
Inducing Heuristics To Decide Whether To Schedule

John Cavazos
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003-9264, USA

cavazos@cs.umass.edu

J. Eliot B. Moss
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003-9264, USA

moss@cs.umass.edu

Categories and Subject Descriptors
D.3.4 [Programming languages]: Processors—Compilers, Optimiza-
tion; I.2.6 [Artificial intelligence]: Learning—Induction

General Terms
Performance, Experimentation, Languages

Keywords
Compiler optimization, Machine learning, Supervised learning, In-
struction scheduling, Java, Jikes RVM

ABSTRACT
Instruction scheduling is a compiler optimization that can improve
program speed, sometimes by 10% or more—but it can also be ex-
pensive. Furthermore, time spent optimizing is more important in a
Java just-in-time (JIT) compiler than in a traditional one because a
JIT compiles code at run time, adding to the running time of the pro-
gram. We found that, on any given block of code, instruction schedul-
ing often does not produce significant benefit and sometimes degrades
speed. Thus, we hoped that we could focus scheduling effort on those
blocks that benefit from it.

Using supervised learning we induced heuristics to predict which
blocks benefit from scheduling. The induced function chooses, for
each block, between list scheduling and not scheduling the block at
all. Using the induced function we obtained over 90% of the improve-
ment of scheduling every block but with less than 25% of the schedul-
ing effort. When used in combination with profile-based adaptive op-
timization, the induced function remains effective but gives a smaller
reduction in scheduling effort. Deciding when to optimize, and which
optimization(s) to apply, is an important open problem area in com-
piler research. We show that supervised learning solves one of these
problems well.

1. INTRODUCTION
It is common for compiler optimizations to benefit certain programs,
while having little impact (or even a negative impact) on other pro-
grams. For example, instruction scheduling is able to speed up certain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’04, June 9–11, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-807-5/04/0006 ...$5.00.

programs, sometimes by 10% or more [16]. Yet on other programs,
applying instruction scheduling has little impact (and in some rare
cases, degrades performance). Reasons for this are that equivalent or-
derings happen to execute at the same speed, or because the block has
only one legal order, etc.

If instruction scheduling was an inexpensive optimization to apply
we would apply it to all blocks without regard to whether it benefits
a particular block. However, scheduling is a costly optimization, ac-
counting for more than 10% of total compilation time in our optimiz-
ing JIT compiler. Because it is costly and because it is not beneficial
to many blocks (or even entire programs), we want to apply it selec-
tively.

We would prefer to apply scheduling to those blocks that: 1) ac-
count for a significant part of a program’s running time, and 2) will
benefit from applying scheduling to them.

Determining the first property is done through profiling and is a
well-studied area of research [3, 19, 5]. On the other hand, deter-
mining the second property, before applying scheduling, has received
relatively little attention. Also, to our knowledge this is the first ap-
plication of supervised learning to determine whether to apply an op-
timization, in our case instruction scheduling. (Supervised learning is
the induction of functions from labeled examples. In this case, we de-
velop examples from a benchmark suite, where each example comes
from a basic block. The example gives the values for certain proper-
ties of the block (called the features) and a label indicating whether or
not scheduling improves the block.)

We present in this paper a technique for building heuristics, which
we call filters, that accurately predict which blocks will benefit from
scheduling. This allows us to filter from scheduling the blocks that
will not benefit from this optimization. Since in practice a large frac-
tion of blocks do not benefit from instruction scheduling, and since the
filter is much cheaper to apply than instruction scheduling itself, we
significantly decrease the compiler’s time spent scheduling instruc-
tions.

We show that inexpensive and static features can be successfully
used to determine whether to schedule or not.

1.1 Instruction scheduling
Consider the sequence of machine instructions that a Java JIT com-

piler emits when it compiles a Java method. A number of permuta-
tions of this sequence may, when executed, produce the same result
as the original—but different permutations may execute at different
speeds. To improve code speed, compilers often include an instruction
scheduler, which chooses a semantically equivalent, but one hopes
faster, permutation. Permutations are semantically equivalent if all
pairs of dependent instructions occur in the same order in both per-
mutations. Two instructions are dependent if they access the same
data (register, memory, etc.) and at least one writes the data, or if at

least one of the instructions is a branch.1
We consider list scheduling over basic blocks: sequences with one

entry and one exit. List scheduling is a traditional and widely used
instruction scheduling method [11]. We used the critical path schedul-
ing (CPS) model [16] in implementing our list scheduler. List schedul-
ing works by starting with an empty schedule and then repeatedly ap-
pending ready instructions to it. An instruction I is ready if every
instruction upon which I depends is already in the schedule. If there
is more than one ready instruction, CPS chooses the one that can start
soonest. If there is a tie, CPS chooses the instruction that has the
longest (weighted) critical path to the end of the block, i.e., the path
of dependent instructions that takes the longest to execute. While we
offer this description of our scheduler for those who are interested, we
note that our filtering technique applies to any competent scheduler:
in essence we are discriminating between those blocks that a sched-
uler can improve significantly and those that it cannot, and this has
more to do with the block than with details of the scheduler, provided
the scheduler is generally competent at making some improvement if
it is possible.

2. PROBLEM AND APPROACH
We want to construct a filter that with high effectiveness predicts
whether scheduling a block will benefit an application’s running time.
The filter should be significantly cheaper to apply than instruction
scheduling; thus we restrict ourselves to using properties (features)
of a block that are cheap to compute. To our knowledge, this is the
first time anyone has used static features to apply instruction schedul-
ing selectively, so we had no “good” hand-coded heuristics to start
from. We opted not to construct filters by hand, but instead to try to
induce them automatically using supervised learning techniques.

Developing and fine-tuning filters manually requires experimenting
with different features (i.e, combinations of features of the block).
Fine-tuning heuristics to achieve suitable performance is therefore a
tedious and time-consuming process. Machine learning, if it works, is
thus a desirable alternative to manual tuning.

Our approach uses a technique called rule induction to induce a fil-
ter that is based on the features of the block. Other researchers have
applied unsupervised learning, specifically genetic programming, to
the problem of deriving compiler heuristics automatically, and argued
for its superiority [18]. In contrast, we found that supervised learn-
ing is not only applicable to this problem, but preferable because (1)
it is faster,2 simpler, easier to use with rule induction (giving more
understandable heuristic functions), and easier to make work (than
unsupervised learning).

We emphasize that while scheduling involves a heuristic to choose
which instruction to schedule next, the learning of which we have
considered elsewhere [15], our goal here is to learn to choose between
scheduling and not scheduling, not to induce the heuristic used by
the scheduler. In other words, the research here involves learning
whether to schedule, while that previous research involved learning
how to schedule. We now consider the features, the methodology for
developing the training instances, and the learning algorithm in more
detail.

2.1 Features
What properties of a block might predict its scheduling improvement?
This aspect of applying machine learning is more an art than a step-
1With additional analysis (and insertion of compensation code when
necessary), sometimes schedulers can safely move instructions across
a branch [9, 8]. We do not pursue that further here.
2Our technique induces heuristics in seconds on one desktop com-
puter. Stephenson et al. report taking days to induce heuristics on a
cluster of 15 to 20 machines.

