Lexical Analysis:
Constructing a Scanner from Regular
Expressions

Goal

* Show how to construct a FA to recognize any RE

* This Lecture
— Convert RE to an nondeterministic finite automaton (NFA)
= Use Thompson's construction

Quick Review

source code parts of speech & words
Scanner >

A

C\
code

specifications Scanner and
| Generator tables

A 4

Previous class:
— The scanner is the first stage in the front end
— Specifications can be expressed using regular expressions
— Build tables and code from a DFA

Register Name DFA Class Problem?

Consider the problem of recognizing register names
Register — r (0]1|2] ... | 9) (O]1]2] ... | 9)"

* Allows registers of arbitrary number
* Requires at least one digit

Register Name DFA Solution

Consider the problem of recognizing register names
Register — r (0]1|2] ... | 9) (O]1]2] ... | 9)"

RE corresponds to a recognizer (or DFA)
(0112] ... 9)

r f\ (01212] ... 9)
O O
accepting state

Recognizer for Register

Transitions on other inputs go to an error state, s,

DFA operation

* Start in state S, & take transitions on each input
character

* DFA accepts a word x iff xleaves it in a final state (S,)

(O11]2] ... 9)

r (011]2] ... 9)

@ @ # sz

Recognizer for Register

accepting state

So,

* rl7 takes it through s,, s;, s, and accepts
* r takes it through s,, s; and fails

* a takes it straight o s,

Example

To be useful, recognizer must turn into code

0,1,2,3,4, All
Char < next character 0 r | 956,789 | others
State < s,
. So S1 Se Se
while (Char = EOF)
State < §(State,Char)
Char < next character 51 Se Sz Se
if (State is a final state) s, s s, s
then report success ° ©
else report failure
Se Se Se Se

Skeleton recognizer Table encoding RE

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
* May be hard to directly construct the right DFA

For example, consider the RE (a | b)" abb.

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
* May be hard to directly construct the right DFA

What about an RE suchas (a | b)" abb?
a,b
()"

This is a little different from typical DFAs!

* 5, has two transitions on a

This is a non-deterministic finite automaton (NFA)

Non-deterministic Finite Automata

Each RE corresponds to a deterministic finite automaton (DFA)
* May be hard to directly construct the right DFA

What about an RE suchas (a | b)" abb?
b

This is a little different from typical DFAs!

I

* S, has two transitions on a

* Sphas a transition on €
This is a non-deterministic finite automaton (NFA)

Nondeterministic Finite Automata

* An NFA accepts a string x

iff 3 a path though the graph from s, to a final
state such that the edge labels spell x

* Transitions on € consume no input

* To "run” the NFA, start in s, and guess the right
transition at each choice point with multiple
possibilities

— Always guess correctly
— If some sequence of correct guesses accepts x then accept

Why study NFAs?

* They are the key to automating the RE—=DFA construction

* We can paste together NFAs with €-fransitions

Relationship between NFAs and DFAs

DFA is a special case of an NFA

e DFA has nho € transitions
* DFA's transition function is single-valued
e Same rules will work

DFA can be simulated with an NFA
— Obviously

Relationship between NFAs and DFAs

NFA can be simulated with a DFA (less obvious)
* Simulate sets of possible states

* Possible exponential blowup in the state space

* Still, one state per character in the input stream

Subset construction builds a DFA that simulates an NFA.

Automating Scanner Construction

To convert a specification into code:

1 Worite down the RE for the input language
2 Build a big NFA

3 Build the DFA that simulates the NFA

4 Systematically shrink the DFA

5 Turn it into code

Scanner generators

* Lex, Flex, and JLex work along these lines

* Algorithms are well-known and well-understood

* Key issue is interface to parser (define all parts of speech)

Automating Scanner Construction

RE— NFA (Thompson’s construction)
* Build an NFA for each term

e Combine them with e-transitions

NFA — DFA (SUbsef COI?S'/'/"UC'/'IOH) ... :
The Cycle of Constructions !

* Build the simulation

DFA — Minimal DFA Q @
! minixal
; —>NFA —DFA — DFA

* Hopcroft's algorithm

...

DFA —RE (Not part of the scanner construction)
* All pairs, all paths problem
* Take the union of all paths from s, to an accepting state

RE —NFA using Thompson's Construction

Key idea
* NFA pattern for each symbol and each operator

e Join them with € fransitions in precedence order

NFA for a NFA for b
Concatenation Alternation
() s)-(s) ")
NFA for ab
Closure o
‘8 -— (5 el
e Ken Thompson, CACM, 1968

RE —NFA using Thompson's Construction

Let'stry: a(b|c)

NFA for a NFA for b

Concatenation Alternation
()= {) ")

NFA for ab

Closure

€
On ..8 (59 e

€
NFA for a”

Example of Thompson's Construction

Let'strya(b|c)

L ab,c

Example of Thompson's Construction (cont'd)

4 a(blcY

But, we can automate production of
the more complex one ...

