The View from 35,000 Feet



High-level View of a Compiler

Source Machine

code Compiler code

Errors




Traditional Two-pass Compiler

Source Machine
code Front IR Back code
End > End
» Errors

Responsibilities

* Front end produces intermediate
representation (IR)

* Back end produces machine code



The Front End

Source

code tokens IR ‘

Scanner | Parser

, Errors

Responsibilities
* Recognize legal (and illegal) programs
* Produces IR



The Front End

Source tokens IR

, Errors

Scanner
* Maps character stream into words
* the basic unit of syntax
* Produces pairs — a word & its part of speech



The Front End

Source
code tokens IR

Scanner Parser >

\ 4

» Errors

Parser
* Recognizes syntax (context-free) and reports errors
* Builds IR for source program



The Front End

Context-free syntax is specified with a grammar

SheepNoise — baa SheepNoise
| baa

This grammar defines the set of noises that a sheep
makes under normal circumstances

It is written in a variant of Backus-Naur Form (BNF)



The Front End

Backus-Naur Form (BNF)

Formally, a grammar & = (S,N,T,P)

* S is the start symbol

* N is aset of non-terminal symbols

* T isasetof terminal symbols or words

* P isaset of productions or rewrite rules




The Front End

goal — expr

expr — expr op term
| term

term — number

op —+

N~ ON S

S = goal

T={number, id, +, -}

N = { goal, expr, term, op}
P={1,2,3,4,5,6,7)}

Context-free syntax can be put to better use

* This grammar defines simple expressions with addition &
subtraction over “number” and "id"




The Front End

Given a CFG, we can derive sentences by repeated substitution

Production Result
goal

expr

expr op term
expr op y
expr -y
expr op term -y
expr op 2 -y
expr + 2 -y
term + 2 - y
X+ 2-y

QWO PRANNOAON-=

To recognize a valid sentence in some CFG, we reverse this
process and build up a parse



The Front End

A parse can be represented by a tree (parse tree or syntax tree)

X+ 2 -y

(goal>
Conpr
Cop >

@ + <number,2>

goal — expr
expr — expr op term

<id,x> | term
term — number
This contains a lot of unneeded | id
information. op — +

N ok od S




The Front End

Compilers often use an abstract syntax tree

S

<id,x> <number,2>

This is much more concise

An AST is just one of several intermediate
representations (IR) that can be used in a
compiler



The Back End

IR Instruction IR Register IR | Instruction Machine
code

\ 4

Selection Allocation Scheduling >

» Errors

Responsibilities

* Translate IR into target machine code

* Choose instructions to implement each IR operation
* Decide which values to keep in registers

Automation has been /ess successful in the back end



The Back End

IR Instruction

A 4

IR

Selection

Register
Allocation

IR

Instruction
Scheduling

»

Instruction Selection

* Produce fast, compact code
* Take advantage of target machine features

* Usually viewed as a pattern matching problem
— ad hoc methods, pattern matching, dynamic programming

>

Errors



The Back End

IR Instruction

Selection

A 4

IR

Register
Allocation

IR

Instruction
Scheduling

Register Allocation

* Allocating variables (i.e., values) into registers
* Manage a limited set of registers

* Often more variables than registers available
* Optimal allocation is NP-Complete

, Errors

v



The Back End

IR Instruction

" Selection

IR

Register
Allocation

IR

Instruction
Scheduling

Machine
code

Instruction Scheduling

» Errors

* Tries to find a better ordering of the assembly instructions
* Architecture dependent

* Finding optimal ordering (schedule) is NP-complete



Traditional Three-pass Compiler

Source
Code

Code Improvement (or Optimization)
* Analyzes IR and rewrites (or transforms) IR

A 4

Front
End

IR

Middle
End

IR

Back
End

Machine
code

\ 4

. Errors

* Primary goal is to reduce running time of the compiled code

— May also improve space, power consumption, ...
* Must preserve "meaning” of the code

— Measured by values of named variables



The Optimizer (or Middle End)

IR Opt IR Opt |IR Opt IR Opt IR

v

_ Errors

Modern optimizers are structured as a series of passes

Typical Transformations
* Discover and propagate some constant value
* Move a computation to a less frequently executed place



Next Week

» Introduction to Scanning (aka Lexical Analysis)
* Material is in Chapter 2

* Phase 2 available this Friday (9/09)



