
Top Down Parsing - Part I

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

1

Parsing Techniques

Top-down parsers (LL(1), recursive descent)
• Start at root of parse tree and grow

toward leaves
• Pick a production & try to match the input
• Bad “pick” Þ may need to backtrack
• Some grammars are backtrack-free

2

• Starts with root of parse tree
• Root node is labeled with goal symbol
• Expand all non-terminals (NT) at fringe of tree

fringe

Top-down Parsing

Goal

Expr

Term+Expr

3

Construct the root node of parse tree
Repeat until lower fringe matches input string

1 At node labeled A, select production with A on LHS and, for each
symbol on RHS, construct appropriate child

2 If terminal symbol added to fringe doesn’t match input, backtrack
3 Find the next node (NT) to be expanded

The key is picking the right production in step 1
— That choice should be guided by the input string

Top-down parsing algorithm

4

Remember the expression grammar?

And the input x – 2 * y

0 Goal ® Expr
1 Expr ® Expr + Term
2 | Expr - Term
3 | Term
4 Term ® Term * Factor
5 | Term / Factor
6 | Factor
7 Factor ® (Expr)
8 | number
9 | id

Let’s try x – 2 * y :

5

Rule Sentential Form Input
— Goal ­x - 2 * y

Example

Goal

­ is the position in the input buffer

Let’s try x – 2 * y :

6

Rule Sentential Form Input
— Goal ­x - 2 * y
0 Expr ­x - 2 * y
1 Expr +Term ­x - 2 * y
3 Term +Term ­x - 2 * y
6 Factor +Term ­x - 2 * y
9 <id,x> +Term ­x - 2 * y
® <id,x> +Term x ­- 2 * y

Example

Goal

Expr

Term+Expr

Term

Fact.

<id,x>

This worked well, except that “–” doesn’t match “+”
The parser must backtrack to here

­ is the position in the input buffer

7

Example
Continuing with x – 2 * y :

Goal

Expr

Term–Expr

Term

Fact.

<id,x>

Þ Now, we need to expand Term - the last NT on the fringe

Rule Sentential Form Input
— Goal ­x - 2 * y
0 Expr ­x - 2 * y
2 Expr -Term ­x - 2 * y
3 Term -Term ­x - 2 * y
6 Factor -Term ­x - 2 * y
9 <id,x> - Term ­x - 2 * y
® <id,x> -Term x ­- 2 * y
® <id,x> -Term x - ­2 * y

Now, “-” and “-” match Now we can expand Term to match “2”

8

Where are we?
• “2” matches “2”
• We have more input, but no NTs left to expand
• The expansion terminated too soon
Þ Need to backtrack

Example
Trying to match the “2” in x – 2 * y :

Goal

Expr

Term-Expr

Term

Fact.

<id,x>

Fact.

<num,2>

Rule Sentential Form Input
® <id,x> - Term x - ­2 * y
6 <id,x> - Factor x - ­2 * y
8 <id,x> - <num,2> x - ­2 * y
® <id,x> - <num,2> x - 2 ­* y

9

Example
Trying again with “2” in x – 2 * y :

Goal

Expr

Term–Expr

Term

Fact.

<id,x>

Fact.

<id,y>

Term

Fact.

<num,2>

*

This time, we matched & consumed all the input
ÞSuccess!

Rule Sentential Form Input
® <id,x> - Term x - ­2 * y
4 <id,x> - Term * Factor x - ­2 * y
6 <id,x> - Factor * Factor x - ­2 * y
8 <id,x> - <num,2> * Factor x - ­2 * y
® <id,x> - <num,2> * Factor x - 2 ­* y
® <id,x> - <num,2> * Factor x - 2 * ­y
9 <id,x> - <num,2> * <id,y> x - 2 * ­y
® <id,x> - <num,2> * <id,y> x - 2 * y­

The Point:

The parser must make the right choice when it expands a NT.
Wrong choices lead to wasted effort.

10

Other choices for expansion are possible

This expansion doesn’t terminate

• Wrong choice of expansion leads to non-termination
• Non-termination is a bad property for a parser to have
• Parser must make the right choice

Another possible parse

Rule Sentential Form Input
— Goal ­x - 2 * y
0 Expr ­x - 2 * y
1 Expr +Term ­x - 2 * y
1 Expr + Term +Term ­x - 2 * y
1 Expr + Term +Term + Term ­x - 2 * y
1 And so on …. ­x - 2 * y

Consumes no input!

