Introduction to Optimization,
Instruction Selection and Scheduling, and
Register Allocation

Traditional Three-pass Compiler

Source | Front IR Middle IR Back Machine
Code End End End code

v

» Errors

Code Improvement (or Optimization)

* Analyzes IR and rewrites (or transforms) IR

* Primary goal is to reduce running time of the compiled code
— May also improve space, power consumption, ...

* Must preserve “meaning” of the code
— Measured by values of nhamed variables
— A course (or two) unto itself

The Optimizer (or Middle End)

—Sauwrce) Front IR Middle IR Back | Machine
Code End End End code

» Errors

IR Opt |IR| Opt |IR| Opt IR Opt IR
E—— 1 2 3 —> —> n F——>
» Errors

Modern optimizers are structured as a series of passes

The Optimizer (or Middle End)

Typical Transformations

Discover & propagate some constant value

Move a computation to a less frequently executed
place

Specialize some computation based on context
Discover a redundant computation & remove it
Remove useless or unreachable code

Encode an idiom in some particularly efficient
form

The Role of the Optimizer

* The compiler can implement a procedure in many ways

* The optimizer tries to find an implementation that is
“better”

— Speed, code size, data space, ...

To accomplish this, it
* Analyze code to derive knowledge about run-time behavior
— General term is “static analysis”

* Uses that knowledge in an attempt to improve the code
— Literally hundreds of transformations have been proposed
— Large amount of overlap between them

Nothing “optimal” about optimization

#
Redundancy Elimination as an Example (DA

An expression x+y is redundant iff

* along every path from the procedure’s
entry, it has been evaluated and its
constituent subexpressions (x & y) have
not been re-defined.

entry

Iti <-a+2|
b4 ti -
c<-4*b B1 ¢ < b
bec b<c
b<1 (B2 b<-1 | B2

B3 d<| 1| B3

exit exit

Traditional Three-pass Compiler

Source | Front IR Middle IR Machine
Code End End code

» Errors

* TInstruction Selection
* Register Allocation

* TInstruction Scheduling

Instruction Selection: The Problem

Writing a compiler is a lot of work
* Would like to reuse components whenever possible
* Would like to automate construction of components

Front End Middle End Back End AUTomGTing

I [I I I g Y I 6 e Instruction
Selection

N~ -

v
v

Infrastructure

Definitions

Instruction selection

* Mapping IR into assembly code

* Assumes a fixed storage mapping & code shape
* Combining operations, using address modes

Instruction scheduling

* Reordering operations to hide latencies

* Assumes a fixed program (set of operations)
* Changes demand for registers

Register allocation

* Deciding which values will reside in registers

* Changes the storage mapping, may add false sharing

* Concerns about placement of data & memory operations

The Problem

Modern computers (still) have many ways to do anything

Consider register-to-register copy in ILOC
* Obvious operationis i2i r; = r,
* Many others exist

addl r;,0 = ry; |subl r;,0 = ry |[1lshiftI r;,0 = r;

multl r;,1 = ry [divI r;,1 = r; |rshiftl r;,0 = ry

orI r;,0 = r, |xorl r;,0 = r; .. and others ...

* Human would ignore all of these

* Algorithm must look at all of them & find low-cost encoding
— Take context into account

The Goal

Want to automate generation of instruction selectors

Front End Middle End Back End

] \
Infrastructure / \
/

Machine Back-end Tables
description g 17 ipti
p Generator _ >.Descm|:)-|-|on-based
Pattern retargeting
Matching
Engine
7

Machine description can also help with scheduling & allocation

The Big Picture

Need pattern matching techniques
* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator runs quickly
How good was the code?

Tree Treewalk Code Desired Code

loadI 4 = rs

X
loadAO ry.,.rs= rg loadAT r,.,4 =rs
loadI 8 =ry; loadAT r,.,8 =r;
loadAO ry.,.rz = rg

IDENT IDENT mult rs,re =1y

ult r.Pe=r
<a,ARP 45 <b,ARP 8> m 6:"'8 = Iy

The Big Picture

Need pattern matching techniques
* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator runs quickly
How good was the code?

