Optimization Tradeoffs
Why talking about trade-offs

• Understand the reasons why there are trade-offs when optimizing a GPU program
• Understand typical trade-offs
• Analyze the performance of a program under different trade-offs
Why we have optimization trade-offs

- Large number of possible combination of optimizations and configurations
- Resources are constrained
 - Local memory
 - Register
 - Global memory bandwidth
- Interaction between threads
 - Optimization sensitive to small changes
• Global memory bandwidth
 – 86.4 GB/s
• Multiprocessor performance
 – 18 Flop*1.35 Ghz = 24.3 GFLOPS
• Peak performance
 – 24.3*16 = 388.8 GFLOPS
• Each flop operates on up to 8 bytes of data
 – 388.8*8 >> 86.4 Gbs
• Global memory bandwidth can be easily saturated
Another example

• The configuration of an application:
 – 256 threads per block
 – 10 registers per thread
 – 4KB shared memory per block
 – 48 blocks -> 3 blocks per multiprocessor

• Two simple changes
Change resource usage

• Increase register usage from 10 to 11
 – Now only two blocks can run on a multiprocessors, because
 – 8192 registers per multiprocessor
 – Each block uses 11*256=2816 registers
 – 3*2816 > 8192

• Increase the shared memory usage from 4KB to 5KB
 – Can still support 3 blocks
 • 16 KB shared memory per multiprocessor
 • 3*5KB < 16
A story of two dimensions

• Build a mindset of optimizing for CUDA

• Dimension 1: Reduce instruction count
 – Common sub-expression elimination
 – Strength reduction
 – ...

• Diminsion 2: Increase multi-processor occupancy
Methods of increasing occupancy

- Schedule sequences of independent instructions within a warp
- Increase number of threads in a thread block
- Assign more blocks to a multi-processor

- Generally, intra-thread optimizations only work when the high-occupancy is maintained.
Source of independent warps

- From a few large thread blocks
- From many small thread blocks
- Different impact on performance
 - Larger thread blocks have better data locality
 - At the same time, larger thread blocks have higher thread synchronization overhead
 - Larger thread blocks potentially waste more thread space per multi-processor
Two attacks

- Intra-thread optimization
 - Instruction count reduction
 - Instruction level parallelism
- Inter-thread balancing
 - Work re-distribution
 - Resource balancing

- The optimizations interact through their effects on register usage.
Example: Matrix Multiplication

• For(…)
 – ___shared___ float As[16][16];
 – ___shared___ float Bs[16][16];

 – As[ty][tx] = A[indexA];
 – Bs[ty][tx] = B[indexB];
 – indexA += 16;
 – IndexB += 16*widthB;
 – ___syncthreads();

 – For(I=0; I<16; I++)
 • {
 – Ctemp+=As[ty][I]*Bs[I][tx];
 }
 – ___syncthreads();

 – C[indexC] = Ctemp;
Intra-thread optimization 1

- Instruction count reduction
 - Strength reduction
 - Common subexpression elimination
 - Loop-invariant code motion

- Loop unrolling
 - Remove branch instruction
 - Array subscript calculation
Unroll matrix multiplication

For(…)

- __shared__ float As[16][16];
- __shared__ float Bs[16][16];

- As[ty][tx] = A[indexA];
- Bs[ty][tx] = B[indexB];
- indexA += 16;
- IndexB += 16*widthB;
- __syncthreads();

- Ctemp+=As[ty][I]*Bs[I][tx];
...
- Ctemp+=As[ty][15]*Bs[15][tx];

- __syncthreads();

- C[indexC] = Ctemp;
Intra-thread optimization 2

- Reduce instruction latency -> increase instruction level parallelism
- Unroll
 - Facilitate instruction scheduling
- Prefetch and software pipelining
 - Reduce global memory access latency
Prefetch in matrix multiplication

