-than-ideal scheduling patterns. And

finally, the fundamental requirement of stably shared

cache is hard to satisfy as processors are having more

cores.

4 Covert Channel in the Hyper-space

In this section, we present our techniques to tackle the ex-

isting difficulties and develop a high-bandwidth, reliable

covert channel on virtualized x86 systems. At first, we

describe our redesigned, pure timing-based data trans-

mission scheme, which overcomes the negative effects of

addressing and scheduling uncertainties with a simplified

design. After that, we detail our findings of a powerful

covert channel medium, exploiting the atomic instruc-

tions and their induced cache–memory bus interactions

on x86 platforms. And finally, we specify our designs of

a high error-tolerance transmission protocol for cross–

VM covert channels.

4.1 A Stitch In Time

We first question the reasoning behind using cache state

patterns for data modulation. Originally, Percival [16]

designed this transmission scheme mainly for the use

of side channel cryptographic key stealing on a hyper-

threaded processor. In this specific usage context, the

critical information of memory access patterns are re-

flected by the states of cache regions. Therefore, cache

region-based data modulation is an important source of

information. However, in a virtualized environment, the

regions of the cache no longer carry useful informa-

tion due to addressing uncertainty, making cache region-

based data modulation a great source of interference.

We therefore redesign a data transmission scheme for

the virtualized environment. Instead of using the cache
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Figure 2: Timing-based Cache Channel Bandwidth Test

region-based encoding scheme, we modulate the data

based on the state of cache lines over time, resulting in a

pure timing-based transmission protocol, as described in

Algorithm 2.

Besides removing cache region-based data modula-

tion, the new transmission scheme also features a signif-

icant change in the scheduling requirement, i.e., signal

generation and detection are performed instantaneously,

instead of being interleaved. In other words, data are

transmitted while the sender and receiver run in parallel.

This requirement is more lenient than strict round-robin

scheduling, especially with the trend of increasing num-

ber of cores on a physical processor, making two VMs

more likely to run in parallel than interleaved.

We conduct a simple raw bandwidth estimation exper-

iment to demonstrate the effectiveness of the new cache

covert channel. In this experiment, interleaved bits of ze-

ros and ones are transmitted, and the raw bandwidth of

the channel can thus be estimated by manually counting

the number of bits transmitted over a period of time.

We build the cache covert channel on an Intel Core2

system with two processor cores sharing a 2 MB 8-way

set-associative L2 cache. Using a simple profiling test,

accessing a random3 sequence of memory addresses sep-

arated by multiples of 256KB, we observe that these

memory addresses can be mapped to up to 64 cache

lines. Therefore, we select CLines as a set of 64 cache

lines mapped by memory addresses following the pattern

M+X ·256K, where M is a small constant and X is a ran-

dom positive integer. The sender puts these cache lines

into the flushed state by accessing a sequence of CLines-

mapping memory addresses. The receiver times the ac-

cess latency of another sequence of CLines-mapping

memory addresses. The length of the receivers access se-

quence should be smaller than, but not too far away from

the cache line set size, for example, 48.

As shown in Figure 2, the x-value of each sample

point is the observed memory access latency by the re-

ceiver, and the trend line is created by plotting the mov-

3The randomness is introduced to avoid the interference of hard-

ware prefetching.

ing average of two samples. According to the measure-

ment results, 39 bits can be transmitted over a period

of 200 micro-seconds, yielding a raw bandwidth of over

190.4 kilobits per second, about five orders of magni-

tude higher than the previously studied cross–VM cache

covert channels.

Having resolved the negative effects of addressing and

scheduling uncertainties and achieved a high raw band-

width, our new cache covert channel, however, still per-

forms poorly on the system with non-participating work-

loads. We discover that the sender and receiver have dif-

ficulty in establishing a stable communication channel.

And the cause of instability is that the hypervisor fre-

quently migrates the virtual processors across physical

processor cores, which is also observed by Xu et al.

[30]. The outgrowth of this behavior is that the sender

and receiver frequently reside on processor cores that do

not share any cache, making our cache channel run into

the insurmountable cache physical limitation just like the

classic cache channels.