Tree Treewalk Code Desired Code

X loadI 4 = rs

loadAO rg,rs=r loadAT r,.,4 = rs
loadIl 8 =r, loadAT r,.,.8 =r¢
IDENT loadAO Parp 7 = r}/ mult P5.Fe = I'7

<Q,ARP,8> mUH' Pe,l'g = g

The Big Picture

Need pattern matching techniques
* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator runs quickly
How good was the code?

Tree Treewalk Code Desired Code
loadI 4 = rs

X
loadAO ry.,.rs= rg loadAT ry.,4 =15
loadI 2 =y mutl rs2=ry
mult

Pe,l'7 = g
IDENT NUMBER
<a,ARP 4> <2>

The Big Picture

Need pattern matching techniques
* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator runs quickly
How good was the code?

Tree Treewalk Code Desired Code

loadI 4 = rs

loadAO rg.p.rs = 1 loadAT r,.,4 = rs
loadT 2" 1 |t %=,
ult re.r7 = rg
IDENT
<a,ARP 4>

Must combine these
This is a nonlocal problem

The Big Picture

Need pattern matching techniques
* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator runs quickly
How good was the code?

Tree Treewalk Code Desired Code
X loadI @6 = rs
loadI 4 =r, loadT 4 = rs
loadAO rs,re=r; loadAI r5,@6 = r
loadI @H =r; loadAT r5,@H = r,

IDENT IDENT loadT

<«c,@G,4> <d@H 4> 4 — I'g mul+t P77 = I'g

loadAO rg,rq = ry
mUH' rz.ro= i

The Big Picture

Need pattern matching techniques
* Must produce good code (some metric for good)
* Must run quickly

A treewalk code generator can meet the second criteria

How did it do on the first ?

Tree Treewalk Code Desired Code

loadI @6 =r5

= rs

5,@6 = P

IDENT IDENT ' loadAL r5,@H = 1,
«,@6@) «d,@H& 8 rel7 = I'g

Again, a nonlocal problem
Common offset

How do we perform this kind of matching ?

Tree-oriented IR suggests pattern matching on trees

* Tree-patterns as input, matcher as output

* Each pattern maps to a target-machine instruction sequence
* Use dynamic programming or bottom-up rewrite systems

Linear IR suggests using some sort of string matching

* Strings as input, matcher as output

* Each string maps to a target-machine instruction sequence
* Use text matching or peephole matching

In practice, both work well; matchers are quite different

Definitions

Instruction selection

* Mapping IR into assembly code

* Assumes a fixed storage mapping & code shape
* Combining operations, using address modes

Instruction scheduling

* Reordering operations to hide latencies

* Assumes a fixed program (set of operations)
* Changes demand for registers

Register allocation

* Deciding which values will reside in registers

* Changes the storage mapping, may add false sharing

* Concerns about placement of data & memory operations

What Makes Code Run Fast?

* Many operations have non-zero latencies
* Modern machines can issue several operations per cycle
* Execution time is order-dependent

Assumed latencies (conservative)

Operation Cycles
load 3 e Loads & stores may or may not block
Is;::: ? > Non-blocking =fill those issue slots
add 1 * Branch costs vary with path taken

* Scheduler should hide the latencies
mult 2
fadd 1
fmult 2
shift 1
branch Oto8

Example

W W 2*%x *y*z

Cvycles Simple schedule Cvycles Schedule loads early

1 loadAl rn,@w =r1 loadAl

4 add r1,r1 =1 loadAl r0,@x

5 loadAl r0,@x =12 loadAl r0,@y

8 mult r1,r2 = r1 4 add r1,r

9 loadAl @y =12 5 mult Mr2 =r
12 mult r1,r2 = r1 6 loadAl @z =r2
13 loadAl 0@z =r2 7 mult r11,r3 =r1
16 mult r1,r2 =r1 9 mult r1,r2 =r1
18 storeAl r1 = r0,@w 11 storeAl r1 = r0,@w
21 ris free 14 r1is free

