
SPIM S20: A MIPS R2000 Simulator
�

\ 1

25

th
the performance at none of the cost"

James R. Larus

larus@cs.wisc.edu

Computer Sciences Department

University of Wisconsin{Madison

1210 West Dayton Street

Madison, WI 53706, USA

608-262-9519

Copyright c
1990{1993 by James R. Larus
(This document may be copied without royalties,
so long as this copyright notice remains on it.)

April. 12, 1993
(Revision 11 corresponding to SPIM Version 5.1)

1 SPIM

SPIM S20 is a simulator that runs programs for the MIPS R2000/R3000 RISC computers.1

SPIM can read and immediately execute �les containing assembly language or MIPS executable
�les. SPIM is a self-contained system for running these programs and contains a debugger and
interface to a few operating system services.

The architecture of the MIPS computers is simple and regular, which makes it easy to
learn and understand. The processor contains 32 general-purpose registers and a well-designed
instruction set that make it a propitious target for generating code in a compiler.

However, the obvious question is: why use a simulator when many people have workstations
that contain a hardware, and hence signi�cantly faster, implementation of this computer? One
reason is that these workstations are not generally available. Another reason is that these ma-
chine will not persist for many years because of the rapid progress leading to new and faster
computers. Unfortunately, the trend is to make computers faster by executing several instruc-
tions concurrently, which makes their architecture more di�cult to understand and program.
The MIPS architecture may be the epitome of a simple, clean RISC machine.

In addition, simulators can provide a better environment for low-level programming than an
actual machine because they can detect more errors and provide more features than an actual
computer. For example, SPIM has a X-window interface that is better than most debuggers for
the actual machines.

�I grateful to the many students at UW who used SPIM in their courses and happily found bugs in a professor's

code. In particular, the students in CS536, Spring 1990, painfully found the last few bugs in an \already-debugged"

simulator. I am grateful for their patience and persistence. Alan Yuen-wui Siow wrote the X-window interface.
1For a description of the real machines, see Gerry Kane and Joe Heinrich, MIPS RISC Architecture, Prentice

Hall, 1992.

1

Finally, simulators are an useful tool for studying computers and the programs that run on
them. Because they are implemented in software, not silicon, they can be easily modi�ed to add
new instructions, build new systems such as multiprocessors, or simply to collect data.

1.1 Simulation of a Virtual Machine

The MIPS architecture, like that of most RISC computers, is di�cult to program directly because
of its delayed branches, delayed loads, and restricted address modes. This di�culty is tolerable
since these computers were designed to be programmed in high-level languages and so present
an interface designed for compilers, not programmers. A good part of the complexity results
from delayed instructions. A delayed branch takes two cycles to execute. In the second cycle,
the instruction immediately following the branch executes. This instruction can perform useful
work that normally would have been done before the branch or it can be a nop (no operation).
Similarly, delayed loads take two cycles so the instruction immediately following a load cannot
use the value loaded from memory.

MIPS wisely choose to hide this complexity by implementing a virtual machine with their
assembler. This virtual computer appears to have non-delayed branches and loads and a richer
instruction set than the actual hardware. The assembler reorganizes (rearranges) instructions
to �ll the delay slots. It also simulates the additional, pseudoinstructions by generating short
sequences of actual instructions.

By default, SPIM simulates the richer, virtual machine. It can also simulate the actual
hardware. We will describe the virtual machine and only mention in passing features that
do not belong to the actual hardware. In doing so, we are following the convention of MIPS
assembly language programmers (and compilers), who routinely take advantage of the extended
machine. Instructions marked with a dagger (y) are pseudoinstructions.

1.2 SPIM Interface

SPIM provides a simple terminal and a X-window interface. Both provide equivalent function-
ality, but the X interface is generally easier to use and more informative.

spim, the terminal version, and xspim, the X version, have the following command-line
options:

-bare

Simulate a bare MIPS machine without pseudoinstructions or the additional addressing
modes provided by the assembler. Implies -quiet.

