
The Procedure Abstraction
Part I Basics

Procedure Abstraction
• The compiler must deal with interface

between compile time and run time
®Most of the tricky issues arise in

implementing “procedures”

Procedures are the key to building large systems

Procedure Abstraction Issues
• Compile-time versus run-time behavior
• Finding storage for EVERYTHING and mapping

names to addresses
• Generating code to compute addresses
• Interfaces with other programs, other

languages, and the OS
• Efficiency of implementation

Where are we?

• This is “compilation,” as opposed to “parsing” or
“translation”

• Implementing promised behavior
® What defines the meaning of the program

• Managing target machine resources
® Registers, memory, issue slots, locality, power, …
® These issues determine the quality of the compiler

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

Well understood Engineering

Contains more open problems and more challenges

The Procedure & Its Three Abstractions

The Procedure as a Name Space

There is a strict constraints that each procedure must adhere to!

The Procedure: Three Abstractions

The Procedure: Three Abstractions
1. Name Environment

®Clean slate for writing locally visible names
®Local names may obscure identical, non-local names
®Local names cannot be seen outside

The Procedure: Three Abstractions

The Procedure: Three Abstractions
2. Control History

®Well defined entries & exits
®Mechanism to return control to caller

The Procedure: Three Abstractions

The Procedure: Three Abstractions
3. System Services

®Access is by procedure name & parameters
®Clear protection for both caller & callee
®Invoked procedure can ignore calling context

Procedures permit a critical separation of concerns

The Procedure (Realist’s View)
• Establishes a private context

®Create private storage for each procedure invocation
®Encapsulate information about control flow & data

abstractions

The Procedure (Realist’s View)
• Provides shared access to system-wide facilities

®Storage management, flow of control, interrupts
®Interface to input/output devices, protection

facilities, timers, synchronization flags, counters, …

The Procedure (Realist’s View)
• Requires system-wide contract

®Conventions on memory layout, protection,
resource allocation calling sequences, &
error handling

®Must involve architecture ISA, OS, &
compiler

The Procedure (Realist’s View)
Procedures allow us to use separate compilation
• Separate compilation allows us to build non-

trivial programs
• Keeps compile times reasonable
• Lets multiple programmers collaborate
• Requires independent procedures

Without separate compilation, we would not
build large systems

The Procedure (Realist’s View)
The procedure linkage convention
• Agreement between compiler and OS on actions

taken when a procedure/function is called.
• Ensures each procedure inherits valid run-time

environment and that the caller’s environment is
restored on return
®Compiler generates code to ensure this

happens according to agreement established
by the system

The Procedure (More Abstract View)
A procedure is an abstract structure constructed via software

Underlying hardware directly supports little of the
abstraction—it understands bits, bytes, integers, reals, and
addresses, but not:

• Entries and exits
• Interfaces
• Name space
• Nested scopes
All these are established by a carefully-crafted system of

mechanisms provided by compiler, run-time system, linker
and loader, and OS

Run Time versus Compile Time
These concepts are often confusing to the

newcomer
• Linkages execute at run time
• Code for the linkage is emitted at compile time
• The linkage is designed long before either of

these

Compile time versus run time can be confusing to
students. We will emphasize the distinction
between them.

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 (Algol-Like Languages = ALLs)
procedure call

• Invoked at a call site, with some set of actual
parameters

• Control returns to call site, immediately after
invocation

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction
Procedures have well-defined control-flow

The Algol-60 procedure call
• Invoked at a call site, with some set of actual parameters
• Control returns to call site, immediately after invocation

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

Most languages allow recursion

The Procedure as a Control Abstraction

Implementing procedures with this behavior
• Requires code to save and restore a “return address”
• Must map actual parameters to formal parameters (c®x, b®y)
• Must create storage for local variables (&, maybe, parameters)

® p needs space for d, a, b, & c
® where does this space go in recursive invocations?

Compiler emits code that causes all this to happen at run time

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

The Procedure as a Control Abstraction

Implementing procedures with this behavior
• Must preserve p’s state while q executes
• Strategy: Create unique location for each procedure activation

® Can use a “stack” of memory blocks to hold local storage and
return addresses

Compiler emits code that causes all this to happen at run time

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
return x + y;

}

…
s = p(10,t,u);
…

