

Top-down Parsing Recursive Descent & LL(1)

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

- Predictive top-down parsing
 - -The LL(1) Property
 - -First and Follow sets
 - —Simple recursive descent parsers
 - —Table-driven LL(1) parsers

- L = scan input left to right
- L = Leftmost derivation
- 1 = lookahead is enough to pick right production rule to use
- No Backtracking
- No Left Recursion

Given production rules

$$A \rightarrow \alpha$$

$$A \rightarrow \beta$$

the parser should be able to choose between α or β using one lookahead

Predictive Parser is a top-down parser <u>free</u> of backtracking

First Sets

For some $rhs \alpha \in G$

 $\underline{\text{FIRST}(\alpha)}$ is set of tokens (terminals) that appear as first symbol in some string deriving from α

$$\underline{\mathbf{x}} \in \mathsf{First}(\alpha) \ iff \ \alpha \Rightarrow^* \underline{\mathbf{x}} \ \gamma, \ \mathsf{for} \ \mathsf{some} \ \gamma$$

Some number of derivations gets us x at the beginning

```
Goal → SheepNoise

SheepNoise → SheepNoise baa

| baa
```

```
For SheepNoise:

FIRST(Goal) = { <u>baa</u> }

FIRST(SN) = { <u>baa</u> }

FIRST(<u>baa</u>) = { <u>baa</u> }
```


If $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like

$$FIRST(\alpha) \cap FIRST(\beta) = \emptyset$$

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

Almost correct! See the next slide

Does not have LL(1) Property

NIVERSITY OF ELAWARE

What about ε -productions?

If $A \to \alpha$ and $A \to \beta$ and $\epsilon \in First(\alpha)$, then we need to ensure

$$FOLLOW(A) \cap FIRST(\beta) = \emptyset$$

where,

Follow(A) = the set of terminal symbols that can immediately follow A in a sentential form

Formally,

Follow(A) = {t | (t is a terminal and $G \Rightarrow^* \alpha A \underline{t} \beta$) or (t is eof and $G \Rightarrow^* \alpha A$)}

Note: eof if A is at the end of the derived sentence

Follow Sets Intuition

FIRST*sets

Definition of FIRST⁺($A\rightarrow\alpha$)

if
$$\varepsilon \in \mathsf{FIRST}(\alpha)$$
 then

$$FIRST^{+}(A \rightarrow \alpha) = FIRST(\alpha) \cup FOLLOW(A)$$

else

$$FIRST^{+}(A \rightarrow \alpha) = FIRST(\alpha)$$

Grammar is LL(1) iff $A \rightarrow \alpha$ and $A \rightarrow \beta$ implies

$$First^{+}(A \rightarrow \alpha) \cap First^{+}(A \rightarrow \beta) = \emptyset$$

 $FIRST^{+}(A \rightarrow \beta)$

What If My Grammar Is Not LL(1)?

- Can we transform a non-LL(1) grammar into an LL(1) grammar?
- In general, the answer is no
- In some cases, however, the answer is yes
- Perform:
 - -Eliminate left-recursion Previously
 - -Perform left factoring today

What If My Grammar Is Not LL(1)?

Given grammar G with productions

$$A \rightarrow \alpha \beta_1$$

$$A \rightarrow \alpha \beta_2$$

if α derives anything other than ϵ and

FIRST⁺(
$$A \rightarrow \alpha \beta_1$$
) \cap FIRST⁺($A \rightarrow \alpha \beta_2$) $\neq \emptyset$

This grammar is not LL(1)

If we pull the common prefix, α , into a separate production, we may make the grammar LL(1).

$$A
ightarrow lpha A'$$
 $ightarrow eta_1$ $ightarrow eta_2$ $ightarrow eta_2$

Now, if FIRST⁺($A' \rightarrow \beta_1$) \cap FIRST⁺($A' \rightarrow \beta_2$) = \emptyset , G may be LL(1)


```
For each nonterminal A
     find the longest prefix \alpha common to 2 or more
     alternatives for A
     if \alpha \neq \epsilon then
          replace all of the productions
          A \rightarrow \alpha \beta_1 | \alpha \beta_2 | \alpha \beta_3 | \dots | \alpha \beta_n | \gamma
          with
          A \rightarrow \alpha A' \mid \gamma
          A' \rightarrow \beta_1 \mid \beta_2 \mid \beta_3 \mid \dots \mid \beta_n
Repeat until no NT has rhs' with a common prefix
```

NT with common prefix

Left Factoring

```
For each nonterminal A
     find the longest prefix \alpha common to 2 or more
     alternatives for A
     if \alpha \neq \epsilon then
          replace all of the productions
          A \rightarrow \alpha \beta_1 | \alpha \beta_2 | \alpha \beta_3 | \dots | \alpha \beta_n | \gamma
          with
         A \rightarrow \alpha A' \mid \gamma
          A' \rightarrow \beta_1 \mid \beta_2 \mid \beta_3 \mid \dots \mid \beta_n
Repeat until no NT has rhs' with a common prefix
```