Feature Type Meaning
bbLen BB size Number of Instructions in the block

Category Fraction of instructions that ...
Branch Op kind are Branches
Call Op kind are Calls
Load Op kind are Loads
Store Op kind are Stores
Return Op kind are Returns
Integer FU use use an Integer functional unit
Float FU use use a Floating point functional unit
System FU use use a System functional unit
PEI Hazard are Potentially Excepting
GC Hazard are Garbage Collection points
TS Hazard are Thread Switch points
Yield Hazard are Yield points

Table 1: Features of a basic block.

by-step procedure. It is the part of machine learning that least yields to
having a procedure that is guaranteed to produce a good result. It is not
uncommon to need to iterate a number of times in developing features
for a given problem. However, we believe it is much easier to develop
features of a problem than to come up with interesting combinations
of features (i.e., heuristics) that are successful at solving a problem.

One can imagine that certain properties of the block’s dependence
graph (DAG) might predict scheduling benefit. However, building the
DAG is an expensive phase that can sometimes dominate the over-
all running time of the scheduling algorithm [16]. Since we require
cheap-to-compute features, we specifically choose not to use proper-
ties of the DAG. Instead, we try the simplest kind of cheap-to-compute
features that we thought might be relevant. Computing these features
requires a single pass over the instructions in the block.

We grouped the different kinds of instructions into 12 possibly
overlapping categories, where instructions in each category have sim-
ilar scheduling properties. Rather than examining the structure of the
block, we consider just the fraction of instructions of each category
that occur in the block (e.g., 30% loads, 22% floating point, 5% yield
points, etc.). We also supply the block size (number of instructions in
the block). See Table 1 for a complete list of the features. “Hazards”
are possible but unusual branches, which disallow reordering. These
features are as cheap to compute as we can imagine while offering
some useful information. It turns out that they work well. We present
all of the features (except block size) as ratios to the size of the block
(i.e., fraction of instructions falling into a category, rather than the
number of such instructions). This allows the learning algorithm to
generalize over many different block sizes.

We could have potentially refined our set of features by including
more of different kinds, but what we have works well. We note that
coming up with features for other optimizations might be easy or hard,
depending on the optimization. In this case, we were “lucky” in that
a little domain knowledge allowed us to develop on our first attempt
a set of features that produced highly-predictive heuristics. Through
our experience with identifying features and using machine learning,
we noticed some useful and (possibly obvious) general principles.

1. Experiment with the simplest features first. In this case, it
would have been moot to develop additional features.

2. Normalize features and simplify them. Prefer categorical or
boolean values over integral or continuous ones. Binning of
continuous values can also help the learning task: it simplifies
and also tends to enhance readability of the induced heuristic.

3. Examine any relevant hand-coded heuristics. This not only
helps in identifying important features to use, but allows us

to see the underlying structure of successful heuristics, which
will give clues as to how the features should be represented and
used.

4. Apply the simplest learning algorithm possible to start with.
Obviously, a procedure that is easier to get working (i.e., re-
quire less tweaking) is preferable.

It is possible that a smaller set of features would perform nearly as
well. However, it is doubtful that in this case reducing the feature
set will make the filtering process run faster, since we calculate fea-
tures values in a simple linear pass over the basic block, incrementing
counters corresponding to the categories pertaining to the instruction.
Calculating features and evaluating the heuristic functions typically
consumed .5%-1% of compile time (a negligible fraction of total time)
in our experiments, so we did not explore this possibility. For other
problems, it might be important to prune the feature set, especially if
the features are not as cheap to compute as these are.

One final observation is that these features are fairly generic, for the
most part, and might be useful across a wide range of systems. The
GC, TS, and Yield features are specific to Jikes RVM, but other sys-
tems may have similar “barriers” to code reordering. If those barriers
are plain in the code being scheduled, then a feature similar to ours
will probably be useful.

2.2 Learning Methodology
Determining what features to use is an important (and possibly the
most difficult) step in applying supervised learning to a problem. Once
we determine the features, we can generate positive and negative ex-
amples for training the supervised learning component. These train-
ing instances consist of a vector of feature values, plus a boolean clas-
sification label, i.e., LS (Schedule) or NS (Don’t Schedule), depending
on whether or not the block benefits from scheduling.

Our procedure is as follows. As the Java system compiles each
Java method, it divides the method into blocks, which it presents to the
instruction scheduler. We instrument the scheduler to print into a trace
file raw data for forming instances, consisting of the features of the
block and an estimate of the block’s cost (number of cycles) without
scheduling, and an estimate of the block’s cost with list scheduling
applied.

We obtain these estimates of block cost from a simplified machine
simulator. The simulator makes a number of simplifying assumptions,
partly for speed but also because it is hard to determine what the state
of the machine will be at run time at the moment the machine begins to
execute a particular block (and that state may be different for different
executions of the same block). The exact cycle estimate is not crucial;
rather, the estimate needs only to give a good sense of the difference in
timing between two versions of the same block. Note that on modern
processors timing of small code fragments is not only difficult, it is not
clear that it is meaningful, because there may be tens, even hundreds,
of instructions in flight, with execution overlapped. It is not clear how
one would further “validate” our simplified simulator: that our overall
procedure produces good results is itself evidence of adequacy of the
estimator.3

We label an instance with LS if the estimated time after list schedul-
ing is more than t% less than before scheduling. We label an instance
with NS if scheduling is not better (at all). We do not produce a train-
ing instance if the benefit lies between 0 and t%. We call t the thresh-
old value. We first consider the case t � 0 and discuss positive thresh-
old values later. Typically we obtain thousands of instances for each
program (one for each block in the program). Table 5 shows training
set sizes for different threshold values for SPECjvm98.
3The estimator is also used by the list scheduler as it makes decisions,
but that usage is irrelevant to our learning procedure.

Program Description
compress Java version of 129.compress from SPEC 95
jess Java expert system shell
db Builds and operates on an in-memory database
javac Java source to bytecode compiler in JDK 1.0.2
mpegaudio Decodes an MPEG-3 audio file
raytrace A raytracer working on a scene with a dinosaur
jack A Java parser generator with lexical analysis

Table 2: Characteristics of the SPECjvm98 benchmarks.

We apply a learning algorithm to the training instances; the output
of the learning algorithm is a heuristic function: given the features of
the block, it indicates whether or not we should schedule the block.
It is important to note that the procedure above (including learning)
occurs entirely offline.

The final step involves installing the heuristic function in the com-
piler and applying it online. Each block from each method that is
compiled by the optimizing compiler is considered as a possible can-
didate for scheduling. We compute features for the block. The cost
of computing the features is included in all of our actual timings. It is
small relative to scheduling and to the rest of the cost of compiling a
method. If the heuristic function says we should schedule a block, we
do so.

2.3 Learning Algorithm
An important rule in applying machine learning successfully is to
try the simplest learning methodology that might solve the problem.
We chose the supervised learning technique called rule set induction,
which has many advantages over other learning methodologies. The
specific tool we use is Ripper [6].

It is easy and fast to tune Ripper’s parameters (typically an impor-
tant part in obtaining the best result). Ripper generates sets of if-then
rules that are more expressive, more compact, and more human read-
able (hence good for compiler writers) than the output of other learn-
ing techniques, such as neural networks and decision tree induction
algorithms. We analyze one of the induced if-then rule sets (a filter)
in Section 4.6.