4.2 Aria on the B-String

The prevalence of virtual processor core migration hand-

icaps cache channels in cross–VM covert communica-

tion. In order to reliably establish covert channels across

processor cores that do not share any cache, a commonly

shared and exploitable resource is needed as the commu-

nication medium. And the memory bus comes into our

sight as we extend our scope beyond the processor cache.

4.2.1 Background

Interconnecting the processors and the system main

memory, the memory bus is responsible for delivering

data between these components. Because contention on

the memory bus results in a system-wide observable ef-

fect of increased memory access latency, a covert chan-

nel can be created by programmatically triggering con-

tention on the memory bus. Such a covert channel is

called a bus-contention channel.

The bus contention channels have long been studied

as a potential security threat for virtual machines on the

VAX VMM, on which a number of techniques have been

developed [6–8] to effectively mitigate this threat. How-

ever, the x86 platforms we use today are significantly

different from the VAX systems, and we suspect similar

exploits can be found by probing previously unexplored

techniques. Unsurprisingly, by carefully examining the

memory related operations of the x86 platform, we have

discovered a bus-contention exploit using atomic instruc-

tions with exotic operands.

Atomic instructions are special x86 memory manipu-

lation instructions, designed to facilitate multi-processor



Algorithm 3 Timing-based Memory Bus Channel Protocol

MExotic: An exotic configuration of a memory region that spans two cache lines.

DSend [N], DRecv[N]: N bit data to transmit and receive, respectively.

Sender Operations: Receiver Operations:

for i := 0 to N −1 do

if DSend [i] = 1 then

for an amount of time do

{Put memory bus into contended state}
Perform atomic operation with MExotic;

end for

else

{Leave memory bus in contention-free state}
Sleep of an amount of time;

end if

end for

for i := 0 to N −1 do

for an amount of time do

Timed uncached memory access;

end for

{Detect the state of memory bus by latency}
if Mean(AccessTime) > T hreshold then

DRecv[i] := 1; {Bus is contended}
else

DRecv[i] := 0; {Bus is contention-free}
end if

end for

synchronization, such as implementing mutexes and

semaphores—the fundamental building blocks for par-

allel computation. Memory operations performed by

atomic instructions (namely, atomic memory operations)

are guaranteed to complete uninterrupted, because ac-

cesses to the affected memory regions by other proces-

sors or devices are temporarily blocked from execution.

4.2.2 Analysis

Atomic memory operations, by their design, generate

system-wide observable contentions in the target mem-

ory regions they operate on. And this particular feature

of atomic memory operations caught our attention. Ide-

ally, contention generated by an atomic memory oper-

ation is well bounded, and is only evident when the

affected memory region is accessed in parallel. Thus,

atomic memory operations are not exploitable for cross–

VM covert channels, because VMs normally do not im-

plicitly share physical memory. However, we have found

out that the hardware implementations of atomic mem-

ory operations do not match the idealistic specification,

and memory contentions caused by atomic memory op-

erations could propagate much further than expected.

Early generations (before Pentium Pro) of x86 proces-

sors implement atomic memory operations by using bus

lock, a dedicated hardware signal that provides exclusive

access of the memory bus to the device who asserts it.

While providing a very convenient means to implement

atomic memory operations, the sledgehammer-like ap-

proach of locking the memory bus results in system-wide

memory contention. In addition to being exploitable

for covert channels, the bus-locking implementation of

atomic memory operations also causes performance and

scalability problems.

Modern generations (before Intel Nehalem and AMD

K8/K10) of x86 processors improve the implementa-

tion of atomic memory operations by significantly re-

ducing the likelihood of memory bus locking. In par-

ticular, when an atomic operation is performed on a

memory region that can be entirely cached by a cache

line, which is a very common case, the corresponding

cache line is locked, instead of asserting the memory bus

lock [10]. However, on these platforms, atomic mem-

ory operations can still be exploited for covert chan-

nels, because the triggering conditions for bus-locking

are not eliminated. Specifically, when atomic opera-

tions are performed on memory regions with an exotic4

configuration—unaligned addresses that span two cache

lines, atomicity cannot be ensured by cache line locking,

and bus lock signals are thus asserted.