2 registers, 20 cycles 3 registers, 13 cycles

Reordering operations for speed is called
instruction scheduling

Instruction Scheduling

The Problem

Given a code fragment for some target machine and the
latencies for each individual operation, reorder the operations
to minimize execution time

The Concept

slow

Machine description

|

code

Scheduler

fas{

code

(Engineer’ s View)

The task

* Produce correct code

* Minimize wasted cycles
* Avoid spilling registers

* Operate efficiently

Instruction Scheduling (The Abstract View)

To capture properties of the code, build a dependence graph G
Nodes n < G are operations with type(n) and delay(n)
* Anedge e=(n,n,) c Gif &only if n,uses the result of n,

—2e me e T

loadAl
add
loadAl
mult
loadAl
mult
loadAl
mult
storeAl

r0,@w
r1,r1

r0,@x
r1,r2

r0,@y
r1,r2

r0,@z
r1,r2

r1

The Code

= r1 a
= r1
= I2 l c

=r1 b\ / .
d

=> I2

=r1 AW / 9
=> 2 f\ /
= r1 h

= r0,@w ll

The Dependence Graph

Instruction Scheduling (Definitions)

A correct schedule S maps each n< Ninto a non-negative
integer representing its cycle number, and

1. S(n) =0, for all n < N, obviously
2.1f (ny,n,) € E, S(n,) +delay(n,) < S(n,)

3. For each type ¢, there are no more operations of type tin
any cycle than the target machine can issue

The length of a schedule S, denoted L(S), is
L(S) =max, .y (S(n) + delay(n))

The goal is to find the shortest possible correct schedule.
Sis time-optimal if L(S) <L(S,), for all other schedules S;

A schedule might also be optimal in terms of registers,
power, or space....

Instruction Scheduling (What' s so difficult?)

Critical Points

* All operands must be available

* Multiple operations can be ready

* Moving operations can lengthen register lifetimes

* Placing uses near definitions can shorten register lifetimes

* Operands can have multiple predecessors

Together, these issues make scheduling hard (NP-complete)

Local scheduling is the simple case
* Restricted to straight-line code
* Consistent and predictable latencies

Instruction Scheduling

The big picture
1. Build a dependence graph, P
2. Compute a priority function over the nodes in P

3. Use list scheduling to construct a schedule, one cycle at a
time
a. Use a queue of operations that are ready
b. At each cycle
. Choose a ready operation and schedule it
Il. Update the ready queue

Local list scheduling
* The dominant algorithm for twenty years
* A greedy, heuristic, local technique

Local List Scheduling

Cycle «1
Ready <« roots of P
Active < 0

S(op) « Cycle
Active < Active L op

Cycle « Cycle + 1

for each op € Active
if (S(op) + delay(op) < Cycle) then
remove op from Active

for each successor s of op in P
if (s is ready) then

Ready < Ready U s

Removal in priority order

while (Ready U Active = @)
if (Ready = @) then
remove an op from Ready

op has completed execution

If successor’ s operands are
ready, put it on Ready

Scheduling Example

1. Build the dependence graph

loadAl rN,@w =r1

a: a

b: add r1,r =1

c: loadAl r0,@x =r2 £ c

d: mult 1,r2 =1

e: loadAl 0,@y = r2 ~ d/ €

f: mult 1,r2 =1 AW / 9
g: loadAl 0,@z =r2 f\ e
h: mult 1Mr2 =ri h

i storeAl r1 = r0,@w '

The Code The Dependence Graph

Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

—2e me e T

loadAl r0,@w
add r1,r
loadAl r0,@x
mult 1,r2
loadAl r0,@y
mult 1,r2
loadAl r0,@z
mult 1,r2
storeAl "1