2.4 Benchmarks
We examine 7 programs drawn from the SPECjvm98 suite [17] in our
first set of experiments. We detail our chosen benchmarks in Table 2.
We ran these benchmarks with the largest data set size (called 100).

3. EVALUATION METHODOLOGY
As is customary in evaluating a machine learning technique, our learn-
ing methodology was leave-one-out cross-validation: given a set of n
benchmark programs, in training for benchmark i we train (develop a
heuristic) using the training set (the set of instances) from the n � 1
other benchmarks, and we apply the heuristic to the test set (the set
of instances from benchmark i). This makes sense in our case for two
reasons:

1. We envision developing and installing of the heuristic “at the
factory”, and it will then be applied to code it has not “seen”
before.4

4One could provide tools to end users so that they could develop their
own training sets and retrain. This would be valuable only if they
are likely to come up with a significantly different function, which
would have significantly different performance. If we train over a
large enough set “at the factory”, then we presumably “cover” all
the interesting behaviors of our compiler and a variety of blocks that
present a full range of scheduling issues. Thus, it is not clear that

2. While the end goal is to develop a single heuristic, it is impor-
tant that we test the overall procedure by developing heuristics
many times and seeing how well they work. The leave-one-out
cross-validation procedure is a commonly used way to do this.
Another way is repeatedly to choose about half the programs
and use their data for training and the other half for testing.
However, we want our heuristics to be developed over a wide
enough range of benchmarks that we are likely to see all the
“interesting” behaviors, so leave-one-out may be more realistic
in that sense.

To evaluate a filter on a benchmark, we consider three kinds of re-
sults: classification accuracy, scheduler running time, and application
running time.

Classification accuracy refers to the accuracy of the induced filter
on correctly classifying a set of labeled instances. Classification accu-
racy tells us whether a filter heuristic has the potential of being useful,
however, the real measure of success lies in whether applying the filter
can successfully reduce scheduling time while not adversely affecting
the benefit of scheduling to application running time. In a few cases,
using a filter improved application running time over always applying
the scheduler (this occurs when filters inhibit scheduling that actually
degrades performance).

Scheduler running time refers to the impact on compile time, com-
paring against not scheduling at all, and against scheduling every
block. Since timings of our proposed system include the cost of com-
puting features and applying the heuristic function, this (at least indi-
rectly) substantiates our claim that the cost of applying the heuristic
at run time is low. (We also supply measurements of those costs, in a
separate section.)

Application running time (i.e., without compile time), refers to mea-
suring the change in execution time of the scheduled code, comparing
against not scheduling and against scheduling every block. This val-
idates not only the heuristic function but also our instance labeling
procedure, and by implication the block timing simulator we used to
develop the labels. What we can verify with this is that we have not
undermined the scheduler; the scheduler can still improve some pro-
grams a lot while having little impact on others.

The goal is to achieve application running time close to the best
of the fixed strategies, and compilation time substantially less than
scheduling every block.

3.1 Experimental infrastructure
We implemented our instruction schedulers in Jikes RVM, a Java vir-
tual machine with JIT compilers, provided by IBM Research [1]. Jikes
RVM does not have an interpreter: all bytecodes are compiled into na-
tive code before execution. The system has two bytecode compilers, a
baseline compiler that essentially macro-expands each bytecode into
machine code, and an optimizing compiler.

We optimized all methods at the highest optimization setting, and
with aggressive settings for inlining. We used the build configura-
tion called OptOpt with more aggressive inlining, which increases
scheduling benefit.5

As mentioned previously, we apply our technique to local (basic
block) scheduling, not global scheduling. We have investigated su-
perblock scheduling in our compiler setting, and with it one can get
user retraining would have much value. This is something we could
explore using additional experimental data, such as training on an in-
dividual program and testing on that same program, which gives a
kind of upper bound on how much improvement you could get by
retraining.
5We set the maximum callee size to 30 bytecode instructions, the
maximum inlining depth to 6, and the upper bound on the relative
expansion of the caller due to inlining to be a factor of 7.

slight (1-2%) additional improvement over local scheduling. How-
ever, superblock formation requires detailed profiling information and
we did not want to require that. Also, it is in a way beside the point:
we are not trying to build a better scheduler, but trying to decide
whether to apply whatever scheduler we have. We could apply our
same procedure to the superblock case, and it might provide additional
evidence that we can induce heuristics that greatly reduce scheduling
effort while preserving most of the benefit.

Later we offer some comparison with compilation techniques that
identify and optimize only frequently executed (hot) methods.

Our specific target architecture is the PowerPC. We ran our exper-
iments on an Apple Macintosh system with two 533 MHz G4 pro-
cessors, model 7410. This is an aggressive superscalar architecture
and represents the current state of the art in processor implementa-
tions.6 For instruction scheduling, the 7410 implementation of the
PowerPC is interestingly complex, having two dissimilar integer func-
tional units and one each of the following functional units: floating
point, branch, load/store, and system (handles special system instruc-
tions). It can issue one branch and two non-branch instructions per
cycle, if a complicated set of conditions holds. Instructions take from
one to many tens of cycles to execute.

What value does static instruction scheduling have in the face of
out-of-order execution, etc.? We have done some investigation of
older processors, which have less “dynamic” scheduling (reordering
of execution in the hardware), and static scheduling does give bigger
percent improvements on such architectures. However, we still see
useful improvements for some programs on more recent machines. In
a sense this supports our methodology: if static scheduling helps a lot
sometimes, but only in a minority of cases, then it is more interesting
to have a good way to choose when to apply it.

All measurements are elapsed (wall clock) times. The system in-
frastructure also measures elapsed time spent in the compiler, broken
down by phase and individual optimization. These measurements use
the bus clock rate time counter and thus give sub-microsecond accu-
racy; this clock register is also cheap to read, so there is little over-
head in collecting the information.7 The time to apply the filter was
included in the cost we attribute to scheduling.

4. EXPERIMENTAL RESULTS
We aimed to answer the following questions: How efficient is schedul-
ing using filter heuristics as compared to scheduling all blocks? How
effective are the filter heuristics in obtaining best application perfor-
mance? We ask these questions first on the SPECjvm98 standard
benchmark suite and next on a suite that includes only benchmarks for
which list scheduling made an impact of more than 2% on their run-
ning time. We then consider some additional questions, such as how
much time does it take to apply our heuristic filters in the compiler,
and what happens if we apply our filter in compilations that optimize
only hot methods.

We address the first question by comparing the time spent schedul-
ing. We answer the second by comparing the running time of the
application, with compilation time removed. To accomplish the latter,
we requested that the Java benchmark iterate 6 times. The first iter-
ation will cause the program to be loaded, compiled, and scheduled
according to the appropriate scheduling protocol. The remaining 5
iterations should involve no compilation; we use the median of the 5
runs as our measure of application performance.
6The G5 processor is only just beginning to be available as of this
writing, and was not available when we performed most of the re-
search. In any case, it is at least as complex as the 7410.
7Applying the filtering function (heuristic) is clearly cheap, but if the
reviewers feel it to be important to do so, we can break that cost out
and report it.