Remarkable architecture evolutions have taken place

in the latest generations (Intel Nehalem and AMD

K8/K10) of x86 processors, one of which is the removal

of the shared memory bus. On these platforms, instead

of having a unified central memory storage for the entire

system, the main memory is divided into several pieces,

each assigned to a processor as its local storage. While

each processor has direct access to its local memory,

it can also access memory assigned to other processors

via a high-speed inter-processor link. This non-uniform

memory access (NUMA) design eliminates the bottle-

neck of a single shared memory bus, and thus greatly

improves processor and memory scalability. As a side

effect, the removal of the shared memory bus has seem-

ingly invalidated memory bus covert channel techniques

at their foundation. Interestingly, however, the exploit

of atomic memory operation continues to work on the

newer platforms, and the reason for this requires a bit

more in-depth explanation.

On the latest x86 platforms, normal atomic memory

operations (i.e., operating on memory regions that can be

4The word “exotic” here only means that it is very rare to encounter

such an unaligned memory access in modern programs, due to auto-

matic data field alignments by the compilers. However, manually gen-

erating such an access pattern is very easy.
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(a) Intel Core2, Hyper-V, Windows Guest VMs
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(b) Intel Xeon (Nehalem), Xen, Linux Guest VMs

Figure 3: Timing-based Memory Bus Channel Bandwidth Tests

cached by a single cache line) are handled by the cache

line locking mechanism similar to that of the previous

generation processors. However, for exotic atomic mem-

ory operations (i.e., operating on cache-line-crossing

memory regions), because there is no shared memory bus

to lock, the atomicity is achieved by a set of much more

complex operations: all processors must coordinate and

completely flush in-flight memory transactions that are

previously issued. In a sense, exotic atomic memory op-

erations are handled on the newer platform by “emulat-

ing” the bus locking behavior of the older platforms. As

a result, the effect of memory access delay is still observ-

able, despite the absence of the shared memory bus.

4.2.3 Verification

With the memory bus exploit, we can easily build a mem-

ory bus covert channel by adapting our timing-based

cache transmission scheme with minor modifications, as

shown in Algorithm 3.

Compared with Algorithm 2, there are only two dif-

ferences in the memory bus channel protocol. First, we

substitute the set of cache lines (CLines) with the mem-

ory bus as the transmission medium. Similar to the cache

lines, the memory bus can also be put in two states, con-

tended and contention-free, depending on whether ex-

otic atomic memory operations are performed. Second,

instead of trying to evict contents of the selected cache

lines, the sender changes the memory bus status by per-

forming exotic atomic memory operations. And corre-

spondingly, the receiver must make uncached memory

accesses to detect contentions.

We demonstrate the effectiveness of the memory bus

channel by performing bandwidth estimation experi-

ments, similar to the one in Section 4.1, on two sys-

tems running different generations of platforms, hyper-

visors and guest VMs. Specifically, the first system uses

an older shared memory bus platform and runs Hyper-V

with Windows guest VMs, while the second system uti-

lizes the newer platform without a shared memory bus

and runs Xen with Linux guest VMs. As Figure 3 shows,

the x-value of each sample point is the observed mem-

ory access latency by the receiver, and the trend lines are

created by plotting the moving average of two samples.

According to the measurement results, on both systems,

39 bits can be transmitted over a period of 1 millisec-

ond, yielding a raw bandwidth of over 38 kilobits per

second. Although an order of magnitude lower in band-

width than our cache channel, the memory bus channel

enjoys its unique advantage of working across different

physical processors. And notably, the same covert chan-

nel implementation works on both systems, regardless of

the guest operating systems, hypervisors, and hardware

platform generations.

4.3 Whispering into the Hyper-space

We have demonstrated that the memory bus channel is

capable of achieving high speed data transmission on vir-

tualized systems. However, the preliminary protocol de-

scribed in Algorithm 3 is prone to errors and failures in a

realistic environment, because the memory bus is a very

noisy channel, especially on virtualized systems running

many non-participating workloads.

Figure 4 presents a realistic memory bus channel

sample, taken using a pair of physically co-resident

VMs in the Amazon EC2 cloud. From this figure, we

can observe that both the “contention free” and “con-

tended” signals are subject to frequent interferences. The

“contention free” signals are intermittently disrupted by

workloads of other non-participating VMs, causing the

memory access latency to moderately raise above the

baseline. In contrast, the “contended” signals experience

much heavier interferences, which originate from two

sources: scheduling and non-participating workloads.

