Top Down Parsing - Part I

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

* Start at root of parse tree and grow
toward leaves

* Pick a production & try to match the input
* Bad "pick” = may need to backtrack
* Some grammars are backtrack-free

Top-down Parsing

* Starts with root of parse tree
* Root node is labeled with goal symbol
* Expand all non-terminals (NT) at fringe of tree

fringe ' \

Top-down parsing algorithm

Construct the root node of parse tree

Repeat until lower fringe matches input string

1 At node labeled A, select production with A on LHS and, for each
symbol on RHS, construct appropriate child

2 If terminal symbol added to fringe doesn’t match input, backtrack
3 Find the next node (NT) to be expanded

The key is picking the right production in step 1
— That choice should be guided by the input string

Remember the expression grammar?

O 0 NO Ol W DN -~ O

Goal
Expr

Term

Factor

—— ===

Expr

Expr + Term
Expr - Term
Term

Term™> Factor
Term / Factor
Factor

(Expr)
humber

id

And the inputx-2*y

Example

Let'stryx-2*y:

Rule Sentential Form Input
— Goal Tx-2*y

T is the position in the input buffer | 5

Example

Let'stryx-2*y:

Rule Sentential Form Input

— Goal Tx-2*y
0 Expr T™x-2%y @ ' \
A& +
1 Expr+Term T™x-2*y
3 Term+Term T™x-2*y @
6 Factor+Term T™x-2*y
9 <idx>+Term T™x-2*y @
— <idx>+Term xT-2*y .
>

w

This worked well, except that "-

The parser must backtrack to here—

doesn't match "+

T is the position in the input buffer

Example

Continuing with x-2 >y : @

Rule Sentential Form Input

Goal Tx-2*y @

2 Expr-Term T™x-2*y @
3 Term-Term T™x-2*y @
6 Factor-Term Tx-2*y
9 <idx>- Term T™x-2*y @
— <idx>@Term xTo2*y

Now, "-" and "-" match M Now we can expand Term to match "2"

— Now, we need to expand Term - the last NT on the fringe

Example

Trying to match the "2"in x-2*y: @
Rule Sentential Form Input
— <idx>- Term x-T2%* y \
6 <idx>- Factor x-T2*y
8 <idx>-<num,2> x-T2*y
— <idx>-<num2> x-2T*y

Hatiat)
&

Where are we?
* "2" matches "2" <id, x>

* We have more input, but no NTs left to expand
* The expansion terminated too soon

— Need to backtrack

Example

Rule Sentential Form Input
— <idx>- Term x-T2*y

Trying again with "2" inx-2*y: @

\
R
*

|

@ <id,y>

<id, x> <num,2>

<idx> - Term™ Factor
<id x> - Factor* Factor

I
RN
<

<id x> - <num,2> * Factor

Hatiat)
3

<id x> - <num,2> * Factor

|
N
_)
=

<idx> - <num,2> * <id\y>

*
%
<

4
6
8
— <idx>-<num,2> * Factor
N
9
N

IX IX IX X IX X [IX
|
N
* —
x.
=

N N

e

<idx> - <num,2> * <id)y>

The Point:

The parser must make the right choice when it expands a NT.
Wrong choices lead to wasted effort.

Another possible parse

Other choices for expansion are possible

Rule Sentential Form

o)
1
1
1
1

Goal
Expr Consumes ho input!
Expr + Term

Expr+ Term +Term

Expr+ Term+Term+ Term

And so on ...

This expansion doesn't terminate

* Wprong choice of expansion leads to hon-termination
* Non-termination is a bad property for a parser to have
* Parser must make the right choice

10

Left Recursion

Top-down parsers cannot handle left-recursive
grammars

Formally,

A grammar is left recursive if 3 A ¢ NTsuch that
3 a derivation A =* Aa, for some string a <« (NTU T)

1

Left Recursion

Our classic expression grammar is left recursive

* This can lead to non-termination in a fop-down parser

* In top-down parser, any recursion must be right recursion

* We would like to convert the left recursion to right recursion

Non-termination is always a bad property in a compiler

Goal
Expr

— Expr
— Expr+ Term
| Expr- Term
| Term
Term — Term™ Factor
| Term/ Factor
| Factor
— (Expr)
| number
| id

Factor

O 00O NONOTL DA W NN - O

12

Eliminating Left Recursion

To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form
Fee — Fee

| B
where neither o nor B start with Fee

We can rewrite this fragment as _
Fee - B Fie The new grammar defines
Fie o Fie o the same Ianguage as the
old grammar, using only
| € « P right recursion.

where Fie is a new non-terminal

Added a reference
to the empty string
13

Eliminating Left Recursion

The expression grammar contains two cases of left recursion

Expr — Expr+ Term Term — Term™ Factor
| Expr- Term | Term * Factor
| Term | Factor

Fee - Fee o

| B

Fee —» 3 Fie
Fie — o Fie

| €

Eliminating Left Recursion

The expression grammar contains two cases of left recursion

Expr — Expr+ Term Term — Term™ Factor
| Expr- Term | Term * Factor
| Term | Factor

Applying the transformation yields

Expr — Term Expr’ Term — Factor Term’

Expr' — + Term Expr’ Term’ — * Factor Term’
| - Term Expr’ | / Factor Term’
| ¢ | ¢

These fragments use only right recursion

Eliminating Left Recursion

Substituting them back into the grammar yields

0 Goal E. : i '
; an = TXP'" . * This grammar is correct, if
EXP’" - Jerm ’;f"" somewhat non-intuitive.

2 xpr’ + Term Expr’ :

; p —|> o 4 * A top-down parser will

- Term Expr terminate using it.

4 | e

N SR * A top-down parser may need
erm — Factor Term to backtrack with it.

6 Term’ — * Factor Term’

7 | / Factor Term’

8 | e

9

10 humber

Factor — (Expr)
I
|

—
—

id

16

Eliminating Left Recursion

The transformation eliminates immediate left recursion
What about more general, indirect left recursion ?

The general algorithm:

arrange the NTs into some order A, A, ...,

An

fori—1ton ——

forse@m-

Must start with 1 to ensure that
A, — A, B is transformed

replace each production A; - A,y with A, — o5y (5,71 ... 15,
where A, — 8,1 5,| ... 5, are all the current productions for A,

eliminate any immediate left recursion on A,

using the direct transformation

This assumes that the initial grammar has no cycles (4, =+ A;),

and no epsilon productions

And back 17

Eliminating Left Recursion

How does this algorithm work?
1. Impose arbitrary order on the non-terminals
2. Outer loop cycles through NT in order

3. Inner loop ensures that a production expanding A, has no
non-terminal A, in its rhs, for s< i

4. Last step in outer loop converts any direct recursion on A;
to right recursion using the transformation showed earlier

5. New non-terminals are added at the end of the order & have
no left recursion

At the start of the /" outer loop iteration

For all k < i, no production that expands A, contains a non-terminal
A, in its rhs, for s < k

18

Example

* Order of symbols: 6, E, T

1.A =G 2. A =E 3.A =T A=E 4. A, =T
G- E G E G- E G- E
E—> E+T E—>TE' E—> TE' E—>TE'
E—>T E'>+TE' E'>+TE' E'>+TE'
T—>E*T E'>¢ E'—>¢ E'>¢
T— id T—> E*T T—> TE'*T T—> dT
T— id T— id T">E'*TT'
T'—> ¢
Go to

Algorithm 19