4.1 Classification Accuracy
Before presenting efficiency and effectiveness results, we offer statis-
tics on the accuracy of the induced classifiers (for threshold values
t from 0 to 50). For each benchmark, we built a filter with leave-
one-out cross-validation using the set of benchmarks from which the
particular benchmark in question came. The filter chooses between
list scheduling and no scheduling.

Table 3 shows the classification errors rates of rules induced by Rip-
per on SPECjvm98 benchmark program test sets generated during the
cross-validation tests. We also include the geometric mean of these
error rates. These impress us as good error rates, and they are also
fairly consistent across the benchmarks.

4.2 Simulated Execution Times
Before looking at execution times on an actual machine, we consider
the quality of the induced filters (compared with always scheduling
and never scheduling) in terms of the simulated running time of each
benchmark. We used the block simulator to predict (and therefore la-
bel) whether a block will benefit from scheduling or not. Thus, we
hoped that our filters would perform well on a metric based on time
reported by the block simulator. Comparing our filters with simu-
lated execution time helps us validate the learning methodology, and
to separate validation of the learning methodology from validation of
the block simulator’s model of the actual machine.

We calculate the weighted simulated running time of each block
by multiplying the block’s simulated time by the number of times that
block is executed (as reported by profiling information). We obtain the
simulated running time of the application by summing the weighted
simulated running time of each block. More precisely, the perfor-
mance measure for program P is:

SIMπ
�
P � � ∑

b � P

�
Executions of b ��� � cycles for b under scheduler π �

where b is a basic block and π is either using a filter, always schedul-
ing, or never scheduling. Table 4 shows predicted execution times as
a ratio to predicted time of unscheduled code. We see that the model
predicts improvements at all thresholds. These improvements do not
correspond exactly to our measured improvements, which is not sur-
prising given the simplicity of the basic block time estimator. What
the numbers confirm is that the induced heuristic indeed improves the
metric on which we based its training instances. Thus, machine learn-
ing “worked”. Whether we get improvement on the real machine is
concerned with how predictive the basic block simulator is of reality,
at least in relative terms.

4.3 Efficiency and Effectiveness
We now consider the quality of each induced filter for threshold t � 0,
and then present results for the rest of the threshold values. Figure 1(a)
shows the scheduling time of the L/N filters (chooses to schedule or
not) relative to LS (always perform list scheduling). NS (no schedul-
ing) is 0 since it does no scheduling work. We find that on average
(geometric mean) L/N takes 38% of the time of LS (i.e., is 2.5 times
faster). These numbers are also fairly consistent across the bench-
marks.

Figure 1(b) shows the impact of L/N filters and LS on application
running time, presented relative to NS (a value smaller than 1 is an
improvement, greater than 1 a slow down). Here there is more vari-
ation across the benchmarks, with LS doing the best at .977 and L/N
filters doing well at .979. Of the benefit LS obtains (2.3%), L/N ob-
tains 93% of it. Given the substantially lower cost of L/N to run, it is
preferable to running LS all the time. The results are fairly consistent
across the benchmarks, though some benchmarks improve more than
others.

Note that our features (and filters) do not take into account the
importance of the blocks and therefore do not require profile infor-
mation. Scheduling only important blocks based on profiling can
do no better at improving application running time than just always
scheduling (unless scheduling degrades performance). Thus, even if
we used profile information to schedule only the important blocks, we
could still improve application running time over L/N only by a small
amount. (Note: here we are talking only about skipping scheduling
of cold blocks; skipping all optimized compilation of cold blocks is a
different matter, which we address in Section 4.8.)

4.4 Filtering the Instances
While the t � 0 result is not bad, we suspected that we could improve
the classification error rates by increasing t. (Of course for a value
large enough, only the NS category would be left and the error rate
would be 0%!) More significantly, we suspected that by eliminat-
ing instances where the schedulers behaved similarly, and giving the
learning algorithm only those points where the choice makes a signif-
icant difference, we might improve scheduler effectiveness. We were
less certain of the impact on efficiency, but thought it might increase
because the training sets would have fewer LS instances, but as many
NS instances. We reasoned that this would tend to induce functions
that would prefer scheduling blocks less often. These speculations
were borne out, as can be seen in Figures 2(a) and 2(b).

Again, we performed the experiment for the L/N protocol, varying
t from 0 to 50 in increments of 5. Note that t � 0 is the same L/N
from the previous graphs. Considering first the efficiency effects, the
geometric mean shows a steady improvement as t goes from 0 to 50,
from 39% to 6% of the cost of LS. This is somewhat consistent across
the benchmarks, but there is definite variation. We were able to cut the
scheduling effort in half, but what happened to the effectiveness? First
it degraded, but at t � 20 it improved, offering 93% of the benefit of
LS. Thereafter, it generally degrades. While the results seem sensitive
to the exact value of t, the value 20 improves over straight L/N (t � 0).
At this value, scheduling is 4.3 times faster than LS.

How does thresholding affect the size of the training sets? And how
does it affect the classification by the induced heuristics? We include
two tables that offer some simple statistics that show what happens.
Table 5 indicate how many instances (across all the benchmarks) have
label LS at the given t value. That number is constant for NS (at
37280, so we only show statistics for instances with the LS label), but
drops off steadily for LS as t increases.

Table 6 show how many instances at run time were classified with
that label by the induced heuristic. We develop the Use numbers sepa-
rately for each benchmark’s heuristic (using leave-one-out cross vali-
dation), applied to that benchmark’s instances; the table gives the sum
across the benchmarks. The sum is the same for all t values (45453),
but the number of NS instances increases, and the number of LS in-
stances steadily decreases, as t increases. This clearly explains the
efficiency results. As the threshold increases, the induced rules pre-
dict more blocks not to benefit from scheduling. This result further
shows that effectiveness depends on the scheduling of a rather small
minority of the methods, 7.4% of them for t � 20. This is not surpris-
ing: in compiler optimization it is often true that an optimization has
little effect on many if not most programs, but is crucial to improving
a certain minority of them.

Since our noise reduction technique worked well in this case, we
encourage others to explore its effectiveness in other settings. We
suspect it may be helpful whenever class labels are chosen on a “best”
or “better than” basis that compares a “predicted” metric (such as sim-
ulated cycle count of a block) under different treatments (scheduling
and not scheduling).

t com- ray- mpeg- Geo.
% press jess trace db javac audio jack mean
0 6.7 7.7 11.0 6.3 8.3 7.5 7.6 7.86
5 6.5 8.3 9.0 5.9 8.9 6.9 7.0 7.53

10 5.8 7.5 7.1 5.4 8.6 5.9 6.1 6.62
15 5.7 6.7 6.5 5.5 6.9 5.8 5.4 6.04
20 1.5 2.0 2.8 1.1 4.1 2.3 1.7 2.22
25 0.9 1.2 2.5 0.7 3.1 1.8 1.3 1.63
30 0.8 1.0 1.8 0.3 2.2 1.2 1.0 1.17
35 0.3 0.5 1.3 0.3 1.5 1.5 1.1 0.92
40 0.5 0.3 0.4 0.1 0.9 0.6 0.2 0.43
45 0.2 0.0 0.2 0.1 0.2 0.2 0.0 0.14
50 0.0 0.0 0.2 0.0 0.1 0.1 0.0 0.06