The Code

= r1 a
= r1

=2 l
—r1 10 P
=> I2

= r1 /
=12 AN
= r1 lh

= r0,@w

The Dependence Graph

Scheduling Example

1. Build the dependence graph
2. Determine priorities: longest latency-weighted path

3. Perform list scheduling

1) a: loadAl r0,@w
2) c: loadAl r0,@x
3) e: loadAl r0,@y
4) b: add r1,r
5) d: mult r1,r2
6) g: loadAl r0,@z
7) f: mult r1,r3
9) h: mult r1,r2

11) i: storeAl r1

The Code

New register name
used

=r1 13

= I2 2
=13 l
=r1 b
=1
= I2
=r1

= r1
= r0,@w

The Dependence Graph

Register Allocation

Part of the compiler’s back end

m register k register
IR IR IR
| Instruction Register Instruction Machine
Selection Allocation Scheduling code

» Errors

Critical properties

* Produce correct code that uses k (or fewer) registers
* Minimize added loads and stores
* Minimize space used to hold spilled values

* Operate efficiently
O(n), O(n log,n), maybe O(n?), but not O(2")

Register Allocation using Graph-Coloring

The big picture

m reaister . k reaister Optimal global allocation
nge \ El?gstcer cso]de > is NP-Complete, under
ocator almost any assumptions.

At each point in the code

1 Determine which values will reside in registers
2 Select a register for each such value
The goal is an allocation that “minimizes” running time

Most modern, global allocators use a graph-coloring paradigm
* Build a “conflict graph” or “interference graph”

* Find a k-coloring for the graph, or change the code to a
nearby problem that it can k-color

38t

ITYor
i

Register Allocation using Graph Coloring o

Graph coloring paradigm (Chaitin)
1 Build an interference graph &; for the procedure

2 (try to) construct a k-coloring
— Minimal coloring is NP-Complete
— Spill placement becomes a critical issue

3 Map colors onto physical registers

Graph Coloring (A Background Digression)

The problem

A graph G is said to be k-colorable iff the nodes can be labeled
with integers 1.. k so that no edge in G connects two nodes with
the same label

Examples
2-colorable 3-colorable

Each color can be mapped to a distinct physical register

Building the Interference Graph

What is an “interference” ? (or conflict)

* Two values interfere if there exists an operation where both
are simultaneously live

* If xandy interfere, they cannot occupy the same register
To compute interferences, we must know where values are “live”

The interference graph, 6;

* Nodes in 6;represent values, or live ranges

* Edges in 6;represent individual interferences
— For x,y € 61, <xy> € iff xandy interfere

* A k-coloring of 6; can be mapped into an allocation to k
registers

Observation on Coloring for Register Allocation

* Suppose you have k registers—Ilook
for a k coloring

* Any vertex nthat has fewer than k
neighbors in the interference graph
(n° < k) can always be colored!

—Pick any color not used by its neighbors
— there must be one

Observation on Coloring for Register Allocation

* Pick any vertex nsuch that n°< kand put it
on the stack

* Remove that vertex and all edges incident
from the interference graph
— This may make some new nodes have fewer than
k neighbors
* At the end, if some vertex n still has k or
more neighbors, then spill the live range
associated with n

* Otherwise successively pop vertices of f
the stack and color them in the lowest
color not used by some neighbor

Graph Coloring in Practice

3 Registers

Stack

Graph Coloring in Practice

3 Registers

Stack

Graph Coloring in Practice

3 Registers

Stack

Graph Coloring in Practice

3 Registers

Stack

Graph Coloring in Practice

3 Registers
Colors:
1: O
5
3 2: O
4
2 3: O
1

Stack

Graph Coloring in Practice

3 Registers
Colors:
1: O
®
3 2: O
4
2 3: O
1

Stack

Graph Coloring in Practice

3 Registers
Colors:
1: O
2: O
4
2 3: O
1

Stack

Graph Coloring in Practice

3 Registers
Colors:
1: O
2: O
2 3: O
1

Stack

Graph Coloring in Practice

3 Registers

Colors:
1: O
2: O
3: O
1

Stack

Graph Coloring in Practice

3 Registers

Colors:
1 O
2: O
3: O

Stack