- Atemp = A[indexA];
- Btemp = B[indexB];
- For(...)
 - __shared__ float As[16][16];
 - __shared__ float Bs[16][16];
 - As[ty][tx] = Atemp;
 - Bs[ty][tx] = Btemp;
 - indexA += 16;
 - IndexB += 16*widthB;
 - __syncthreads();
 - Atemp = A[indexA];
 - Btemp = B[indexB];
 - For(I=0; I<16; I++)
 • {
 • Ctemp+=As[ty][I]*Bs[I][tx];
 • }
 - __syncthreads();
 - C[indexC] = Ctemp;
Inter-thread optimization 1

• Work re-distribution
 – Tile workload
 • Better amortize the global memory latency
 • Reduce the pressure of global memory bandwidth
 – CUDA does a imperfect job
 • Prefer intra-thread performance

• Divide a grid into several kernel invocations
 – Kind of count-intuitive
 – Effective when kernel use constant memory
 • More data per grid -> more constant cache conflicts
Tile matrix multiplication

- For(...)
 - __shared__ float As[16][16];
 - __shared__ float Bs[16][32];

- As[ty][tx] = A[indexA];
- Bs[ty][tx] = B[indexB];
- Bs[ty][tx+16]=B[indexB+16];
- indexA += 16;
- IndexB += 16*widthB;
- __syncthreads();

- For(I=0; I<16; I++)
 - Ctemp+=As[ty][I]*Bs[I][tx];
 - Dtemp+=As[ty][I]*Bs[I][tx+16];
- __syncthreads();

- C[indexC] = Ctemp;
- C[indexC+16] = Dtemp;
• Resource balancing
 – Balance usage of register, shared memory and global memory accesses
 – Sometimes counter-intuitive
Balance shared memory and global memory accesses

- For(...)
 - __shared__ float As[16][16];
 - __shared__ float Bs[16][16];

 - As[ty][tx] = A[indexA];
 - Bs[ty][tx] = B[indexB];
 - indexA += 16;
 - IndexB += 16*widthB;
 - __syncthreads();

 - For(I=0; I<16; I++)
 • {
 – Ctemp+=As[ty][I]*Bs[I][tx];
 – Ctemp+=As[ty][I]*B[I*widthB+tx]
 • }
 - __syncthreads();

 - C[indexC] = Ctemp;
AoS vs SoA on the G80 architecture
struct S {
 float x;
 float y;
};
struct S myData[N]

- preventing coalesced reads

struct S {
 float x[N];
 float y[N];
};
struct S myData;

- Leading to coalesced reads

In this case a SoA seems preferable to an AoS
When is an AoS still preferable on the G800 architecture?

- Alignment specifiers and automatically aligned built-in types allow for 64 or 128-bit reads from global memory.
- Reduction of number of memory operations.
- By adding an alignment specifier to the SoA from the previous slide and reading from global memory into registers...

```c
struct __align__(8) S {
    float x;
    float y;
};
```

... we can improve the performance drastically

- SoA: contiguous reads for x and y (up to 600 cycles)
- AoS: one still contiguous 64-bit read to get x and y (up to 300 cycles)

- Even more obvious for 128-bit structures. SoA ~1200 vs AoS ~300 cycles
AoS and shared memory

• When reading AoS from global memory always think about the shared memory layout.
 – Share memory only supports 32 bit reads/writes
 – AoS that allow for good access to global memory will result in bank conflicts in shared memory.
 • Global memory: 64 bit or 128 bit
 • Shared memory: multiples of a stride of 3 → 96bit

→ Changing the layout of the date from an AoS in global memory to a SoA in shared memory might be beneficial
One step further: SoAoS

For structures that exceed the 128-bit alignment boundary

```c
struct __align__(16) S {
    float a;
    float b;
    float c;
    float d;
    float e;
    float f;
};

struct S myData[N];
```

- Each thread will have to perform 2 128-bit reads.
- The single reads are no longer contiguous.
- Idea: a Structure of Arrays of Structures (SoAoS).
One step further: SoAoS

struct __align__(16) S16 {
 float a;
 float b;
 float c;
 float d;
};

struct __align__(8) S8 {
 float e;
 float f;
};

struct S {
 struct S16 x[N];
 struct S8 y[N];
};

struct S myData;

- The single reads are now again contiguous across threads

- This is just an idea to show that there are many things to try that might lead to better performance for global memory access