Table 3: Classification error rates (percent misclassified) for different threshold values.
Threshold Benchmark program Geometric

Values compress jess raytrace db javac mpegaudio jack mean
0% 84.66 92.53 93.56 88.53 96.63 90.53 97.20 91.85
5% 83.70 92.09 92.81 88.53 96.08 89.26 97.16 91.27

10% 83.92 95.76 84.60 88.53 96.92 86.84 97.35 90.39
15% 83.79 92.64 86.38 88.54 97.55 89.16 97.54 90.67
20% 87.33 95.51 89.38 92.61 97.07 87.00 97.62 92.26
25% 84.18 97.09 92.31 90.24 97.79 92.10 98.39 93.04
30% 85.45 97.69 89.68 90.34 97.77 92.26 98.97 93.04
35% 98.16 96.42 99.48 92.74 97.94 99.75 99.59 97.70
40% 92.79 98.46 99.78 99.94 98.06 97.16 99.43 97.92
45% 99.55 99.98 99.96 100.00 98.85 89.99 99.93 98.26
50% 100.00 100.00 99.95 100.00 100.00 97.64 99.89 99.64

Table 4: Predicted execution times for different threshold values.

(a) Scheduling Time Using No Thresholds (b) Application Running Time Using No Thresholds

Figure 1: Efficiency and Effectiveness Using Filters.

t % 0 5 10 15 20 25
LS 8173 7976 7098 4930 2438 1443
LS % 21.9 21.4 19.0 13.2 6.5 3.9

t % 30 35 40 45 50
LS 912 565 316 192 49
LS % 2.4 1.5 0.8 0.5 0.1

Table 5: Effect of t on training set size of SPECjvm98. NS is con-
stant at 37280.

4.5 Filtering Applied to Other Benchmarks
While the above result is not bad, we suspected that we would have
better results focusing only on benchmarks where scheduling is ben-
eficial. We gathered a suite of programs that benefit from scheduling
through an exploration of freely available Java programs on the Inter-
net. Table 7 offers more details about these benchmarks. Note that this
suite of benchmarks consists solely of numerically intensive (floating-
point) computations. For this architecture, instruction scheduling is
an important optimization for removing stalls caused by floating point
instructions having long latencies.

(a) Scheduling Time Using Thresholds

(b) Application Running Time Using Thresholds

Figure 2: Efficiency and Effectiveness Using Filter Thresholds.

t % 0 5 10 15 20 25
NS 39389 39256 40250 41065 42046 42557
LS 6064 6197 5203 4388 3407 2896
LS % 13.3 13.6 11.4 9.7 7.5 6.4

t % 30 35 40 45 50
NS 43154 44061 44851 45142 45293
LS 2299 1392 602 311 160
LS % 5.1 3.1 1.3 0.7 0.4

Table 6: Effect of t on run time classification of blocks for
SPECjvm98.

Program Description
linpack A numerically intensive floating point kernel
power Power pricing optimization problem solver
bh Barnes and Hut N-body physics algorithm
voronoi Computes Voronoi diagram of a set of points re-

cursively on the tree
aes Tests vectors from the NIST encryption tests
scimark A scientific and numerical computation

Table 7: Characteristics of a set of benchmarks that benefit from
scheduling.

Our reasoning for focusing on the following set of benchmarks is
as follows:

If a program gains little benefit from scheduling at all, our filtering
technique can reduce the compile time, but will have no substantial
impact on the application running time. We could do a poor job, or a
good job, of choosing which blocks to schedule, and it won’t matter
because the scheduler just is not having much effect.

On the other hand, if you consider a program that gets a lot of
benefit from scheduling, then we want to make sure that we do not
seriously undermine that benefit. Focusing on benchmarks that gain
scheduling benefit allows us to determine this. Suppose, for the sake
of argument, we included a large number of programs with little (but
barely measurable) scheduling benefit. And further suppose that we
show that filtering preserves that benefit. We claim that is not at all
as interesting or useful as showing that we preserve the benefit gained
by programs that benefit a lot from scheduling. By focusing on this
set of benchmarks we are trying to be more critical, not less, of our
technique.

We expected that filtering would achieve most of the benefit of
scheduling all blocks, while being much more efficient. This expecta-
tion was borne out, as can be seen in Figures 3(a) and 3(b).

4.6 A Sample Induced (Learned) Filter
Some learning schemes produce expressions that are difficult for hu-
mans to understand, especially those based on numeric weights and
thresholds such as neural networks and genetic algorithms. Rule sets
are easier to comprehend and are often compact. It is also relatively
easy to generate code from a rule set that will evaluate the learned
filter in a scheduler.

Table 8 shows a rule set induced by training using examples drawn
from 6 of 7 SPECjvm98 benchmark programs. If the right hand side
condition of any rule (except the last) is met, then we will apply
the scheduler on the block; otherwise the learned filter predicts that
scheduling will not benefit the block.

The numbers in the first two columns give the number of correct
and incorrect training examples matching the condition of the rule.

In this case we see that block size and several classes of instructions
(call, system, load, and store) are the most important features, with
the rest offering some fine tuning. For example, the first if-then rule

predicts that it is beneficial to schedule blocks consisting of 7 instruc-
tions or more, that have a small fraction of call and PEI instructions,
but possibly a larger fraction of load and integer instructions. Note
that for this training set a large percentage of blocks were predicted
not to benefit from scheduling.

As we will see shortly, determining the feature values and then eval-
uating rules like this sample one does not add very much to compila-
tion time, and typically takes an order of magnitude less time than
actually scheduling the blocks selected for scheduling. Thus, while
we might be able to eliminate some of the features and retain most of
the effectiveness of the filter heuristics, there was not much motivation
in this case to do so.

4.7 The Cost of Evaluating Filters
Table 9 gives a breakdown of the compilation costs of our system,

and statistics concerning the percentage of blocks and instructions
scheduled. For the individual programs, we give a range of values,
covering all threshold values (t � 0 through 50). As t increases, s de-
creases, and while f remains nearly constant, f � s will increase. We
also give, for each threshold value, the geometric mean of each statis-
tic across the six benchmarks.

Here are some interesting facts revealed in the table. First, the frac-
tion of blocks and of instructions scheduled steadily decreases with
increasing t, dropping significantly at t � 30 and t � 35. Second,
the fraction of instructions scheduled, which tracks the relative cost
of scheduling fairly well, tends to be about twice as big as the frac-
tion of blocks scheduled, implying that the filter tends to retain longer
blocks. This makes sense in that longer blocks probably tend to ben-
efit more from scheduling. Third, the cost of calculating the filter,
as a percentage of non-scheduling compilation time, is always 1% or
less. Fourth, there is not a lot of variation in these statistics across
the benchmarks. Finally, we always obtain substantial reduction in
scheduling time compared with List (scheduling every block).