11

Left Recursion

Top-down parsers cannot handle left-recursive
grammars

Formally,
A grammar is left recursive if $ A Î NT such that
$ a derivation A Þ+ Aa, for some string a Î (NT È T)+

12

Left Recursion
Our classic expression grammar is left recursive
• This can lead to non-termination in a top-down parser
• In top-down parser, any recursion must be right recursion
• We would like to convert the left recursion to right recursion

Non-termination is always a bad property in a compiler

0 Goal ® Expr
1 Expr ® Expr + Term
2 | Expr - Term
3 | Term
4 Term ® Term * Factor
5 | Term / Factor
6 | Factor
7 Factor ® (Expr)
8 | number
9 | id

13

Eliminating Left Recursion
To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form
Fee ® Fee a

| b
where neither a nor b start with Fee

We can rewrite this fragment as
Fee ® b Fie
Fie ® a Fie

| e
where Fie is a new non-terminal

The new grammar defines
the same language as the
old grammar, using only
right recursion.

Added a reference
to the empty string

14

Eliminating Left Recursion

Expr ® Expr + Term

| Expr - Term

| Term

Term ® Term * Factor

| Term * Factor

| Factor

Expr ® Term Expr’

Expr’ ® + Term Expr’

| - Term Expr’
| e

Term ® Factor Term’

Term’ ® * Factor Term’

| / Factor Term’
| e

The expression grammar contains two cases of left recursion

Fee ® Fee a
| b

Fee ® b Fie
Fie ® a Fie

| e

15

Eliminating Left Recursion

Expr ® Expr + Term

| Expr - Term

| Term

Term ® Term * Factor

| Term * Factor

| Factor

Expr ® Term Expr’

Expr’ ® + Term Expr’

| - Term Expr’
| e

Term ® Factor Term’

Term’ ® * Factor Term’

| / Factor Term’
| e

The expression grammar contains two cases of left recursion

Applying the transformation yields

These fragments use only right recursion

16

Eliminating Left Recursion
Substituting them back into the grammar yields

• This grammar is correct, if
somewhat non-intuitive.

• A top-down parser will
terminate using it.

• A top-down parser may need
to backtrack with it.

0 Goal ® Expr
1 Expr ® Term Expr’
2 Expr’ ® + Term Expr’
3 | - Term Expr’
4 | e
5 Term ® Factor Term’
6 Term’ ® * Factor Term’
7 | / Factor Term’
8 | e
9 Factor ® (Expr)
10 | number
11 | id

17

Eliminating Left Recursion
The transformation eliminates immediate left recursion
What about more general, indirect left recursion ?

The general algorithm:
arrange the NTs into some order A1, A2, …, An
for i ¬ 1 to n

for s ¬ 1 to i – 1
replace each production Ai ® Asg with Ai ® d1g ½d2g½…½dkg,

where As ® d1½d2½…½dk are all the current productions for As

eliminate any immediate left recursion on Ai
using the direct transformation

This assumes that the initial grammar has no cycles (Ai Þ+ Ai),
and no epsilon productions

And back

Must start with 1 to ensure that
A1 ® A1 b is transformed

18

Eliminating Left Recursion
How does this algorithm work?
1. Impose arbitrary order on the non-terminals
2. Outer loop cycles through NT in order
3. Inner loop ensures that a production expanding Ai has no

non-terminal As in its rhs, for s < i
4. Last step in outer loop converts any direct recursion on Ai

to right recursion using the transformation showed earlier
5. New non-terminals are added at the end of the order & have

no left recursion

At the start of the ith outer loop iteration
For all k < i, no production that expands Ak contains a non-terminal
As in its rhs, for s < k

• Order of symbols: G, E, T

19

Example

1. Ai = G

G ® E

E ® E + T

E ® T

T ® E * T

T ® id

2. Ai = E

G ® E

E ® T E'

E' ® + T E'

E' ® e

T ® E * T

T ® id

3. Ai = T, As = E

G ® E

E ® T E'

E' ® + T E'

E' ® e

T ® T E' * T

T ® id

Go to
Algorithm

4. Ai = T

G ® E

E ® T E'

E' ® + T E'

E' ® e

T ® id T'

T' ® E ' * T T'

T' ® e

