
Lexical Analysis - An Introduction

The Front End

The front end is not monolithic

Source
code

Front
End

Errors

Machine
code

Back
End

IR

The Front End

Scanner
•  Maps stream of characters into words

→ Basic unit of syntax
→ x = x + y ; becomes set of tokens <type, lexeme>
 <id,x> <eq,=> <id,x> <pl,+> <id,y> <sc,; >

Source
code Scanner

IR
Parser

Errors

tokens

Where is Lexical Analysis Used?
For traditional languages but where else…
•  Web page “compilation”

•  Lexical Analysis of HTML, XML, etc.
•  Natural Language Processing
•  Game Scripting Engines
•  OS Shell Command Line
•  GREP
•  Prototyping high-level languages
•  JavaScript, Perl, Python

The Big Picture
Why study lexical analysis?
•  We want to avoid writing scanners by hand
•  We want to harness the theory from classes like CISC 303

Goals:
→  To simplify specification & implementation of scanners
→  To understand the underlying techniques and technologies

Scanner

Scanner
Generator

specifications

source code parts of speech & words

tables or
code

Regular Expressions

Regular Expressions
Powerful notation to specify lexical rules

•  Simplifies scanner construction

•  Notation describes set of strings over some
alphabet

•  Entire set of strings called the language

•  If r is an RE, L(r) is the language it
specifies

Regular Expressions (more formally)
•  Over some alphabet Σ
•  ε is a RE denoting the empty set
•  If a is in Σ, then a is a RE denoting {a}

Regular Expressions (more formally)
Given sets R and S
•  Closure: R* is an RE denoting
 ∪0≤i≤∞ Ri

•  Concatenation: RS is an RE denoting
 {st | s ∈ R and t ∈ S }

•  Alternation: R |S is an RE denoting
 {s | s ∈ R or s ∈ S }
 - Often written R ∪ S

Note: Precedence is closure, then concatenation, then alternation

Examples of Regular Expressions

Identifiers:
Letter → (a|b|c| … |z|A|B|C| … |Z)
Digit → (0|1|2| … |9)
Identifier → Letter (Letter | Digit)*

Numbers:
Integer → (+|-|ε) (0| (1|2|3| … |9)(Digit *))
Decimal → Integer . Digit *

Real → (Integer | Decimal) E (+|-|ε) Digit *

Complex → (Real , Real)

Numbers can get much more complicated!

Regular Expressions (the point)

REs are used to specify the words to be translated
to parts of speech by a lexical analyzer

Using results from automata theory and theory of
algorithms, we can automatically build recognizers
(i.e. scanners) from regular expressions

 You may have seen this construction in a Automata
Course

⇒ We study REs and associated theory to automate
scanner construction !

Regular Expression Class Problem?

What is the regular expression for a register name?

 Examples: r1, r25, r999  These are OK.

 r, s1, a25  These are not OK.

Consider the problem of recognizing register names
Register → r (0|1|2| … | 9) (0|1|2| … | 9)*

•  Allows registers of arbitrary number
•  Requires at least one digit

Register Name RE Solution

Finite Automaton (FA)

– An abstract machine that corresponds to a particular
RE

- Recognizers can scan a stream of symbols to find
words

S0

(0|1|2| … 9)

accepting states

(1|2| … 9)

Transition Diagram for Number

S2

S1 0

Finite Automaton (FA)
An FA is a five-tuple (S,Σ,∂,s0 ,SF) where

•  S is the set of states
•  Σ is the alphabet
•  ∂ a set of transition functions

•  takes a state and a character and
returns new state

•  s0 is the start state
•  SF is the set of final states

Finite Automaton (FA)

S0

(0|1|2| … 9)

accepting states

(1|2| … 9)

Transition Diagram for Number

S2

S1 0