Program SB SI f/s f/c s/c
aes 0.2–14% 0.2–36% 8–20% 1.0% 4–12%
bh 0.1–19% 1.0–41% 7–27% 0.3% 1– 5%
linpack 0.4–14% 0.9–30% 9–17% 1.0% 5–11%
power 0.3–20% 0.6–40% 4–27% 0.4% 1– 9%
voronoi 0.3–19% 0.9–39% 4–27% 0.4% 1– 9%
scimark 0.6–16% 1.3–37% 8–22% 1.0% 5–13%
gm, t � 0 16.8% 36.3% 6.5% 0.7% 10.3%
gm, t � 5 16.1% 36.9% 6.3% 0.7% 10.3%
gm, t � 10 12.7% 28.5% 8.8% 0.7% 7.6%
gm, t � 15 11.2% 23.3% 9.3% 0.6% 6.7%
gm, t � 20 8.3% 20.5% 9.8% 0.6% 6.2%
gm, t � 25 9.2% 21.0% 10.3% 0.7% 6.3%
gm, t � 30 5.6% 10.2% 15.1% 0.6% 4.1%
gm, t � 35 1.7% 3.8% 20.0% 0.6% 3.0%
gm, t � 40 1.3% 2.9% 20.9% 0.6% 2.9%
gm, t � 45 0.5% 1.8% 21.8% 0.6% 2.7%
gm, t � 50 0.3% 0.7% 22.6% 0.6% 2.5%
List 100% 100% 0% 0.0% 13–23%

Table 9: Cost breakdowns: gm � geometric mean; SB � sched-
uled blocks; SI � scheduled instructions; f � time to evaluate
features and heuristic function; s � time spent in scheduling;
c � compile time excluding scheduling.

4.8 Filtering with Adaptive Optimization
The Jikes RVM system includes an adaptive compilation mecha-

(a) Scheduling Time Using Thresholds

(b) Application Running Time Using Thresholds
Figure 3: Efficiency and Effectiveness Using Filters On Other Benchmarks.

(924/ 12) list � bbLen ��� 7 � calls ��� 0.0857 � loads ��� 0.3793 � peis ��� 0.1493 � integers ��� 0.6087
(661/ 8) list � bbLen ��� 7 � systems ��� 0.0889 � stores ��� 0.05 � loads ��� 0.1538 � gcpoints ��� 0.0833 � loads ��� 0.5556 � loads ��� 0.3636
(452/ 23) list � bbLen ��� 7 � calls ��� 0.1034 � stores ��� 0.1778 � loads ��� 0.375
(218/ 14) list � bbLen ��� 7 � systems ��� 0.0606 � integers ��� 0.4167 � peis ��� 0.2361 � branches ��� 0.1 � stores ��� 0.0435
(272/ 19) list � bbLen ��� 7 � systems ��� 0.0741 � branches ��� 0.1111 � loads ��� 0.3667 � integers ��� 0.3667 � peis ��� 0.1667 � floats ��� 0
(518/ 41) list � bbLen ��� 7 � systems ��� 0.0606 � gcpoints ��� 0.0714 � integers ��� 0.4091
(269/ 52) list � bbLen ��� 7 � calls ��� 0.119 � stores ��� 0.0667 � loads ��� 0.2222 � integers ��� 0.2857 � loads ��� 0.625
(74/ 3) list � bbLen ��� 5 � stores ��� 0.1613 � loads ��� 0.3 � integers ��� 0.3438
(166/ 5) list � bbLen ��� 7 � calls ��� 0.119 � branches ��� 0.0476 � peis ��� 0.1765 � stores ��� 0.1237 � peis ��� 0.093
(75/ 13) list � bbLen ��� 5 � stores ��� 0.12 � loads ��� 0.2083 � integers ��� 0.3448 � yieldpoints ��� 0.0143
(51/ 14) list � bbLen ��� 7 � systems ��� 0.0741 � loads ��� 0.3 � systems ��� 0.0465 � peis ��� 0.2
(39/ 8) list � bbLen ��� 5 � stores ��� 0.1562 � loads ��� 0.3 � integers ��� 0.3529 � gcpoints ��� 0.1818 � peis ��� 0.1667
(33/ 7) list � bbLen ��� 5 � stores ��� 0.1562 � loads ��� 0.3 � integers ��� 0.3529 � peis ��� 0.15 � peis ��� 0.125 � calls ��� 0
(25/ 3) list � bbLen ��� 5 � stores ��� 0.12 � loads ��� 0.2222 � integers ��� 0.3889 � stores ��� 0.1 � branches ��� 0.1111
(18/ 5) list � bbLen ��� 5 � stores ��� 0.1613 � loads ��� 0.2941 � integers ��� 0.3846 � calls ��� 0.0769 � stores ��� 0.1111
(27476/1946) orig �

Table 8: Induced Heuristic Generated By Ripper.

nism, which determines at run time which methods are executed fre-
quently, and then optimizes those methods at progressively higher lev-
els of optimization [2]. This system typically achieves most of the
benefit of optimizing all methods, but with much lower compilation
cost. There are two obvious comparisons one might make between
our filtering technique and the Jikes RVM adaptive system:

1. The improvement offered by filtering alone versus the improve-
ment offered by the adaptive system alone. Even when schedul-
ing every basic block, scheduling costs only 13–23% of com-
pile time, which gives an upper bound on the improvement we
can obtain with filtering. Adaptive compilation reduces com-
pile time much more than this, so we do not even bother to
report specific numbers.

2. The improvement offered by the adaptive system alone versus
the improvement offered by the adaptive system plus our filter-
ing. We report this comparison below.

First we need to explain a methodological point. The adaptive system
is generally triggered according to time-driven sampling of program
counter values, which make it non-deterministic from run to run. To
obtain deterministic results we proceeded as follows. First, we per-
formed a number of adaptive runs with compilation logging turned
on. This told us, for each run, the methods optimized and their opti-
mization levels. From the logs, we determined for each method the
highest optimization level achieved by that method in a majority of
the runs of that benchmark. To obtain deterministic runs similar to the
adaptive system, we force optimization of each method to its major-
ity level when the system first attempts to compile the method, and
we prevent any further optimization as the system runs. We call this
the Pseudo-Adaptive system, and its compile time and execution time
behavior is very similar to the adaptive system.

Table 10 shows filtering cost breakdowns similar to those we pre-
sented for filtering alone. We observe that in this case our filters select
a larger fraction of the instructions. This may seem surprising, but is
logical in that these benchmarks tend to spend much of their time in
floating point computations, and blocks with floating point instruc-
tions are more likely to benefit from careful scheduling. These blocks
may also be longer, some of them resulting from loop unrolling, etc.

Efficiency: Scheduling all blocks in pseudo-adaptive runs con-
sumed about 16% of non-scheduling compile time (geometric mean).
Comparing with Table 10, we see that filtering does not save as much
on this population of blocks. Put another way, filtering, to some sig-
nificant extent, avoids scheduling blocks that turn out to be cold. This
is interesting, though it is not immediately clear how we can exploit
it (since scheduling sees code in its form after most optimizations, we
cannot apply the filters much earlier in the optimization process). Still,
we might be able to save perhaps 5% of compilation costs, provided
filtering does not undermine effectiveness.

