
Lexical Analysis:
Constructing a Scanner from Regular

Expressions

Goal

•  Show how to construct a DFA to recognize any RE
•  Scanner simulates a DFA to generate tokens
•  Last Lecture

→  Convert RE to an nondeterministic finite automaton (NFA)
  Use Thompson’s construction

•  This Lecture
→  Convert an NFA to a deterministic finite automaton (DFA)

  Use Subset construction

Convert NFA to DFA

•  NFA is a 5-tuple (N, Σ , δN , n0 , NA)

•  DFA is a 5-tuple (D, Σ , δD , d0 , DA)

•  Want to create a DFA that simulates the NFA

 Non-trivial part is constructing D and δD

NFA →DFA: need to build a simulation of the NFA

Two key functions
•  Delta(qi , a) set of states reachable from states in qi by a

→  Returns a set of states, for each n ∈ qi of δi (n, a)	

•  ε-closure(qi) set of states reachable from qi by ε moves

 Functions help create states of DFA by removing non-
deterministic edges of the NFA.

Subset Construction Algorithm in English
The algorithm:
•  Start state q0 derived from n0 of the NFA
•  Add q0 to the Worklist

Loop while Worklist not empty
•  Remove a state q from worklist

•  Compute t by Delta(q, α) for each α ∈ Σ, and take its ε-closure
•  If t not in set Q
 add it to Q and Worklist

Iterate until no more states are added
 Sounds more complex than it is…

The Subset Construction Algorithm

q0 ← ε-closure(n0)

Q ← {q0}
WorkList ← {q0}

while (WorkList is not empty)
 remove q from WorkList
 for each α ∈ Σ	

 t ← ε-closure(Delta(q,α))
 T[q,α] ← t
 if (t ∉ Q) then
 add t to Q and WorkList

 Let’s think about why this works

NFA →DFA with Subset Construction

The algorithm:

q0 ← ε-closure(n0)

Q ← {q0}

WorkList ← {q0}

while (WorkList ≠ ф)
 remove q from WorkList
 for each α ∈ Σ	

 t← ε-closure(Delta(q,α))
 T[q,α] ← t
 if (t ∉ Q) then
 add t to Q and WorkList

Let’s think about why this works

The algorithm halts:

1. Q contains no duplicates
 (test before adding)

2.  2N is finite

3. while loop adds to Q, but does
not remove from Q (monotone)

⇒ the loop halts

Q contains all the reachable NFA
states
It tries each character in each q.

⇒ Q gives us D set of states of DFA

⇒ T gives us δD set of transitions of DFA

NFA →DFA with Subset Construction

Example of a fixed-point computation
•  Monotone construction of some finite set
•  Halts when it stops adding to the set
•  These computations arise in many contexts
 We will see many more fixed-point computations

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

NFA →DFA with Subset Construction

Applying the subset construction:

a (b | c)* :
ε

The algorithm:

q0 ← ε-closure(n0)

Q ← {q0}

WorkList ← {q0}

while (WorkList ≠ ф)
 remove q from WorkList
 for each α ∈ Σ	

 t← ε-closure(Delta(q,α))
 T[q,α] ← t
 if (t ∉ Q) then
 add t to Q and WorkList

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε ε

Final states

NFA →DFA with Subset Construction

Applying the subset construction:

a (b | c)* :
ε

NFA →DFA with Subset Construction
The DFA for a (b | c)*

•  Ends up smaller than the NFA

•  All transitions are deterministic

•  Use same code skeleton as before

s3

s2

s0 s1

c

b
a

b

c

c

b

Where are we? Why are we doing this?

RE → NFA (Thompson’s construction) 
•  Build an NFA for each term
•  Combine them with ε-moves

NFA → DFA (subset construction) 
•  Build the simulation

DFA → Minimal DFA
•  Hopcroft’s algorithm

DFA → RE
•  All pairs, all paths problem
•  Union together paths from s0 to a final state

minimal
DFA RE NFA DFA

The Cycle of Constructions

Extra Slides

What we expect of the Scanner

•  Report errors for lexicographically malformed inputs
→  reject illegal characters, or meaningless character sequences
→  E.g., ‘#’ or “floop” in COOL

•  Return an abstract representation of the code

→  character sequences (e.g., “if” or “loop”) turned into tokens.
•  Resulting sequence of tokens will be used by the parser
•  Makes the design of the parser a lot easier.

How to specify a scanner

•  A scanner specification (e.g., for JLex), is list of (typically
short) regular expressions.

•  Each regular expressions has an action associated with it.
•  Typically, an action is to return a token.
•  On a given input string, the scanner will:

→  find the longest prefix of the input string, that matches
one of the regular expressions.

→  will execute the action associated with the matching
regular expression highest in the list.

•  Scanner repeats this procedure for the remaining input.
•  If no match can be found at some point, an error is reported.

Example of a Specification

•  Consider the following scanner specification.
1.  aaa { return T1 }
2.  a*b { return T2 }
3.  b { return S }

•  Given the following input string into the scanner
aaabbaaa

the scanner as specified above would output
 T2 T2 T1

•  Note that the scanner will report an error for example on the
string ‘aa’.

Special Return Tokens
•  Sometimes one wants to extract information out of

 what prefix of the input was matched.
•  Example:

 “[a-zA-Z0-9]*” { return STRING(yytext()) }
•  Above RE matches every string that

→  starts and ends with quotes, and
→  has any number of alpha-numerical chars between them.

•  Associated action returns a string token, which is the exact
string that the RE matched.

•  Note that yytext() will also include the quotes.
•  Furthermore, note that this regular expression does not

handle escaped characters.