The scheduling interference is responsible for the peri-

odic drop of memory access latency. In particular, con-

text switches temporarily de-schedule the sender process

from execution, and thereby briefly relieving memory

bus contention. The non-participating workloads exe-
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Figure 4: Memory Bus Channel Quality Sample in EC2

cuted in parallel with the sender process worsen memory

bus contention and cause the spikes in the figure, while

non-participating workloads executed concurrently with

the sender process reduce memory bus contention, and

result in the dips in the figure. All these interferences can

degrade the signal quality in the channel, and make what

the receiver observes different from what the sender in-

tends to generate, which leads to bit-flip errors.

Besides the observable interferences shown in Fig-

ure 4, there are also unobservable interferences, i.e., the

scheduling interferences to the receiver, which can cause

an entirely different phenomenon. When the receiver is

de-scheduled from execution, there is no observer in the

channel, and thus all data being sent is lost. And to

make matters worse, the receiver could not determine

the amount of information being lost, because the sender

may also be de-scheduled during that time. As a result,

the receiver suffers from random erasure errors.

Therefore, three important issues need to be addressed

by the communication protocol in order to ensure reli-

able cross–VM communication: receiving confirmation,

clock synchronization, and error correction.

Receiving Confirmation: The random erasure errors

can make the transmitted data very discontinuous, signif-

icantly reducing its usefulness. To alleviate this problem,

it is very important for the sender to be aware of whether

the data it sent out has been received.

We avoid using message based “send-and-ack”, a

commonly employed mechanism for solving this prob-

lem, since this mechanism requires the receiver to ac-

tively send data back to the sender, reversing the roles

of sending and receiving, and subjects the acknowledg-

ment sender (i.e., the data receiver) to the same problem.

Instead, we leverage the system-wide effect of memory

bus contention to achieve simultaneous data transmis-

sion and receiving confirmation. Here the sender infers

the presence of receiver by observing increased memory

access latencies generated by the receiver.

The corresponding changes to the data transmission

protocol include:

1. Instead of making uncached memory accesses, the

receiver performs exotic atomic memory operations,

just like the sender transmitting a one bit.

2. Instead of sleeping when transmitting a zero bit, the

sender performs uncached memory accesses. In ad-

dition, the sender always times its memory accesses.

3. While the receiver is in execution, the sender should

always observe high memory access latencies; oth-

erwise, the sender can assume the data has been par-

tially lost, and retry at a later time.

Clock Synchronization: Since the sender and receiver

belong to two independent VMs, scheduling differences

between them tend to make the data transmission and

detection procedures de-synchronized, which can cause

a significant problem to pure timing-based data mod-

ulation. We overcome clock de-synchronization by us-

ing self-clocking coding—a commonly used technique

in telecommunications. Here we choose to transmit data

bits using differential Manchester encoding, a standard

network coding scheme [28].

Error Correction: Even with self-clocking coding, bit-

flip errors are expected to be common. Similar to re-

solving the receiving confirmation problem, we again

avoid using acknowledgment-based mechanisms. As-

suming only a one-way communication channel, we re-

solve the error correction problems by applying forward

error correction (FEC) to the original data, before apply-

ing self-clocking coding. More specifically, we use the

Reed-Solomon coding [17], a widely applied block FEC

code with strong multi-bit error correction performance.

In addition, we strengthen the communication proto-

col’s resilience to clock drifting and scheduling inter-

ruption by employing data framing. We break the data

into segments of fixed-length bits, and frame each seg-

ment with a start-and-stop pattern. The benefits of data

framing are twofold. First, when the sender detects trans-

mission interruption, instead of retransmitting the whole

piece of data, only the affected data frame is retried. Sec-

ond, some data will inevitably be lost during transmis-

sion. With data framing, the receiver can easily local-

ize the erasure errors and handle them well through the

Reed-Solomon coding.

The finalized protocol with all the improvements in

place is presented in Algorithm 4.