Program SB SI f/s f/c s/c
aes 0.0–26% 0.0–68% 4–13% 0.5% 4–16%
bh 0.0–24% 0.0–57% 4– 7% 0.6% 7–14%
linpack 0.0–21% 0.0–63% 3– 4% 0.4% 8–13%
power 5.3–38% 12.2–71% 4% 0.4% 10–15%
voronoi 1.7–30% 5.4–59% 5–10% 0.9% 8–18%
scimark 1.3–23% 2.0–59% 4– 7% 0.7% 5–16%
gm, t � 0 26.0% 60.8% 4.0% 0.6% 14.6%
gm, t � 5 24.7% 61.3% 3.9% 0.6% 15.0%
gm, t � 10 23.3% 58.3% 4.2% 0.6% 14.8%
gm, t � 15 17.4% 42.6% 4.2% 0.6% 13.4%
gm, t � 20 18.3% 47.4% 4.0% 0.5% 13.4%
gm, t � 25 14.6% 38.3% 4.7% 0.6% 12.7%
gm, t � 30 6.4% 14.1% 5.7% 0.6% 9.6%
gm, t � 35 6.1% 11.9% 5.7% 0.5% 9.2%
gm, t � 40 3.9% 8.2% 6.2% 0.5% 8.7%
gm, t � 45 0.0% 0.0% 5.7% 0.4% 7.3%
gm, t � 50 0.0% 0.0% 6.7% 0.5% 7.2%

Table 10: Cost breakdowns for Pseudo-Adaptive runs: gm � ge-
ometric mean; SB � scheduled blocks; SI � scheduled in-
structions; f � time to evaluate features and heuristic function;
s � time spent in scheduling; c � compile time excluding schedul-
ing.

Effectiveness: Table 11 shows the geometric mean execution time
ratio compared with no scheduling, for list scheduling and for filter-
ing with our various threshold values. It is notable that instruction
scheduling appears less effective on the blocks optimized in (pseudo)
adaptive runs. We still do well for t � 20 and t � 25, but in those cases
we reduce compilation time by at most a few percent. We are forced
to conclude that filtering may not be worthwhile in this adaptive com-
pilation setting.

List t � 0 t � 5 t � 10 t � 15 t � 20
94.3 95.5 94.8 96.0 99.4 95.3

t � 25 t � 30 t � 35 t � 40 t � 45 t � 50
95.9 99.1 97.4 99.1 99.6 100.0

Table 11: Application execution time ratio (versus no schedul-
ing) for List and Pseudo-Adaptive runs, geometric mean across
six benchmarks.

4.9 Time Compiling versus Time Running
It might at first seem reasonable to report comparisons of total exe-
cution time (compilation plus application execution) with and without
filtering, etc. We believe this does not make much sense for bench-
mark programs, since we can make application execution time arbi-

trarily large compared with compilation by simply iterating the bench-
mark more times. Put another way: is there any “typical” ratio of
compile time to running time? Still, we can determine a pay-back ra-
tio for each benchmark, i.e., how much of the added compilation time
does each iteration of the application recover? Table 12 gives these
pay-back numbers for List and filtering at the different thresholds for
our six benchmarks that benefit from scheduling. Some numbers are
reported as “ � 0”, which means that the optimization actually hurt
application performance in that case. We observe that compile time
is generally much greater than application time for these benchmarks;
the application times for power and scimark are closer to the com-
pile times, hence their higher pay-back.

Filter aes bh linpack power voronoi scimark
LS 2.5 1.0 1.2 53 1.0 136

t � 0 5.1 1.3 2.7 132 1.1 � 0
t � 5 5.1 1.6 2.7 118 1.0 � 0

t � 10 5.5 2.1 3.0 130 � 0 299
t � 15 5.1 3.1 0.4 156 1.5 175
t � 20 7.2 0.7 3.7 26 1.5 502
t � 25 6.0 4.7 3.7 164 1.0 207
t � 30 8.5 4.7 0.6 142 0.2 � 0
t � 35 13.1 4.8 6.3 280 1.3 427
t � 40 11.7 5.0 0.4 305 1.5 350
t � 45 16.0 5.0 0.5 25 1.7 465
t � 50 19.8 � 0 0.5 3 1.8 15

NSA/NSC 3.5 1.4 2.9 54 1.7 617

Table 12: Percent of compile time recovered by each iteration
of the application, and application time as percentage of compile
time for NS.

Table 13 presents analogous measurements for the pseudo-adaptive
system. Here it is clear that instruction scheduling is not at all helpful
for bh, linpack, or voronoi. For the remaining benchmarks,
scheduling helps, at least sometimes.

Filter aes bh linpack power voronoi scimark
LS 4.1 � 0 � 0 � 0 � 0 1900

t � 0 4.3 0.6 5.1 76 � 0 250
t � 5 4.6 � 0 � 0 � 0 � 0 1484

t � 10 4.8 � 0 � 0 � 0 � 0 119
t � 15 3.9 � 0 � 0 � 0 � 0 � 0
t � 20 5.4 � 0 � 0 64 � 0 � 0
t � 25 5.0 � 0 � 0 29 � 0 689
t � 30 2.8 0.3 � 0 20 � 0 1108
t � 35 0.0 � 0 � 0 41 � 0 2542
t � 40 � 0 � 0 � 0 37 � 0 8991
t � 45 0.0 � 0 � 0 24 � 0 68
t � 50 0.0 � 0 � 0 46 � 0 7365

NSA/NSC 7.0 36.7 8.5 1113 20.1 1918

Table 13: Percent of Pseudo-Adaptive compile time recovered by
each iteration of the application, and application time as percent-
age of compile time for NS.

5. RELATED WORK
Instruction scheduling is a well-known problem with a developed

literature. It is also known that optimal instruction scheduling for
complex processors is NP-complete [10]. For brevity and focus we
describe the works, being most closely related to ours in that they con-

sider application of machine learning to compiler optimization prob-
lems.

Calder et al. [4] used supervised learning techniques, namely de-
cision trees and neural networks, to induce static branch prediction
heuristics. The prediction rates of their approach resulted in a miss
rate of 20% as compared with the 25% miss rate obtained using the
best hand-crafted heuristics existing at the time. Our learning method-
ologies are similar, but there are important differences. First, they
began with a rich set of hand-crafted heuristics from which form fea-
tures. On the other hand, we had no pre-existing heuristics from which
to draw features. Second, their technique made it inherently easy to
determine a label for their training instances. The optimal choice for
predicting a branch was easily obtained by instrumenting their bench-
marks to observe each branch’s most likely direction. We obtained
our labels using a simplified model of our target processor, which is
imprecise as previously mentioned. Because our measurements are
imprecise, it is impossible to determine the optimal choice of whether
to schedule or not to schedule.

Monsifrot et al. [14] use a classifier based on decision tree learning
to determine which loops to unroll. Like in Calder et al. [4], there
were many hand-coded heuristics from which to draw features. In
contrast to our approach and Calder’s, they obtain labels by using tim-
ing measurements from a real machine. For each loop, they measure
the effect of unrolling and not unrolling that particular loop. If the
effect of unrolling is beneficial above some threshold, they create a
positive training example pertaining to the loop. If unrolling the loop
causes a degradation in performance, a negative training example is
generated from the loop.

