
CISC 471 Compiler Design / 672 Compiler Construction Spring 2018

Phase IV: The Semantic Checker

First Due Date: (Inheritance graph) April 17th.
Second Due Date: (Complete) April 27th.
Teamwork: Required.

Purpose:
This project is intended to give you experience in and bring together the various issues of semantic

error checking, type checking, and symbol table manipulation discussed in class. In performing these
tasks for the Cool language, you will be performing abstract syntax tree traversals and dealing with the
inheritance hierarchy of an object-oriented language.

Groupwork:
The same rules for group work as in Phase III apply.

Project Summary:
Your task is to write a semantic analysis phase for your Cool compiler. In effect, you are implementing

the static semantics of Cool. You will use the abstract syntax trees (AST) built by the parser to check
that a program is in conformance with the Cool specification. Your static semantic component should
reject erroneous programs; for correct programs, it must gather certain information for use by the code
generator. The output of the semantic analyzer will be an attributed AST for use by the code generator.

This assignment has much more room for design decisions than previous assignments. Your program
is correct if it checks programs against the specification. There is no “right” way to do the assignment,
but there are wrong ways. There are a number of standard practices which we think make life easier and
we will try to convey them to you. However, what you do is largely up to you. Whatever you decide to
do, be prepared to justify and explain your solution.

You will need to refer to the typing rules, identifier scoping rules, and other restrictions of Cool as
defined in the Cool-manual. You will also need to add methods and data members to the AST class
definitions for this phase.

There is a lot of information in this handout, and you need to know most of it to write a working
semantic analyzer. Please read the handout thoroughly.

Files:
You already have all necessary files in your working copy. Make sure all files are up-to-date, and

make sure you get the README for this phase.
The java source files that you will need to modify are:

• treeNodes/*.java
This file contains the definitions for the AST nodes. You will need to add the code for your semantic
analysis phase in this file. The semantic analyzer is invoked by calling method semant() of class
program. Do not modify the existing declarations.

• semanticAnalyzer/ClassTable.java
This class is a placeholder for some useful methods (including error reporting and initialization of basic
classes). You may wish to enhance it for use in your analyzer.

You are allowed to create new java classes as you wish. Make sure that you understand the use of all the
classes semanticAnlyzer/*.java, generalHelpers/*.java, and treeNodes/*.java.

page 1 of 5



CISC 471 Compiler Design / 672 Compiler Construction Spring 2018

Tasks:

1. Read Section 12 in the Cool-Manual. This section defines all the type checking rules for Cool. Under-
standing Section 12 is vital for working on this assignment.

2. Modify the classes treeNodes/*.java, in particular, Program.java, and semanticAnalyzer/ClassTable.java
as needed to annotate a given AST with types according to the typing rules given in Section 12 of the
Cool-Manual. Reject ASTs representing semantically incorrect programs.

3. Explain your design decisions and why you believe your program is correct and robust. It is part of
the assignment to explain things in text, as well as to comment your code.

AST Traverals:
Your programming task for this assignment is to 1) traverse the tree, 2) manage various pieces of

information that you glean from the tree, and 3) use that information to enforce the semantics of Cool.
One traversal of the AST is called a “pass”. You will probably need more than one pass over the AST
to check everything.

As an example approach, the Coolc compiler performs three passes as follows:
Pass 1: This is not a true pass, as only the classes are inspected. The inheritance graph is built

and checked for errors. There are two ”sub”-passes: check that classes are not redefined and inherit only
from defined classes, and check for cycles in the inheritance graph. Compilation is halted if an error is
detected between the sub-passes.

Pass 2: Symbol tables are built for each class. This step is done separately because methods and
attributes have global scope—therefore, bindings for all methods and attributes must be known before
type checking can be done.

Pass 3: The inheritance graph—which is known to be a tree if there are no cycles—is traversed
again, starting from the root class Object. For each class, each attribute and method is typechecked.
Simultaneously, identifiers are checked for correct definition/use and for multiple definitions. An invariant
is maintained that all parents of a class are checked before a class is checked.

You will most likely need to attach customized information to the AST nodes. To do so, you may
edit the treeNodes package directly.

Inheritance:
Inheritance relationships specify a directed graph of class dependencies. A typical requirement of

most languages with inheritance is that the inheritance graph be acyclic. It is up to your semantic checker
to enforce this requirement. One fairly easy way to do this is to construct a representation of the type
graph and then check for cycles.

In addition, Cool has restrictions on inheriting from the basic classes (see the manual). It is also an
error if class A inherits from class B but class B is not defined.

The project skeleton includes appropriate definitions of all the basic classes. You will need to
incorporate these classes into the inheritance hierarchy.

