Top-down Parsing
Recursive Descent & LL(1)

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Roadmap (Where are we?)
* Predictive top-down parsing
—The LL(1) Property
—First and Follow sets
—Simple recursive descent parsers
—Table-driven LL(1) parsers

LL(1) Parser
* | = scan input left to right

e L = Leftmost derivation

* 1= lookahead is enough to pick right
production rule to use

* No Backtracking

* No Left Recursion

Predictive Parsing
Given production rules

A—

A— P
the parser should be able to choose
between o or 3 using one lookahead

Predictive Parser is a top-down parser free
of backtracking

3

First Sets

For some rhs o.cG

FIRST(a) is set of tokens (terminals) that appear as first

symbol in some string deriving from o

X € FirsT(0t) iff oo =" xvy, for some y

Some number of derivations gets us x at the beginning

Goal -~ SheepNoise

SheepNoise - SheepNoise baa
| baa

For SheepNoise:
FIRST(Goal) = { baa}
FIRST(SN) ={ baa}
FIRST(baa) ={ baa}

4

LL(1) Property

If A— aand A — B both appear in the grammar, we
would like

FIrsT(at) N FIRST(B) = @

This would allow the parser to make a correct choice with
a lookahead of exactly one symbol |

Does not have LL(1) Property 5

Almost correct! See
the next slide

What about ¢-productions?

If A—> aand A — B and € € FIrsT(a), then we
heed to ensure

FOLLOW(A) n FIRST(B) = &

where,

FoLLow(A) = the set of terminal symbols that can
immediately follow A in a sentential form

Formally,

Follow(A) = {t | (1 is a terminal and G = 0. A1p) or
(T is eof and G="a.A)}

Note: eof if A is at the end of the derived sentence 6

Follow Sets Intuition

S S S
!\ !\ f\
/ \ / \ / \
\ XY\ / \
/NN S A B /
A AN (A)
A A B /\ l
f\ /N |
(a)b ¢ epsilon / \ /
l f oo \ EOF is in FOLLOW(A)
l (c)d e £

a is in FOLLOW(A) I

¢ is in FOLLOW(A)

FIRST sets

Definition of FIRsST (A—a)
if € € FIrsT(a) then
FIRsT*(A—a) = FIrRsT(a) U FoLLow(A)

else
FIRsT*(A—a) = FIRsT(t)

Grammar is LL(1) iff A— a.and A — B implies

FIRsT'(A—>a) N FIRsT(A—B) = &

What If My Grammar Is Not LL(1)?

Can we transform a non-LL(1) grammar into an
LL(1) grammar?

* Tn general, the answer is no
* Tn some cases, however, the answer is yes

* Perform:
—Eliminate left-recursion Previously
—Perform left factoring today

What If My Grammar Is Not LL(1)?

Given grammar & with productions
A—> a Bl

A—)aﬁz

if o derives anything other than ¢ and
FIRST*(A - a.By) N FIRST(A > ap,) z &

10

This grammar is not LL(1)

Left Factoring

If we pull the common prefix, a, intfo a separate
production, we may make the grammar LL(1).

A>a A

e

A >

Create a hew Nonterminal

31

32

Now, if FIRST*(A" — B;) N FIRST* (A — B,) = O,
G may be LL(1)

11

Left Factoring

For each nonterminal A
find the longest prefix o common to 2 or more
alternatives for A

if o 2 € then

replace all of the productions
A—)OLBI OCBZ O(B3 OCB Y
wit

A>aA |y
A =By B2 B3| .. [By

Repeat until no NT has rhs’ with a\common prefix

NT with common prefix

12

Left Factoring

For each nonterminal A
find the longest prefix o common to 2 or more
alternatives for A

if o 2 € then
replace all of the productions

A—>OLB1|0€BZ|OCI33|--~|OCBn|V

with

T S B B.1B3]
Repeat until no NT has rhsf with a common prefix

Put common prefix a intfo a
separate production rule

13

Left Factoring

For each nonterminal A
find the longest prefix o common to 2 or more
alternatives for A

if o 2 € then
replace all of the productions
A—aBy|aB|aBs|..lap,|y
with
A->oaA |y