5 Evaluation

We evaluate the exploitability of memory bus covert

channels by implementing the reliable Cross–VM com-

munication protocol, and demonstrate covert channel at-

tacks on our in-house testbed server, as well as on the

Amazon EC2 cloud.



Algorithm 4 Reliable Timing-based Memory Bus Channel Protocol

MExoticS, MExoticR: Exotic memory regions for the sender and the receiver, respectively.

DSend , DRecv: Data to transmit and receive, respectively.

Sender Prepares DSend by: Receiver Recovers DRecv by:

{DMSend []: Segmented encoded data to send}

RSSend := ReedSolomonEncode(DSend);
FDSend [] := Break RSSend into segments;

DMSend [] := DiffManchesterEncode(FDSend []);

{DMRecv[]: Segmented encoded data received}

FDRecv[] := DiffManchesterDecode(DMRecv[]);
RSRecv := Concatenate FDRecv[];
DRecv := ReedSolomonDecode(RSRecv);

Sending Encoded Data in a Frame: Receiving Encoded Data in a Frame:

{Data: A segment of encoded data to send}
{FrmHead, FrmFoot: Unique bit patterns

{signifying start and end of frame, respectively}

Result := SendBits(FrmHead);
if Result is not Aborted then

Result := SendBits(Data);
if Result is not Aborted then

{Ignore error in sending footer}
SendBits(FrmFoot);
return Succeed;

end if

end if

return Retry;

{Data: A segment of encoded data to receive}

Wait for frame header;

Result := RecvBits(Data);
if Result is Aborted then

return Retry;

end if

Result := Match frame footer;

if Result is not Matched then

{Clock synchronization error, discard Data}
return Erased;

else

return Succeed;

end if

Sending a Block of Bits: Receiving a Block of Bits:

{Block: A block of bits to send}
{Base1, Base0: Mean contention-free access

{time for sending bit 1 and 0, respectively}

for each Bit in Block do

if Bit = 1 then

for an amount of time do

Timed atomic operation with MExoticS;

end for

Latency := Mean(AccessTime)−Base1;

else

for an amount of time do

Timed uncached memory access;

end for

Latency := Mean(AccessTime)−Base0;

end if

if Latency < T hreshold then

{Receiver not running, abort}
return Aborted;

end if

end for

return Succeed;

{Block: a block of bits to receive}

for each Bit in Block do

for an amount of time do

Timed atomic operation with MExoticR;

end for

{Detect the state of memory by latency}
if Mean(AccessTime) > T hreshold then

Bit := 1; {Bus is contended}
else

Bit := 0; {Bus is contention-free}
end if

{Detect sender de-schedule}
if too many consecutive 0 or 1 bits then

{Sender not running}
Sleep for some time;

{Sleep makes sender abort, then we abort}
return Aborted;

end if

end for

return Succeed;



5.1 In-house Experiments

We launch covert channel attacks on our virtualization

server equipped with the latest generation x86 platform

(i.e., with no shared memory bus). The experimental

setup is simple and realistic. We create two Linux VMs,

namely VM-1 and VM-2, each with a single virtual

processor and 512 MB of memory. The covert channel

sender runs as an unprivileged user program on VM-1,

while the covert channel receiver runs on VM-2, also as

an unprivileged user program.

We first conduct a quick profiling to determine the op-

timal data frame size and error correction strength. And

we find out that a data frame size of 32 bits (includ-

ing an 8 bit preamble), and a ratio of 4 parity symbols

(bytes) per 4 data bytes works well. Effectively, each data

frame transmits 8 bits of preamble, 12 bits of data, and

12 bits of parity, yielding an efficiency of 37.5%. In or-

der to minimize the impact of burst errors, such as multi-

ple frame losses, we group 48 data and parity bytes, and

randomly distribute them across 16 data frames using a

linear congruential generator (LCG).

We then assess the capacity (i.e., bandwidth and error

rate) of the covert channel by performing a series of data

transmissions using these parameters. For each transmis-

sion, a one kilobyte data block is sent from the sender to

the receiver. With 50 repeated transmissions, we observe

a stable transmission rate of 746.8±10.1 bps. Data errors

are observed, but at a very low rate of 0.09%.

