

Lexical Analysis: Constructing a Scanner from Regular Expressions

- Show how to construct a FA to recognize any RE
- This Lecture
 - → Convert RE to an nondeterministic finite automaton (NFA)
 - Use Thompson's construction

Quick Review

Previous class:

- \rightarrow The scanner is the first stage in the front end
- \rightarrow Specifications can be expressed using regular expressions
- \rightarrow Build tables and code from a DFA

Consider the problem of recognizing register names

Register \rightarrow r (0|1|2| ... | 9) (0|1|2| ... | 9)*

- Allows registers of arbitrary number
- Requires at least one digit

Consider the problem of recognizing register names

Register \rightarrow r (0|1|2| ... | 9) (0|1|2| ... | 9)*

RE corresponds to a recognizer (or DFA)

Recognizer for Register

Transitions on other inputs go to an error state, s_e

- Start in state S_0 & take transitions on each input character
- DFA accepts a word <u>x iff x</u> leaves it in a final state (S_2)

So,

- <u>r17</u> takes it through s_0 , s_1 , s_2 and accepts
- <u>r</u> takes it through *s*₀, *s*₁ and fails
- <u>a</u> takes it straight to s_e

Example

To be useful, recognizer must turn into code

δ	r	0,1,2,3,4, 5,6,7,8,9	All others
s ₀	\$ ₁	S _e	S _e
S 1	S _e	s ₂	5 _e
s ₂	S _e	s ₂	s _e
S _e	S _e	S _e	s _e

Skeleton recognizer

Table encoding RE

Each RE corresponds to a *deterministic finite automaton* (DFA)

• May be hard to directly construct the <u>right</u> DFA

For example, consider the RE ($\underline{a} \mid \underline{b}$)* \underline{abb} .

Each RE corresponds to a *deterministic finite automaton* (DFA)

• May be hard to directly construct the right DFA

This is a little different from typical DFAs!

• S₁ has two transitions on <u>a</u>

This is a non-deterministic finite automaton (NFA)

Each RE corresponds to a *deterministic finite automaton* (DFA)

• May be hard to directly construct the right DFA

What about an RE such as $(\underline{a} | \underline{b})^* \underline{abb}$?

This is a little different from typical DFAs!

- *S*₁ has two transitions on <u>a</u>
- S_0 has a transition on ε

This is a non-deterministic finite automaton (NFA)

• An NFA accepts a string x

iff \exists a path though the graph from s_0 to a final state such that the edge labels spell x

- Transitions on ϵ consume no input
- To "run" the NFA, start in s₀ and guess the right transition at each choice point with multiple possibilities
 - → Always guess correctly
 - \rightarrow If some sequence of correct guesses accepts x then accept

- They are the key to automating the RE \rightarrow DFA construction
- We can paste together NFAs with ϵ -transitions

Relationship between NFAs and DFAs

DFA is a special case of an NFA

- DFA has no ϵ transitions
- DFA's transition function is single-valued
- Same rules will work

DFA can be simulated with an NFA

→ Obviously

Relationship between NFAs and DFAs

NFA can be simulated with a DFA

(less obvious)

- Simulate sets of possible states
- Possible exponential blowup in the state space
- Still, one state per character in the input stream

Subset construction builds a <u>DFA</u> that simulates an <u>NFA</u>.

Automating Scanner Construction

To convert a specification into code:

- 1 Write down the RE for the input language
- 2 Build a big NFA
- 3 Build the DFA that simulates the NFA
- 4 Systematically shrink the DFA
- 5 Turn it into code

Scanner generators

- Lex, Flex, and JLex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser *(define all parts of speech)*

Automating Scanner Construction

 $RE \rightarrow NFA$ (Thompson's construction)

- Build an NFA for each term
- Combine them with ϵ -transitions

 $NFA \rightarrow DFA$ (Subset construction)

Build the simulation

 $DFA \rightarrow Minimal DFA$

Hopcroft's algorithm

 $DFA \rightarrow RE$ (Not part of the scanner construction)

- All pairs, all paths problem
- Take the union of all paths from s_0 to an accepting state

$RE \rightarrow NFA$ using Thompson's Construction

Key idea

- NFA pattern for each symbol and each operator
- Join them with $\boldsymbol{\epsilon}$ transitions in precedence order

NFA for **b**

Concatenation

NFA for <u>ab</u>

Closure

ε NFA for <u>a</u>*

NFA for <u>a | b</u>

Ken Thompson, CACM, 1968

 $RE \rightarrow NFA$ using Thompson's Construction

Let's try: $a(b|c)^*$

NFA for <u>a</u>

NFA for b

Concatenation

NFA for <u>ab</u>

ε NFA for <u>a</u>*

Alternation <u>a</u>

NFA for $\underline{a} \mid \underline{b}$

Example of Thompson's Construction

Let's try $\underline{a} (\underline{b} | \underline{c})^*$

1. $\underline{a}, \underline{b}, \underline{c}$ $(s_0) \xrightarrow{\underline{a}} (s_1) (s_0) \xrightarrow{\underline{b}} (s_1) (s_0) \xrightarrow{\underline{c}} (s_1) (s_1) (s_1) (s_1) (s_2) \xrightarrow{\underline{c}} (s_1) (s_2) (s_1) (s_2) (s_1) (s_2) (s_1) (s_2) (s_2) (s_1) (s_2) (s_2) (s_1) (s_2) (s_2) (s_2) (s_1) (s_2) (s_2$

2. <u>b</u> | <u>c</u>

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...