Lexical Analysis:
Constructing a Scanner from Regular
Expressions

Goal

* Show how to construct a DFA fo recognize any RE
* Scanner simulates a DFA to generate tokens
* Last Lecture
— Convert RE to an nondeterministic finite automaton (NFA)
= Use Thompson's construction
* This Lecture
— Convert an NFA to a deterministic finite automaton (DFA)
= Use Subset construction

Convert NFA to DFA

* NFA isab-tuple (N, 2,085, ny , Ny)

- DFAis a5-tuple (D, =, 8,,dy , D)

e Want to create a DFA that simulates the NFA

Non-trivial part is constructing D and &,

NFA —DFA: need to build a simulation of the NFA

Two key functions

* Delta(q,;, a) set of states reachable from states in q; by a
— Returns a set of states, for each n € q; of d; (n,_a)

* ¢-closure(q,) set of states reachable from g; by € moves

Functions help create states of DFA by removing non-
deterministic edges of the NFA.

Subset Construction Algorithm in English

The algorithm:
* Start state q, derived from ny of the NFA
* Add q, to the Worklist

Loop while Worklist not empty
* Remove a state q from worklist

* Compute t by Delta(q, @) for each o € 2, and take its €-closure

e IftnotinsetQ
add it to Q and Worklist

Iterate until no more states are added
Sounds more complex than it is...

The Subset Construction Algorithm

q, < ¢-closure(n,)

Q < {qy}
WorkList < {q,}
while (WorkList is not emply)
remove q from WorkList
for each o €2
t — e-closure(Delta(q,))
T[q,0] < t
if (tZ Q) then
add t to Q and WorkList

Let’s think about why this works

NFA —DFA with Subset Construction

The algorithm:
q, < e-closure(n,)

Q < {q,}

WorkList < {q,}

while (WorkList # ¢)
remove q from WorkList

for each a cx

t— ¢-closure(Delta(q,))
T[q,a] <t
if (tZ Q) then
add t to Q and WorkList

Let’s think about why this works

The algorithm halts:

1. Q contains no duplicates
(test before adding)

2. 2N s finite

3. while loop adds to Q, but does
not remove from Q (monotone)

= the loop halts

Q contains all the reachable NFA
states

It tries each character in each q.
=Q gives us D set of states of DFA

=T gives us Op set of transitions of DFA

NFA —DFA with Subset Construction

Example of a fixed-point computation
* Monotone construction of some finite set
* Halts when it stops adding to the set

* These computations arise in many contexts
We will see many more fixed-point computations

NFA —DFA with Subset Construction

Applying the subset construction:

NFA states

|

e-closure(Delta(q,*))

b

(@]

do

The algorithm:

q, < e-closure(n,)

Q < {qo}
WorkList < {q,}

while (WorkList # ¢)
remove q from WorkList
foreach a X
t— e-closure(Delta(q,a))
T[q,a] < t
if (tZ Q) then
add t to Q and WorkList

NFA —DFA with Subset Construction

Applying the subset construction:

e-closure(Delta(q,*))

q75 qSJ@,\
d3, 94, e

NFA states a b C
So do 491, 92, 93, none none
q45 q67 qQ
Sy q17 q25 q3: none q57 q81 qu q77 q81 qQ:
94, 96, 43, 94, 9e 43, 94, 9s
S ds, s, A none S S3
ds3, 94, 9e
S3 none So Ss

Final states

NFA —DFA with Subset Construction

The DFA fora(b | c)
* Ends up smaller than the NFA

 All transitions are deterministic

e Use same code skeleton as before

o a b c
So S - -
S4 - Sz S3
Sz - Sz S3
S3 - Sz S3

Where are we? Why are we doing this?

RE — NFA (Thompson's construction) ¥
* Build an NFA for each term

e Combine them with e-moves

NFA — DFA (subset construction)

° Bu”d the Simula'ﬁon L
| The Cycle of Constructions 5

DFA — Minimal DFA

* Hopcroft's algorithm Q @
| minial
| —>NFA —DFA — DFA

DFA — RE
* All pairs, all paths problem
* Union together paths from s, to a final state

Extra Slides

What we expect of the Scanner

* Report errors for lexicographically malformed inputs
— reject illegal characters, or meaningless character sequences
— E.g., "# or "floop" in COOL

* Retfurn an abstract representation of the code

— character sequences (e.g., "if" or "loop") tfurned into tokens.

* Resulting sequence of tokens will be used by the parser
* Makes the design of the parser a lot easier.

How to specify a scanner

* A scanner specification (e.g., for JLex), is list of (typically
short) reqular expressions.

* Each regular expressions has an action associated with it.
* Typically, an action is to return a token.
* Onagiven input string, the scanner will:

— find the longest prefix of the input string, that matches
one of the regular expressions.

— will execute the action associated with the matching
regular expression highest in the list.

* Scanner repeats this procedure for the remaining input.
* If no match can be found at some point, an error is reported.

Example of a Specification

* Consider the following scanner specification.
1. aaa { return T1}
2. a*b { return T2 }
3. b { return S}
* Given the following input string into the scanner
aaabbaaa
the scanner as specified above would output
T2 T2 T1

* Note that the scanner will report an error for example on the
string 'ad’.

S

ecial Return Tokens

Sometimes one wants to extract information out of
what prefix of the input was matched.
Example:
"[a-zA-Z0-9T*" { return STRING(yytext()) }
Above RE matches every string that
— starts and ends with quotes, and
— has any number of alpha-numerical chars between them.

Associated action returns a string token, which is the exact
string that the RE matched.

Note that yytext() will also include the quotes.

Furthermore, note that this reqular expression does not
handle escaped characters.