5.2 Amazon EC2 Experiments

We prepare the Amazon EC2 experiments by spawning

physically co-hosted Linux VMs. Thanks to the opera-

tional experiences presented in [18, 30], using only two

accounts, we successfully uncover two pairs of physi-

cally co-hosted VMs (micro instances) in four groups of

40 VMs (i.e. each group consists of 20 VMs spawned by

each account). Information disclosed in /proc/cpuinfo

shows that these servers use the shared-memory-bus plat-

form, one generation older than our testbed server used

in the previous experiment.

Similar to our in-house experiments, we first conduct

a quick profiling to determine the optimal data frame

size and error correction strength. Compared to our in-

house system profiles, memory bus channels on Ama-

zon EC2 VMs have a higher tendency of clock de-

synchronization. We compensate for this deficiency by

reducing the data frame size to 24 bits. The error cor-

rection strength of 4 parity symbols per 4 data bytes still

works well. And the overall transmission efficiency thus

becomes 33.3%.

We again perform a series of data transmissions and

measure the bandwidth and error rates. Our initial results
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Figure 5: Memory Bus Channel Capacities in EC2

are astonishingly good. A transmission rate of 343.5±
66.1 bps is achieved, with error rate of 0.39%. However,

as we continue to repeat the measurements, we observe

an interesting phenomenon. As illustrated in Figure 5,

three distinct channel performances are observed through

our experiment. The best performance is achieved dur-

ing the initial 12–15 transmissions. After that, for the

next 5–8 transmissions, the performance degrades. The

bandwidth slightly reduces, and the error rate slightly in-

creases. Finally, for the rest of the transmissions, the per-

formance becomes very bad. While the bandwidth is still

comparable to that of the best performance, the error rate

becomes unacceptably high.

By repeating this experiment, we uncover that the

three-staged behavior can be repeatedly observed after

leaving both VMs idle for a long period of time (e.g.,

one hour). Therefore, we believe that the cause of this

behavior can be explained by scheduler preemption [29]

as discussed in [30]. During the initial transmissions,

the virtual processors of VMs at both the sender and

receiver sides have high scheduling priorities, and thus

they are very likely to be executed in parallel, resulting

in a very high channel performance. Then, the sender

VM’s virtual processor consumes all its scheduling cred-

its and is throttled back by the Xen scheduler, causing the

channel performance to degrade. Soon after that, the re-

ceiver VM’s virtual processor also uses up its scheduling

credits. Since both the sender and receiver are throttled

back, their communication is heavily interrupted. This

“offensive” scheduling pattern subjects the communica-

tion channel to heavy random erasures beyond the cor-

rection capability of the FEC mechanism.

Fortunately, our communication protocol is designed

to handle very unreliable channels. We adapt to the

scheduler preemption by tuning two parameters to be

more “defensive”. First, we increase the ratio of parity

bits to 4 parity symbols per 2 data bytes. Although it re-

duces transmission efficiency by 11.1%, the error correc-

tion capability of our FEC is increased by 33.3%. Sec-

ond, we reduce the transmission symbol rate by about

20%. By lengthening the duration of the receiving confir-
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Figure 6: Reliable Transmission with Adaptive Rates

mation, we effectively increase the probability of discov-

ering scheduling interruptions. After the parameter ad-

justment, we can achieve a transmission rate of 107.9±
39.9 bps, with an error rate of 0.75%, even under sched-

uler preemption.

Figure 6 depicts the adjusted communication proto-

col in action. During the first period of preemption-free

scheduling, the transmission rate can be as high as 250

bps. However, when preemption starts, the sender re-

sponds to frequent transmission failures with increased

retries, allowing the receiver continue to receive and de-

code data without uncorrectable error. And correspond-

ingly, the transmission rate drops to below 50 bps. Fi-

nally, when the harsh scheduling condition is alleviated,

the transmission rate is automatically restored. The capa-

bility of adaptively adjusting transmission rates to chan-

nel conditions, evidences the versatility of our reliable

communication protocol.

6 Discussion

In this section, we first reassess the threat of covert chan-

nel attacks based on our experimental results. Then, we

discuss possible means to mitigate the covert channel at-

tacks in virtualized environments.