Put common prefix α into a separate production rule

Left Factoring

```
For each nonterminal A
    find the longest prefix \alpha common to 2 or more
    alternatives for A
    if \alpha \neq \epsilon then
         replace all of the productions
         A \rightarrow \alpha \beta_1 | \alpha \beta_2 | \alpha \beta_3 | \dots | \alpha \beta_n | \gamma
         with
         A \rightarrow \alpha A' \mid \gamma
Repeat until no NT has rhs' with a common prefix
```

Create new Nonterminal (A') with all unique suffixes

Left Factoring

```
For each nonterminal A
     find the longest prefix \alpha common to 2 or more
     alternatives for A
     if \alpha \neq \epsilon then
          replace all of the productions
          A \rightarrow \alpha \beta_1 | \alpha \beta_2 | \alpha \beta_3 | \dots | \alpha \beta_n | \gamma
          with
          A \rightarrow \alpha A' \mid \gamma
          A' \rightarrow \beta_1 \mid \beta_2 \mid \beta_3 \mid \dots \mid \beta_n
Repeat until no NT has rhs' with a common prefix
```

Transformation makes some grammars into LL(1) grammars

There are languages for which no LL(1) grammar exists 15

Here is an example where a programming language fails to be LL(1) and is not in a form that can be left factored

```
statement \rightarrow assign-stmt \mid call-stmt \mid other
assign-stmt \rightarrow identifier := exp
call-stmt \rightarrow identifier ( exp-list )
```


Left Factoring Example

Consider a simple right-recursive expression grammar

To choose between 1, 2, & 3, an LL(1) parser must look past the <u>number</u> or <u>id</u> to see the operator.

FIRST
$$(1)$$
 = FIRST (2) = FIRST (3) and

$$FIRST^{+}(4) = FIRST^{+}(5) = FIRST^{+}(6)$$

Let's left factor this grammar.

Left Factoring Example

After Left Factoring, we have

```
Goal \rightarrow Expr
    \mathsf{Expr} \quad 	o \quad \mathsf{Term} \; \mathsf{Expr}'
    Expr' \rightarrow + Expr
3
                      - Expr
4

ightarrow Factor Term'
5
     Term
     Term' \rightarrow *Term
6
                       / Term
8
                       3
9
     Factor → number
10
                       <u>id</u>
```

```
Clearly,

FIRST+(2), FIRST+(3), & FIRST+(4)

are disjoint, as are

FIRST+(6), FIRST+(7), & FIRST+(8)

The grammar now has the LL(1)

property
```

FIRST Sets

$FIRST(\alpha)$

For some $\alpha \in (T \cup NT)^*$, define First(α) as the set of tokens that appear as the first symbol in some string that derives from α

That is, $\underline{x} \in \mathsf{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* \underline{x} \gamma$, for some γ


```
for each x \in T, FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do
   for each p \in P, of the form A \rightarrow \beta do
       if \beta is B_1B_2...B_k then begin;
         FS \leftarrow FIRST(B_1) - \{\varepsilon\}
         for i \leftarrow 1 to k-1 by 1 while \varepsilon \in FIRST(B_i) do
              FS \leftarrow FS \cup (FIRST(B_{i+1}) - \{ \varepsilon \})
             end // for loop
                // if-then
       end
       if i = k and \varepsilon \in FIRST(B_k)
           then FS \leftarrow FS \cup \{\varepsilon\}
        FIRST(A) \leftarrow FIRST(A) \cup FS
        end // for loop
    end // while loop
```

Outer loop is monotone increasing for FIRST sets

 \rightarrow | T \bigcirc NT \bigcirc ε | is bounded, so it terminates

Inner loop is bounded by the length of the productions in the grammar

Set terminals


```
for each x \in T, FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do
   for each p \in P, of the form A \rightarrow \beta do
       if \beta is B_1B_2...B_k then begin;
         FS \leftarrow FIRST(B_1) - \{\varepsilon\}
         for i \leftarrow 1 to k-1 by 1 while \varepsilon \in FIRST(B_i) do
              FS \leftarrow FS \cup (FIRST(B_{i+1}) - \{ \varepsilon \})
             end // for loop
                // if-then
       end
       if i = k and \varepsilon \in FIRST(B_k)
           then FS \leftarrow FS \cup \{\varepsilon\}
        FIRST(A) \leftarrow FIRST(A) \cup FS
        end // for loop
    end // while loop
```

Outer loop is monotone increasing for FIRST sets

 \rightarrow | T \cup NT \cup ε | is bounded, so it terminates

Inner loop is bounded by the length of the productions in the grammar

Set empty set for First of nonterminals


```
for each x \in T, FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do -
   for each p \in P, of the form A \rightarrow \beta do
       if \beta is B_1B_2...B_k then begin;
         FS \leftarrow FIRST(B_1) - \{\varepsilon\}
         for i \leftarrow 1 to k-1 by 1 while \varepsilon \in FIRST(B_i) do
              FS \leftarrow FS \cup (FIRST(B_{i+1}) - \{ \varepsilon \})
             end // for loop
       end // if-then
       if i = k and \varepsilon \in FIRST(B_k)
           then FS \leftarrow FS \cup \{\varepsilon\}
        FIRST(A) \leftarrow FIRST(A) \cup FS
        end // for loop
    end // while loop
```