A >B B, IB:] .. |B,

Repeat until no NT has rhs’ with a sommon prefix

Create new Nonterminal (A’)
with all unique suffixes

14

Left Factoring

For each nonterminal A
find the longest prefix a. common to 2 or more
alternatives for A

if a # € then
replace all of the productions

A—>0CB1|OCI32|06133|--~|06Bn|V
with

A>aA |y
A,_)BIIBZIB3I---|Bn

Repeat until no NT has rhs’ with a common prefix

Transformation makes some grammars into LL(1) grammars
There are languages for which no LL(1) grammar exists s

38t
@IE%HYOF

1743
®

Left Factoring not possible

Here is an example where a programming language fails to be
LL(1) and is not in a form that can be left factored

statement — assign-stmt | call-stmt | other
assign-stmt — identifier := exp
call-stmt — identifier (exp-list)

identifier

FIRST*(assign-stmt)

16

Left Factoring Example

Consider a simple right-recursive expression grammar

0 N O Ol »h W N~ O

| Goal
Expr

Term

Factor

-
BN
|
|
BN
|
|
5
|

Expr

Term + Expr
Term - Expr
Term

Factor* Term
Factor / Term
Factor

humber
id

To choose between 1, 2, & 3,
an LL(1) parser must look
past the number or id o see
the operator.

FIRsT*(1) = FIRST*(2) = FIRST*(3)

and
FIRST'(4) = FIRST*(B) = FIRST*(6)

Let's left factor this grammar.

17

Left Factoring Example

After Left Factoring, we have

O | Goal — Expr
Clearly,
1 | Expr — Term Expr’
2 | Expr >+ Expr FIRST*(2), FIRST*(3), & FIRST*(4)
3 | - Expr are disjoint, as are
4 I FIRST*(6), FIRST*(7), & FIRST*(8)
5 | Term — Factor Term’ - s et LG
6 | Term' = * Term proepggymar' now has the LL(1)
7 | / Term
8 | ¢
9 | Factor — number
10 | id

18

FIRST Sets

FIrsT(OL)

For some a € (Tu NT)*, define FirsT(at)
as the set of tokens that appear as the
first symbol in some string that derives

from o
That is, x € FirsT(a) iff o =" xvy, for
some y

19

Computing FIRST Sets

foreachx € T, FIRST(x) « {x}
for each A € NT, FIRST(A) « @ k\
while (FIRST sets are still changing) do
for each p € P, of the form A—f do
if B is B;B....B, then begin;
FS « FIRST(B,) - {¢&}
for i < 1to k-1by 1 while e € FIRST(B,) do
FS « FS U (FIRST(B,;))-{c})
end // for loop
end // if-then

if i=kande e FIRST(B,)

then FS « FS U {¢&}
FIRST(A) « FIRST(A) U FS
end // for loop

Outer loop is monotone
increasing for FIRST
S

— | T Tuelis
bounded, so it™kerminates

Inner loop is bounde
by the length of the
productions in the
grammar

Set terminals

end // while loop

20

Computing FIRST Sets

foreachx € T, FIRST(x) « {x}
for each A € NT, FIRST(A) « Z*—\
while (FIRST sets are still changing) do
for each p € P, of the form A—f do
if B is B;B....B, then begin;
FS « FIRST(B,) - {¢&}
for i < 1to k-1by 1 while e € FIRST(B,) do
FS « FS U (FIRST(B,;))-{c})

end // for loop
end // if-then

if i=kande e FIRST(B,)

then FS « FS U {¢&}
FIRST(A) « FIRST(A) U FS
end // for loop

Outer loop is monotone
increasing for FIRST
sets

UNTuUeg]|is
bounded,sa it terminates

Inner loop is bounded
by the length of the
productions in the
grammar

Set empty set for
First of nonterminals

end // while loop

21

Computing FIRST Sets

foreachx € T, FIRST(x) « {x}
for each A € NT, FIRST(A) « @

while (FIRST sets are still changing) do
for each p € P, of the form Ag—>g do \
if B is B;B....B, then begin;
FS « FIRST(B,) - {¢&}
for i < 1to k-1by 1 while e € FIRST(B,) do
FS « FS U (FIRST(B,;))-{c})
end // for loop
end // if-then

if i=kande e FIRST(B,)

then FS « FS U {¢&}
FIRST(A) « FIRST(A) U FS
end // for loop

Outer loop is monotone
increasing for FIRST
sets

| TUNT U ¢ is
boun so it terminates
Inner loop is ded
by the length of T
productions in the
grammar

end // while loop

Fixed point
algorithm; Monotone
because we always
add to First sets;
never delete from
sefts