6.1 Damage Assessment

We extrapolate the threat of the memory bus covert

channel from four different aspects—attack scenario,

achievable bandwidth, mitigation difficulties, and cross-

platform applicability.

6.1.1 Attack Scenario

Covert channel attacks are distinct from a seemingly

similar threat, side channel attacks [22, 24]. Side chan-

nels extrapolate information by observing an unknow-

ing sender, while covert channels transfer data between

two collaborating parities. As a result, a successful covert

channel attack requires an “insider” to function as a data

source. However, this additional requirement does not

significantly reduce the usefulness of covert channels in

data theft attacks.

Data theft attacks are normally launched in two steps,

infiltration and exfiltration. In the infiltration step, attack-

ers leverage multiple attack vectors, such as buffer over-

flow [4], VM image pollution [2, 26], and various social

engineering techniques [15, 27], to place “insiders” in the

victim and gain partial control over it. And then, in the

exfiltration step, the “insiders” try to traffic sensitive in-

formation from the victim back to the attackers. Because

the “insiders” usually would only have very limited con-

trol of the victim, their behaviors are subjected to strict

security surveillance, e.g., firewall, network intrusion de-

tection, traffic logging, etc. Therefore, covert channels

become ideal choices for secret data transmissions under

such circumstances.

6.1.2 Achievable Bandwidth

Due to their very low channel capacities [18, 30], previ-

ous studies conclude that covert channels can only cause

very limited harms in a virtualized environment. How-

ever, the experimental results of our covert channel lead

us to a different conclusion that covert channels indeed

pose realistic and serious threats to information security

in the cloud.

With over 100 bits-per-second high speed and reliable

transmission, covert channel attacks can be applied to

a wide range of mass-data theft attacks. For example, a

hundred byte credit card data entry can be silently stolen

in less than 30 seconds; and a thousand byte private key

file can be secretly transmitted under 3 minutes. Work-

ing continuously, over 1 MB of data, equivalent to tens

of thousands of credit card entries or hundreds of private

key files, can be trafficked every 24 hours.

6.1.3 Mitigation Difficulties

In addition to high channel capacity, the memory bus

covert channel has two other intriguing properties which

make it difficult to be detected or prevented:

◦ Stealthiness: Because processor cache is not used as

channel medium, the memory bus covert channel in-

curs negligible impact on cache performance, mak-

ing it totally transparent to cache based covert chan-

nel detection, such as HomeAlone [31].

◦ “Future proof”: Our in-house experiment shows

that even on a platform that is one generation ahead

of Amazon EC2’s systems, the memory bus covert

channel continues to perform very well.



6.1.4 Cross-platform Applicability

Due to hardware availability, we have only evaluated

memory bus covert channels on the Intel x86 platforms.

On one hand, we make an intuitive inference that simi-

lar covert channels can also be established on the AMD

x86 platforms, since they share compatible specifica-

tions on atomic instructions with the Intel x86 plat-

forms. On the other hand, the atomic instruction ex-

ploits may not be applicable on platforms that use al-

ternative semantics to guarantee operation atomicity. For

example, MIPS and several other platforms use the load-

linked/store-conditional paradigm, which does not result

in high memory bus contention as atomic instructions do.

6.2 Mitigation Techniques

The realistic threat of covert channel attacks calls for ef-

fective and practical countermeasures. We discuss sev-

eral plausible mitigation approaches from three different

perspectives—tenants, cloud providers, and device man-

ufactures.

6.2.1 Tenant Mitigation

Mitigating covert channels on the tenant side has the ad-

vantages of trust and deployment flexibility. With the

implementation of mitigation techniques inside a ten-

ant owned VMs, the tenant has the confidence of covert

channel security, regardless whether the cloud provider

addresses this issue.

However, due to the lack of lower level (hypervisor

and/or hardware) support, the available options are very

limited, and the best choice is performance anomaly de-

tection. Although not affecting the cache performances,

memory bus covert channels do cause memory perfor-

mance degradation. Therefore, an approach similar to

that of HomeAlone [31] could be taken. In particular,

the defender continuously monitors memory access la-

tencies, and asserts alarms if significant anomalies are

detected. However, since memory accesses incur much

higher cost and non-determinism than cache probing, this

approach may suffer from high performance overhead

and high false positive rate.