Outer loop is monotone increasing for FIRST sets

 \rightarrow | T \cup NT \cup ε | is bounded, so it terminates

Inner loop is bounded by the length of the productions in the grammar

Fixed point
algorithm; Monotone
because we always
add to First sets;
never delete from
sets


```
for each x \in T, FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do
   for each p \in P, of the form A \rightarrow \beta do
      if \beta is B_1B_2...B_k then begin;
         FS \leftarrow FIRST(B_1) - \{\varepsilon\}
         for i \leftarrow 1 to k-1 by 1 while \varepsilon \in FIRST(B_i) do
              FS \leftarrow FS \cup (FIRST(B_{i+1}) - \{ \varepsilon \})
             end // for loop
       end // if-then
       if i = k and \varepsilon \in FIRST(B_k)
           then FS \leftarrow FS \cup \{\varepsilon\}
        FIRST(A) \leftarrow FIRST(A) \cup FS
        end // for loop
    end // while loop
```

Outer loop is monotone increasing for FIRST sets

ightarrow | T \cup NT \cup ε | is bounded, so it terminates

Inner loop is bounded by the length of the productions in the grammar

Iterate through each production


```
for each x \in T, FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do
   for each p \in P, of the form A \rightarrow \beta do
       if \beta is B_1B_2...B_k then begin;
         FS \leftarrow FIRST(B_1) - \{\varepsilon\}
         for i \leftarrow 1 to k-1 by 1 while \varepsilon \in FIRST(B_i) do
              FS \leftarrow FS \cup (FIRST(B_{i+1}) - \{ \varepsilon \})
             end // for loop
       end // if-then
       if i = k and \varepsilon \in FIRST(B_k)
           then FS \leftarrow FS \cup \{\varepsilon\}
        FIRST(A) \leftarrow FIRST(A) \cup FS
        end // for loop
    end // while loop
```

Outer loop is monotone increasing for FIRST sets

 \rightarrow | T \cup NT \cup ε | is bounded, so it terminates

Inner loop is bounded by the length of the productions in the grammar

RHS is some set of T and NT.


```
for each x \in T, FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do
   for each p \in P, of the form A \rightarrow \beta do
       if \beta is B_1B_2...B_k then begin;
         FS \leftarrow FIRST(B_1) - \{\varepsilon\}
         for i \leftarrow 1 to k-1 by 1 while \varepsilon \in FIRST(B_i) do
              FS \leftarrow FS \cup (FIRST(B_{i+1}) - \{ \varepsilon \})
             end // for loop
       end // if-then
       if i = k and \varepsilon \in FIRST(B_k)
           then FS \leftarrow FS \cup \{\varepsilon\}
        FIRST(A) \leftarrow FIRST(A) \cup FS
        end // for loop
    end // while loop
```

Outer loop is monotone increasing for FIRST sets

 \rightarrow | T \cup NT \cup ε | is bounded, so it terminates

Inner loop is bounded by the length of the productions in the grammar

Initialize rhs to First of first symbol minus epsilon


```
for each x \in T, FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do
   for each p \in P, of the form A \rightarrow \beta do
      if \beta is B_1B_2...B_k then begin;
         FS \leftarrow FIRST(B_1) - \{\varepsilon\}
         for i \leftarrow 1 to k-1 by 1 while \varepsilon \in FIRST(B_i) do
              FS \leftarrow FS \cup (FIRST(B_{i+1}) - \{ \varepsilon \})
             end // for loop
       end // if-then
       if i = k and \varepsilon \in FIRST(B_k)
           then FS \leftarrow FS \cup \{\varepsilon\}
        FIRST(A) \leftarrow FIRST(A) \cup FS
        end // for loop
    end // while loop
```

Outer loop is monotone increasing for FIRST sets

 \rightarrow | T \cup NT \cup ε | is bounded, so it terminates

Inner loop is bounded by the length of the productions in the grammar

Iterate through symbols in production until have a symbol that does not have epsilon in First set

Expression Grammar

0	Goal	\rightarrow	Expr
1	Expr	\rightarrow	Term Expr'
2	Expr'	\rightarrow	+ Term Expr'
3			- Term Expr'
4			3
5	Term	\rightarrow	Factor Term'
6	Term'	\rightarrow	* Factor Term'
7			/ Factor Term'
8			3
9	Factor	\rightarrow	<u>number</u>
10			<u>id</u>
11			(Expr)

Symbol	FIRST
num	<u>num</u>
<u>id</u>	<u>id</u>
+	+
-	-
*	*
/	/
((
))
<u>eof</u>	<u>eof</u>
3	3
Goal	<u>num, id, (</u>
Expr	<u>num, id, (</u>
Expr'	+, -, ε
Term	num, id, (
Term'	*,/,ε
Factor	num, id, (