A group of researchers at MIT used genetic algorithms to tune
heuristic priority functions in three compiler optimizations [18]. They
generated, at random, expressions for a priority function for a spe-
cific compiler optimization, and formed an initial population for a ge-
netic algorithm. They performed crossovers and mutations by mod-
ifying the expressions with relational and/or real-valued functions of
random expressions. They derived priority functions for these tasks:
hyperblock selection, spilling in register allocation, and data prefetch-
ing. Their generated heuristics outperformed hand-crafted ones on an
architectural simulator. (However, simply by producing 399 heuris-
tics at random and choosing the best they were able to outperform the
hand-crafted heuristics.) Iterating the genetic programming produced
a significantly better result only for the spilling priority function in
register allocation, and it stabilized to the best performing genomes
in a few iterations. Unsupervised learning, such as genetic program-
ming, has two advantages over our technique: in the learning process
it uses measured rather than simulated execution times, and it does
not require a timing simulator. However, unsupervised learning is
typically more complex, and the resulting functions are often more
opaque. Also, this genetic programming work took days of CPU time
to derive a heuristic, whereas our supervised learning procedure com-
pletes in seconds (once we have developed the training instances).

Cooper et al. [7] use genetic algorithms to solve the compilation
phase ordering problem. They were concerned with finding “good”
compiler optimization sequences that reduced code size. Unfortu-
nately, their technique is application-specific. That is, a genetic algo-
rithm has to retrain for each program to decide the best optimization
sequence for that program. The genetic algorithm builds up chromo-
somes pertaining to different sequences of optimizations and adapts
these for each individual program. Mutations can involve adding new
optimizations into the sequence or removing existing ones from the
sequence. Their technique was successful at reducing code size by as
much as 40%.

We previously reported [15] results on generating a priority func-
tion in instruction scheduling. Using supervised learning, we gener-

ated preference functions that determined the preferred instruction to
schedule next from a pair of instructions (in the LS algorithm). Our
conclusion was that machine learning could find, automatically, quite
competent priority functions for local instruction scheduling heuris-
tics. In later work [13, 12] we had some success applying reinforce-
ment learning to the same problem.

6. CONCLUSIONS
Choosing when to apply potentially costly compiler optimizations is
an important open problem. We consider here the particular case of
instruction scheduling, with the possible choices being a traditional
list scheduler (LS) and no scheduling (NS). Since many blocks do not
benefit from scheduling, one can obtain most of the benefit of schedul-
ing by applying it to a subset of the blocks. What we demonstrated
here is that it is possible to induce a function that is competent at mak-
ing this choice: we obtain almost all the benefit of LS at less than 1/4
of the cost.

On the way to this result we found that it helped to reduce noise:
to remove training instances whose cost under different schedulers is
within a chosen threshold value, i.e., not different enough to provide
a good “signal” on which to train. Interestingly, this instance filter-
ing improved both the efficiency and the effectiveness of our induced
function.

Sometimes (perhaps only rarely) it is beneficial to perform instruc-
tion scheduling in a JIT, depending on how long the program runs, etc.
If it is rarely worthwhile, that only emphasizes the need for our heuris-
tic to decide when to apply it. The general approach we took here
should apply in other JIT situations. Of course all we have demon-
strated rigorously is that it works for one Java compilation system.
If the JIT is adaptive, applying optimization only to “hot” methods,
then filtering is less effective and may not be worthwhile (instruction
scheduling appears less helpful in general in the adaptive case, though
it is not clear from our results why this is so).

We found supervised learning to work excellently for this task.
Thus, beyond achieving good performance on the task, we obtain the
additional benefits of a simple cheap learning algorithm that produces
understandable heuristics. As with any machine learning technique,
devising the appropriate features is critical. Choosing whether to ap-
ply an instruction scheduler turns out to require only simple, cheap-
to-compute features. More complex compiler optimizations, such as
redundancy elimination, almost certainly need more complex features
to use in deciding if the optimization is likely to be worthwhile, but
we hope that this positive experience will inspire success on harder
problems.

7. ACKNOWLEDGMENTS
We thank Amy McGovern for coding the simulator and for prior work
in this domain. This material is based upon work supported by the
National Science Foundation under grant number CCR-0085792. Any
opinions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the NSF.

8. REFERENCES
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng,

J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.
Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R.
Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño
virtual machine. IBM Systems Journal, 39(1), Feb. 2000.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the Jalapeño JVM. In ACM SIGPLAN

Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 2000), Minneapolis,
MN, Oct. 2000.

[3] M. Arnold and B. G. Ryder. A framework for reducing the cost
of instrumented code. In SIGPLAN Conference on
Programming Language Design and Implementation, pages
168–179, 2001.

[4] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin,
M. Mozer, and B. Zoren. Evidence-based static branch
prediction using machine learning. ACM Transactions on
Programming Languages and Systems, 19(1):188–222, January
1997.

[5] C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. Rau, and
M.Schlansker. Profile-driven instruction level parallel
scheduling with application to super blocks. In Proceedings of
the 29th International Symposium on Microarchitecture, pages
58–67, 1992.

[6] W. W. Cohen. Fast effective rule induction. In Proceedings of
the Twelfth International Conference on Machine Learning,
Lake Tahoe, CA, Nov. 1995.

[7] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing
for reduced code space using genetic algorithms. In Workshop
on Languages, Compilers, and Tools for Embedded Systems,
pages 1–9, 1999.

[8] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD
thesis, Yale, Feb. 1985.

[9] J. A. Fisher. Trace scheduling: a technique for global
microcode compaction. IEEE Transactions on Computers,
30:478–490, July 1981.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman and
Co., San Francisco, CA, 1979.

[11] P. B. Gibbons and S. S. Muchnick. Efficient instruction
scheduling for a pipelined architecture. In Proceedings ACM
SIGPLAN ’86 Conference on Programming Language Design
and Implementation, pages 11–16, 1986.

[12] A. McGovern, E. Moss, and A. G. Barto. Building a basic block
instruction scheduler with reinforcement learning and rollouts.
Machine Learning, 49(2/3):141–160, 2002.

[13] A. McGovern and J. E. B. Moss. Scheduling straight-line code
using reinforcement learning and rollouts. In S. Solla, editor,
Advances in Neural Information Processing Systems 11,
Cambridge, MA, 1998. MIT Press.

[14] A. Monsifrot and F. Bodin. A machine learning approach to
automatic production of compiler heuristics. In Tenth
International Conference on Artificial Intelligence:
Methodology, Systems, Applications, AIMSA, pages 41–50,
September 2002.

[15] J. E. B. Moss, P. E. Utgoff, J. Cavazos, D. Precup,
D. Stefanović, C. Brodley, and D. Scheeff. Learning to schedule
straight-line code. In Proceedings of Neural Information
Processing Systems 1997 (NIPS*97), Denver CO, Dec. 1997.

[16] S. S. Muchnick. Advanced Compiler Design & Implementation.
Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1997.

[17] Standard Performance Evaluation Corporation (SPEC), Fairfax,
VA. SPEC JVM98 Benchmarks, 1998.

[18] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M.
O’Reilly. Meta optimization: Improving compiler heuristics
with machine learning. In Proceedings of the ACM SIGPLAN
’03 Conference on Programming Language Design and
Implementation, San Diego, Ca, June 2003. Association of

Computing Machinery.
[19] C. Young and M. Smith. Better global scheduling using path

profiles. In Proceedings of the 28th International Symposium
on Microarchitecture, pages 199–206, Nov. 1995.