6.2.2 Cloud Provider Mitigation

Compared to their tenants, cloud providers are much

more resourceful. They control not only the hypervisor

and hardware platform on a single system, but also the

entire network and systems in a data center. As a result,

cloud providers can tackle covert channels through either

preventative or detective countermeasures.

The preventative approaches, e.g., the dedicated in-

stances service provided by the Amazon EC2 cloud [1],

thwart covert channel attacks by eliminating the exploit-

ing factors of covert channels. As the significant extra

service charge of the dedicated instance service reduces

its attractiveness, the “no-sharing” guarantee may be too

strong for covert channel mitigation. We envision a low

cost alternative solution that allows tenants to share sys-

tem resources in a controlled and deterministic manner.

For example, the cloud provider may define a policy that

each server might be shared by up to two tenants, and

each tenant could only have a predetermined neighbor.

Although this solution does not eliminate covert chan-

nels, it makes attacking arbitrary tenants in the cloud

very difficult.

In addition to preventative countermeasures, cloud

providers can easily take the detective approach by im-

plementing low overhead detection mechanisms, be-

cause of their convenient access to the hypervisor and

platform hardware. For both cache and memory bus

covert channels, being able to generate observable per-

formance anomalies is the key to their success in data

transmission. However, modern processors have pro-

vided a comprehensive set of mechanisms to monitor and

discover performance anomalies with very low overhead.

Instead of actively probing cache or accessing memory,

cloud providers can leverage the hypervisor to infer the

presence of covert channels, by keeping track of the in-

crement rates of the cache miss counters or memory bus

lock counters [10]. Moreover, when suspicious activities

are detected, cloud providers can gracefully resolve the

potential threat by migrating suspicious VMs onto phys-

ically isolated servers. Without penalizing either the sus-

pect or the potential victims, the negative effects of false

positives are minimized.

6.2.3 Device Manufacture Mitigation

The defense approaches of both tenant and cloud

providers are only secondary in comparison to mitiga-

tion by the device manufactures, because the root causes

of the covert channels are imperfect isolation of the hard-

ware resources.

The countermeasures at the device manufacture side

are mainly preventative, and they come in various forms

of resource isolation improvements. For example, instead

of handling exotic atomic memory operations in hard-

ware and causing system-wide performance degradation,

the processor may be redesigned to trap these rare situ-

ations for the operating systems or hypervisors to han-

dle, without disrupting the entire system. A more general

solution is to tag all resource requests from guest VMs,

enabling the hardware to differentiate requests by their

owner VMs, and thereby limiting the scope of any per-

formance impact. While incurring high cost in hardware

upgrades, the countermeasures at the device manufacture



side are transparent to cloud providers and tenants, and

can potentially yield the lowest performance penalty and

overall cost compared to other mitigation approaches.

7 Conclusion and Future Work

Covert channel attacks in the cloud have been proposed

and studied. However, the threats of covert channels tend

to be down-played or disregarded, due to the low achiev-

able channel capacities reported by previous research. In

this paper, we presented a novel construction of high-

bandwidth and reliable cross–VM covert channels on the

virtualized x86 platform.

With a study on existing cache channel techniques, we

uncovered their application insufficiency and limitations

in a virtualized environment. We then addressed these

obstacles by designing a pure timing-based data trans-

mission scheme, and discovering the bus locking mech-

anism as a powerful covert channel medium. Leverag-

ing the memory bus covert channel, we further designed

a robust data transmission protocol. To demonstrate the

real-world exploitability of our proposed covert chan-

nels, we launched attacks on our testbed system and in

the Amazon EC2 cloud. Our experimental results show

that, contrary to previous research and common beliefs,

covert channel attacks in a virtualized environment can

achieve high bandwidth and reliable transmission. There-

fore, covert channels pose formidable threats to informa-

tion security in the cloud, and they must be carefully an-

alyzed and mitigated.

For the future work, we plan to explore various miti-

gation techniques we have proposed. Especially, we view

the countermeasures at the cloud provider side a highly

promising field of research. Not only do cloud providers

have control of rich resources, they also have strong in-

centive to invest in covert channel mitigation, because

ensuring covert channel security gives them a clear edge

over their competitors.
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