We suggest that you divide your semantic analysis phase into two smaller components. First, check
that the inheritance graph is well-defined, meaning that all the restrictions on inheritance are satisfied. If
the inheritance graph is not well-defined, it is acceptable to abort compilation (after printing appropriate
error messages, of course!). Second, check all the other semantic conditions. It is much easier to implement
this second component if one knows the inheritance graph and that it is legal.

page 2 of 5



CISC 471 Compiler Design / 672 Compiler Construction Spring 2018

Naming and Scoping:
A major portion of any semantic checker is the management of names. The specific problem is

determining which declaration is in effect for each use of an identifier, especially when names can be
reused. For example, if i is declared in two let expressions, one nested within the other, then wherever
i is referenced the semantics of the language specify which declaration is in effect. It is the job of the
semantic checker to keep track of which declaration a name refers to.

As discussed in class, a symbol table is a convenient data structure for managing names and scoping.
You may use our implementation of symbol tables for your project. Our implementation provides methods
for entering, exiting, and augmenting scopes as needed. You are also free to implement your own symbol
table, of course.

Besides the identifier self, which is implicitly bound in every class, there are four ways that an object
name can be introduced in Cool:

• attribute definitions

• formal parameters of methods

• let expressions

• branches of case statements

In addition to object names, there are also method names and class names. It is, of course, an error
to use any name that has no matching declaration.

Remember that neither classes, methods, nor attributes need be declared before use. Think about
how this affects your analysis.

Type Checking:
Type checking is another major function of the semantic analyzer. The semantic analyzer must check

that valid types are declared where required. For example, the return types of methods must be declared.
Using this information, the semantic analyzer must also verify that every expression has a valid type
according to the type rules. The type rules are discussed in detail in the Cool-manual and the course
lecture notes.

One difficult issue is what to do if an expression doesn’t have a valid type according to the rules.
First, an error message should be printed with the line number and a description of what went wrong. It
is relatively easy to give informative error messages in the semantic analysis phase, because it is generally
obvious what the error is. We expect you to give informative error messages. Second, the semantic
analyzer should attempt to recover and continue. A good semantic analyzer will avoid cascading errors
using any of several standard techniques. We do expect your semantic analyzer to recover, but we do
not expect it to avoid cascading errors. A simple recovery mechanism is to assign the type Object to any
expression that cannot otherwise be given a type.

Output and Grading:
For incorrect programs, the output of semantic analysis is error messages. You are expected to

recover from all errors except for ill-formed class hierarchies. You are also expected to produce complete
and informative errors. Assuming the inheritance hierarchy is well-formed, the semantic checker should
catch and report all semantic errors in the program.

We have supplied you with a simple Exception-subclass semanticAnalyzer/SematicError.java.
This class has several constructors for your convenience and a new instance of this class should be created

page 3 of 5



CISC 471 Compiler Design / 672 Compiler Construction Spring 2018

when seeing finding an error (it is up to you, whether you would like to throw it). The filename to be
specified should be the file in which the error occurs. The parser ensures that Class nodes store the file in
which the class was defined (recall that class definitions cannot be split across files). In an error message,
the line number of the error message is obtained from the AST node where the error is detected and the
file name is obtained from the enclosing class.

For correct programs, the output is a type-annotated abstract syntax tree. You will be graded on
whether your semantic phase correctly annotates ASTs with types. You are also expected to program in
good, structured style. You should spend some time thinking about the class definitions you will use.

Grad Student Only: Many students have problems with properly handling issues with
“SELF TYPE”. 4% of the grade is dependent only on whether SELF TYPE has been handled prop-
erly, and in no other place will deductions be made, if some problem with SELF TYPE arises.

Remarks:
The semantic analysis phase is by far the largest component of the compiler so far. But, you will find

the assignment easier if you take some time to design the semantic checker prior to coding. Ask yourself:

• What requirements do I need to check?

• When do I need to check a requirement?

• When is the information needed to check a requirement generated?

• Where is the information I need to check a requirement?

If you can answer these questions for each aspect of Cool, implementing a solution should be straight-
forward.

1 Submission

Deadline 1: For the first deadline, look at all classes and build an inheritance graph and check that the
graph is well-formed. The README for this submission need only include some text on the inheritance
graph.

Deadline 2: For the second deadline, you should include code to construct a type-annotated abstract
syntax tree (AST) that works with our provided code generator. For each class, your semantic checker
should traverse the AST, gathering all visible declarations in a symbol table. You should also check each
expression for type correctness.

These lists of tasks are not exhaustive; it is up to you to faithfully implement the specification in
the manual and what is in the rubric.

2 Evaluation Criteria

The rubric for Phase 4 (rubric-phase4.txt) is posted on course web site. The differences between the
work expected as a undergrad versus a graduate student are clearly described in the rubric. You should
also look at the rubric to see what is expected of you and to see the point break down for the different
components of this phase.

page 4 of 5


