
The Procedure Abstraction
Part I Basics



Procedure Abstraction
• The compiler must deal with interface 

between compile time and run time
®Most of the tricky issues arise in 

implementing “procedures”

Procedures are the key to building large systems



Procedure Abstraction Issues
• Compile-time versus run-time behavior
• Finding storage for EVERYTHING and mapping 

names to addresses
• Generating code to compute addresses
• Interfaces with other programs, other 

languages, and the OS
• Efficiency of implementation



Where are we?

• This is “compilation,” as opposed to “parsing” or 
“translation”

• Implementing promised behavior
® What defines the meaning of the program

• Managing target machine resources
® Registers, memory, issue slots, locality, power, …
® These issues determine the quality of the compiler
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Contains more open problems and more challenges



The Procedure & Its Three Abstractions



The Procedure as a Name Space

There is a strict constraints that each procedure must adhere to!



The Procedure: Three Abstractions



The Procedure: Three Abstractions
1. Name Environment

®Clean slate for writing locally visible names
®Local names may obscure identical, non-local names
®Local names cannot be seen outside
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The Procedure: Three Abstractions
2. Control History

®Well defined entries & exits 
®Mechanism to return control to caller
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The Procedure: Three Abstractions
3. System Services

®Access is by procedure name & parameters
®Clear protection for both caller & callee
®Invoked procedure can ignore calling context

Procedures permit a critical separation of concerns



The Procedure             (Realist’s View)
• Establishes a private context

®Create private storage for each procedure invocation
®Encapsulate information about control flow & data 

abstractions



The Procedure             (Realist’s View)
• Provides shared access to system-wide facilities

®Storage management, flow of control, interrupts
®Interface to input/output devices, protection 

facilities, timers, synchronization flags, counters, …



The Procedure             (Realist’s View)
• Requires system-wide contract

®Conventions on memory layout, protection, 
resource allocation calling sequences, & 
error handling

®Must involve architecture ISA, OS, &
compiler



The Procedure               (Realist’s View)
Procedures allow us to use separate compilation
• Separate compilation allows us to build non-

trivial programs
• Keeps compile times reasonable
• Lets multiple programmers collaborate
• Requires independent procedures

Without separate compilation, we would not 
build large systems



The Procedure               (Realist’s View)
The procedure linkage convention
• Agreement between compiler and OS on actions 

taken when a procedure/function is called.
• Ensures each procedure inherits valid run-time 

environment and that the caller’s environment is 
restored on return
®Compiler generates code to ensure this 

happens according to agreement established 
by the system



The Procedure            (More Abstract View)
A procedure is an abstract structure constructed via software

Underlying hardware directly supports little of the 
abstraction—it understands bits, bytes, integers, reals, and 
addresses, but not:

• Entries and exits
• Interfaces
• Name space
• Nested scopes
All these are established by a carefully-crafted system of 

mechanisms provided by compiler, run-time system, linker 
and loader, and OS



Run Time versus Compile Time
These concepts are often confusing to the 

newcomer
• Linkages execute at run time
• Code for the linkage is emitted at compile time
• The linkage is designed long before either of 

these

Compile time versus run time can be confusing to 
students.  We will emphasize the distinction 
between them.



The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 (Algol-Like Languages = ALLs) 
procedure call

• Invoked at a call site, with some set of actual 
parameters

• Control returns to call site, immediately after 
invocation
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The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
int a, b, c;

{
int   d;
d = q(c,b);
...

}

…
s = p(10,t,u);
…
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The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
int a, b, c;

{
int   d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

Most languages allow recursion



The Procedure as a Control Abstraction

Implementing procedures with this behavior
• Requires code to save and restore a “return address”
• Must map actual parameters to formal parameters (c®x, b®y)
• Must create storage for local variables (&, maybe, parameters)

® p needs space for d, a, b, & c
® where does this space go in recursive invocations?

Compiler emits code that causes all this to happen at run time

int p(a,b,c)
int a, b, c;

{
int   d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…



The Procedure as a Control Abstraction

Implementing procedures with this behavior
• Must preserve p’s state while q executes
• Strategy: Create unique location for each procedure activation

® Can use a “stack” of memory blocks to hold local storage and 
return addresses

Compiler emits code that causes all this to happen at run time

int p(a,b,c)
int a, b, c;

{
int   d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…