Computing FIRST Sets

foreachx € T, FIRST(x) « {x}
for each A € NT, FIRST(A) « @

while (FIRST sets are still changing) do

for each p € P, of the form A—p do\
if B is B;B....B, then begin;

FS « FIRST(B,) - {¢&}
for i < 1to k-1by 1 while e € FIRST(B,) do
FS « FS U (FIRST(B,;))-{c})
end // for loop
end // if-then

if i=kande e FIRST(B,)

then FS « FS U {¢&}
FIRST(A) « FIRST(A) U FS
end // for loop

Outer loop is monotone
increasing for FIRST
sets

—> | TUNTuUe]|is
ounded, so it terminates

Inner loopis bounded
by the length o
productions in the
grammar

Tterate through each
production

end // while loop

23

Computing FIRST Sets

foreachx € T, FIRST(x) « {x}
for each A € NT, FIRST(A) « @

while (FIRST sets are still changing) do
for each p € P, of the form A—f do

if B is B;B....B, then begin;
FS « FIRST(B,) - {¢c} \
for i < 1to k-1by 1 while e € FIRST(B,) do
FS « FS U (FIRST(B,;))-{c})

end // for loop
end // if-then

if i=kande e FIRST(B,)

then FS « FS U {¢&}
FIRST(A) « FIRST(A) U FS
end // for loop

Outer loop is monotone
increasing for FIRST

sets

—> | TUNTuUe]|is
bounded, so it terminates

by the
productions in
grammar

loop is bounded
h of the

end // while loop

RHS is some set of T

and NT.

24

Computing FIRST Sets

foreachx € T, FIRST(x) « {x}
for each A € NT, FIRST(A) « @

while (FIRST sets are still changing) do
for each p € P, of the form A—f do

if B is B;B....B, then begin;
FS « FIRST(B,) - {¢&}
for i < 1to k-1by 1 while e € FIRST(B,) do

FS « FS U (FIRST(B,;))-{c})
end // for loop
end // if-then

if i=kande e FIRST(B,)
then FS « FS U {¢&}
FIRST(A) « FIRST(A) U FS
end // for loop
end // while loop

Outer loop is monotone
increasing for FIRST
sets

—> | TUNTuUe]|is
bounded, so it terminates

Inner loop is bounded
by length of the

productions-in the
grammar

Initialize rhs to First |
of first symbol minus
epsilon

[4e]

Computing FIRST Sets

foreachx € T, FIRST(x) « {x}
for each A € NT, FIRST(A) « @

while (FIRST sets are still changing) do
for each p € P, of the form A—f3 do

if B is B;B....B, then begin;
FS « FIRST(B,) - {¢&}
for i« 1to k-1by 1 while e € FIRST(B;) do

FS « FS U (FIRST(B,;))-{c})
end // for loop
end // if-then

if i=kande e FIRST(B,)

then FS « FS U {¢&}
FIRST(A) « FIRST(A) U FS
end // for loop

Outer loop is monotone
increasing for FIRST
sets

—> | TUNTuUe]|is
bounded, so it terminates

Inner loop is bounded

productio
grammar

end // while loop

Tterate through
symbols in production
until have a symbol
that does not have
epsilon in First set

Expression Grammar

O 0 N O Ol h W NV = O

—
— O

Goal —
Expr —
Expr’ —
|
|
Term —
Term’ —
|
|

Factor —
|
|

Expr

Term Expr’

+ Term Expr’

- Term Expr’

g

Factor Term’
* Factor Term’
/ Factor Term’
g

number

id

(Expr)

Symbol FIRST
hum hum
id id
+ +
x x
/ /
((
))
eof eof
€ e
Goal hum, id, (
Expr num,id, (
Expr’ +,-,€
Term num,id,(
Term * /. ¢
Factor num,id,(

27

