
Lexical Analysis:  
Constructing a Scanner from Regular 

Expressions 



Goal 

•  Show how to construct a DFA to recognize any RE 
•  Scanner simulates a DFA to generate tokens 
•  Last Lecture 

→  Convert RE to an nondeterministic finite automaton (NFA)  
  Use Thompson’s construction 

•  This Lecture 
→  Convert an NFA to a deterministic finite automaton (DFA) 

  Use Subset construction 



Convert NFA to DFA 

•  NFA is a 5-tuple (N, Σ , δN , n0  , NA) 

•  DFA is a 5-tuple (D, Σ , δD , d0  , DA) 

•  Want to create a DFA that simulates the NFA 

        Non-trivial part is constructing D and δD 



NFA →DFA: need to build a simulation of the NFA 

Two key functions 
•  Delta(qi , a)  set of states reachable from states in qi by a 

→  Returns a set of states, for each n ∈ qi of δi  (n, a)	



•  ε-closure(qi) set of states reachable from qi by ε moves 

  Functions help create states of DFA by removing non-
deterministic edges of the NFA. 



Subset Construction Algorithm in English 
The algorithm: 
•  Start state q0 derived from n0 of the NFA 
•  Add q0 to the Worklist 

Loop while Worklist not empty 
•  Remove a state q from worklist 

•  Compute t by Delta(q, α) for each  α ∈ Σ, and take its ε-closure 
•  If t not in set Q  
           add it to Q and Worklist 

Iterate until no more states are added 
                            Sounds more complex than it is… 



The Subset Construction Algorithm 

q0 ← ε-closure(n0 ) 

Q ← {q0} 
WorkList ← {q0}  

while ( WorkList is not empty ) 
     remove q from WorkList 
     for each α ∈ Σ	


           t ← ε-closure(Delta(q,α)) 
         T[q,α] ← t 
         if  ( t ∉ Q ) then 
              add t to Q and WorkList 

         Let’s think about why this works 



NFA →DFA with Subset Construction 

The algorithm: 

q0 ← ε-closure(n0 ) 

Q ← {q0} 

WorkList ← {q0}  

while ( WorkList ≠ ф ) 
  remove q from WorkList 
  for each α ∈ Σ	


        t← ε-closure(Delta(q,α)) 
      T[q,α] ← t 
      if  ( t ∉ Q ) then 
          add t to Q and WorkList 

Let’s think about why this works 

The algorithm halts: 

1.  Q contains no duplicates 
      (test before adding) 

2.  2N is finite 

3.  while loop adds to Q, but does           
not remove from Q (monotone) 

⇒ the loop halts 

Q contains all the reachable  NFA 
states 
It tries each character in each q. 

⇒ Q  gives us D set of  states of  DFA 

⇒ T gives us δD set of transitions of DFA 



NFA →DFA with Subset Construction 

Example of a fixed-point computation 
•  Monotone construction of some finite set 
•  Halts when it stops adding to the set 
•  These computations arise in many contexts 
    We will see many more fixed-point computations 
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NFA →DFA with Subset Construction 

Applying the subset construction: 

a ( b | c )* : 
ε

The algorithm: 

q0 ← ε-closure(n0 ) 

Q ← {q0} 

WorkList ← {q0}  

while ( WorkList ≠ ф ) 
  remove q from WorkList 
  for each α ∈ Σ	


        t← ε-closure(Delta(q,α)) 
      T[q,α] ← t 
      if  ( t ∉ Q ) then 
          add t to Q and WorkList 
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Final states 

NFA →DFA with Subset Construction 

Applying the subset construction: 

a ( b | c )* : 
ε



NFA →DFA with Subset Construction 
The DFA for a ( b | c )* 

•  Ends up smaller than the NFA 

•  All transitions are deterministic  

•  Use same code skeleton as before 
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Where are we?  Why are we doing this? 

RE → NFA  (Thompson’s construction)    
•  Build an NFA for each term 
•  Combine them with ε-moves 

NFA → DFA (subset construction)   
•  Build the simulation 

DFA → Minimal DFA 
•  Hopcroft’s algorithm                          

DFA → RE 
•  All pairs, all paths problem 
•  Union together paths from s0 to a final state 

minimal 
DFA RE NFA DFA 

The Cycle of  Constructions 



Extra Slides 



What we expect of the Scanner 

•  Report errors for lexicographically malformed inputs  
→  reject illegal characters, or meaningless character sequences 
→  E.g., ‘#’ or “floop” in COOL 

•  Return an abstract representation of the code 

→  character sequences (e.g., “if” or “loop”) turned into tokens. 
•  Resulting sequence of tokens will be used by the parser 
•  Makes the design of the parser a lot easier. 



How to specify a scanner 

•  A scanner specification (e.g., for JLex), is list of (typically 
short) regular expressions.  

•  Each regular expressions has an action associated with it. 
•  Typically, an action is to return a token. 
•  On a given input string, the scanner will: 

→  find the longest prefix of the input string, that matches 
one of the regular expressions.  

→  will execute the action associated with the matching 
regular expression highest in the list. 

•  Scanner repeats this procedure for the remaining input. 
•  If no match can be found at some point, an error is reported. 



Example of a Specification 

•  Consider the following scanner specification.  
1.  aaa   { return T1 }  
2.  a*b  { return T2 } 
3.  b   { return S } 

•  Given the following input string into the scanner 
aaabbaaa 

the scanner as specified above would output 
   T2 T2 T1 

•  Note that the scanner will report an error for example on the 
string ‘aa’. 



Special Return Tokens 
•  Sometimes one wants to extract information out of  

 what prefix of the input was matched.  
•  Example: 

   “[a-zA-Z0-9]*”  { return STRING(yytext()) } 
•  Above RE matches every string that  

→  starts and ends with quotes, and  
→  has any number of alpha-numerical chars between them. 

•  Associated action returns a string token, which is the exact 
string that the RE matched. 

•  Note that yytext() will also include the quotes. 
•  Furthermore, note that this regular expression does not 

handle escaped characters. 


