

Lexical Analysis: Constructing a Scanner from Regular Expressions

- Show how to construct a DFA to recognize any RE
- Scanner simulates a DFA to generate tokens
- Last Lecture
 - → Convert RE to an nondeterministic finite automaton (NFA)
 - Use Thompson's construction
- This Lecture
 - \rightarrow Convert an NFA to a deterministic finite automaton (DFA)
 - Use Subset construction

- NFA is a 5-tuple (N, Σ , δ_N , n_0 , N_A)
- DFA is a 5-tuple (D, Σ , δ_D , d_0 , D_A)
- Want to create a DFA that simulates the NFA

Non-trivial part is constructing D and $\delta_{\mathcal{D}}$

Two key functions

- Delta(q_i , \underline{a}) set of states reachable from states in q_i by \underline{a} \rightarrow Returns a set of states, for each $n \in q_i$ of δ_i (n, \underline{a})
- ε -closure(q_i) set of states reachable from q_i by ε moves

Functions help create states of DFA by removing nondeterministic edges of the NFA.

Subset Construction Algorithm in English

The algorithm:

- Start state q_0 derived from n_0 of the NFA
- Add q₀ to the Worklist

Loop while Worklist not empty

- Remove a state q from worklist
- Compute t by Delta(q, α) for each $\alpha \in \Sigma$, and take its ϵ -closure
- If t not in set Q add it to Q and Worklist

Iterate until no more states are added

Sounds more complex than it is...

The Subset Construction Algorithm

 $q_0 \leftarrow \varepsilon$ -closure(n_0) $\boldsymbol{Q} \leftarrow \{\boldsymbol{q}_0\}$ WorkList $\leftarrow \{q_0\}$ while (WorkList is not empty) remove q from WorkList for each $\alpha \in \Sigma$ $t \leftarrow \varepsilon$ -closure(Delta(q, α)) *T*[*q*,α] ← *t* if ($t \notin Q$) then add t to Q and WorkList

Let's think about why this works

The algorithm:

 $q_{0} \leftarrow \varepsilon \text{-closure}(n_{0})$ $Q \leftarrow \{q_{0}\}$ WorkList \leftarrow \{q_{0}\}
while (WorkList $\neq \phi$)
remove q from WorkList
for each $\alpha \in \Sigma$ $t \leftarrow \varepsilon \text{-closure}(\text{Delta}(q,\alpha))$ $T[q,\alpha] \leftarrow t$ if ($t \notin Q$) then
add t to Q and WorkList

Let's think about why this works

The algorithm halts:

- 1. Q contains no duplicates (test before adding)
- 2. 2^N is finite
- *3.* while loop adds to *Q*, but does not remove from Q *(monotone)*
- \Rightarrow the loop halts

Q contains all the reachable NFA states

- It tries each character in each q.
- \Rightarrow *Q* gives us *D* set of states of *DFA*
- \Rightarrow *T gives us* δ_D set of transitions of DFA

Example of a *fixed-point* computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- These computations arise in many contexts We will see many more fixed-point computations

NFA \rightarrow DFA with Subset Construction 3 $\underline{a}(\underline{b}|\underline{c})^*$: b q_{g} q_8 \boldsymbol{q}_3 3 The algorithm: Applying the subset construction: $q_0 \leftarrow \varepsilon$ -closure(n_0) $Q \leftarrow \{q_0\}$ ϵ -closure(Delta(q,*)) WorkList $\leftarrow \{q_0\}$ NFA states а b С while (WorkList $\neq \phi$) \boldsymbol{q}_0 remove q from WorkList for each $\alpha \in \Sigma$ *t*← *ε*-closure(Delta(q,α)) *T*[*q*,α] ← *t* if $(t \notin Q)$ then

add t to Q and WorkList

NFA \rightarrow DFA with Subset Construction

Applying the subset construction:

		ε-closure(Delta(q,*))			
	NFA states	<u>a</u>	b	<u>C</u>	
S 0	\boldsymbol{q}_{o}	$egin{array}{c} {f q}_1, {f q}_2, {f q}_3, \ {f q}_4, {f q}_6, {f q}_9 \end{array}$	none	none	
S ₁	$\begin{array}{c} q_1, q_2, q_3, \\ q_4, q_6, q_9 \end{array}$	none	q 5, q8, q9, q3, q4, q6	q ₇ , q ₈ , q ₉ , q ₃ , q ₄ , q ₆	
S ₂	$\begin{array}{c} q_{5}, \ q_{8}, \ q_{9}, \ q_{3}, \ q_{4}, \ q_{6} \end{array}$	none	S ₂	S ₃	
S 3	$q_7, q_8, q_9, q_9, q_3, q_4, q_6$	none	S ₂	S ₃	

Final states

NFA \rightarrow DFA with Subset Construction

The DFA for $\underline{a} (\underline{b} | \underline{c})^*$

- Ends up smaller than the NFA
- All transitions are deterministic
- Use same code skeleton as before

δ	<u>a</u>	<u>b</u>	<u>C</u>
s ₀	S 1	-	-
S ₁	-	s ₂	S ₃
s ₂	-	s ₂	S 3
S ₃	-	s ₂	S ₃

Where are we? Why are we doing this?

 $RE \rightarrow NFA$ (Thompson's construction) \checkmark

- Build an NFA for each term
- Combine them with ϵ -moves

NFA \rightarrow DFA (subset construction) \checkmark

- Build the simulation
- $DFA \rightarrow Minimal DFA$
- Hopcroft's algorithm

$\mathsf{DFA} \rightarrow \mathsf{RE}$

- All pairs, all paths problem
- Union together paths from s₀ to a final state

Extra Slides

- Report errors for lexicographically malformed inputs
 - \rightarrow reject illegal characters, or meaningless character sequences
 - \rightarrow E.g., '#' or "floop" in COOL
- Return an abstract representation of the code
 - \rightarrow character sequences (e.g., "if" or "loop") turned into tokens.
- Resulting sequence of tokens will be used by the parser
- Makes the design of the parser a lot easier.

- A scanner specification (e.g., for JLex), is list of (typically short) regular expressions.
- Each regular expressions has an action associated with it.
- Typically, an action is to return a token.
- On a given input string, the scanner will:
 - → find the longest prefix of the input string, that matches one of the regular expressions.
 - → will execute the action associated with the matching regular expression highest in the list.
- Scanner repeats this procedure for the remaining input.
- If no match can be found at some point, an error is reported.

NIVERSITY OF ELAWARE

- Consider the following scanner specification.
 - 1. aaa { return T1 }
 - 2. a*b { return T2 }
 - 3. b { return S }
- Given the following input string into the scanner aaabbaaa

the scanner as specified above would output

T2 T2 T1

• Note that the scanner will report an error for example on the string 'aa'.

- Sometimes one wants to extract information out of what prefix of the input was matched.
- Example:

"[a-zA-ZO-9]*" { return STRING(yytext()) }

- Above RE matches every string that
 - \rightarrow starts and ends with quotes, and
 - \rightarrow has any number of alpha-numerical chars between them.
- Associated action returns a string token, which is the exact string that the RE matched.
- Note that yytext() will also include the quotes.
- Furthermore, note that this regular expression does not handle escaped characters.