-asm

Simulate the virtual MIPS machine provided by the assembler. This is the default.

-notrap

Do not load the standard trap handler. This trap handler has two functions that must
be assumed by the user's program. First, it handles traps. When a trap occurs, SPIM
jumps to location 0x80000080, which should contain code to service the exception. Second,
this �le contains startup code that invokes the routine main. Without the trap handler,
execution begins at the instruction labeled start.

-trap

Load the standard trap handler. This is the default.

2

-noquiet

Print a message when an exception occurs. This is the default.

-quiet

Do not print a message at an exception.

-nomapped io

Disable the memory-mapped IO facility (see Section 5).

-mapped io

Enable the memory-mapped IO facility (see Section 5). Programs that use SPIM syscalls
(see Section 1.5) to read from the terminal should not also use memory-mapped IO.

-file

Load and execute the assembly code in the �le.

-execute

Load and execute the code in the MIPS executable �le a.out .

-s seg size Sets the initial size of memory segment seg to be size bytes. The memory
segments are named: text, data, stack, ktext, and kdata. For example, the pair of
arguments -sdata 2000000 starts the user data segment at 2,000,000 bytes.

-lseg size Sets the limit on how large memory segment seg can grow to be size bytes. The
memory segments that can grow are: data, stack, and kdata.

1.2.1 Terminal Interface

The terminal interface (spim) provides the following commands:

exit

Exit the simulator.

read "file"

Read �le of assembly language commands into SPIM's memory. If the �le has already
been read into SPIM, the system should be cleared (see reinitialize, below) or global
symbols will be multiply de�ned.

load "file"

Synonym for read.

execute "a.out"

Read the MIPS executable �le a.out into SPIM's memory.

run <addr>

Start running a program. If the optional address addr is provided, the program starts
at that address. Otherwise, the program starts at the global symbol start, which is
de�ned by the default trap handler to call the routine at the global symbol main with the
usual MIPS calling convention.

step <N>

Step the program for N (default: 1) instructions. Print instructions as they execute.

3

continue

Continue program execution without stepping.

print $N

Print register N .

print $fN

Print
oating point register N .

print addr

Print the contents of memory at address addr .

print sym

Print the contents of the symbol table, i.e., the addresses of the global (but not local)
symbols.

reinitialize

Clear the memory and registers.

breakpoint addr

Set a breakpoint at address addr . addr can be either a memory address or symbolic label.

delete addr

Delete all breakpoints at address addr .

list

List all breakpoints.

.

Rest of line is an assembly instruction that is stored in memory.

<nl>

A newline reexecutes previous command.

?

Print a help message.

Most commands can be abbreviated to their unique pre�x e.g., ex, re, l, ru, s, p. More
dangerous commands, such as reinitialize, require a longer pre�x.

1.2.2 X-Window Interface

The X version of SPIM, xspim, looks di�erent, but should operate in the same manner as spim.
The X window has �ve panes (see Figure 1). The top pane displays the contents of the registers.
It is continually updated, except while a program is running.

The next pane contains the buttons that control the simulator:

quit

Exit from the simulator.

load

Read a source or executable �le into memory.

4

PC = 00000000 EPC = 00000000 Cause = 0000000 BadVaddr = 00000000
Status= 00000000 HI = 00000000 LO = 0000000

R0 (r0) = 00000000 R8 (t0) = 00000000 R16 (s0) = 0000000 R24 (t8) = 00000000
R1 (at) = 00000000 R9 (t1) = 00000000 R17 (s1) = 0000000 R25 (s9) = 00000000
R2 (v0) = 00000000 R10 (t2) = 00000000 R18 (s2) = 0000000 R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000000 R19 (s3) = 0000000 R27 (k1) = 00000000
R4 (a0) = 00000000 R12 (t4) = 00000000 R20 (s4) = 0000000 R28 (gp) = 00000000
R5 (a1) = 00000000 R13 (t5) = 00000000 R21 (s5) = 0000000 R29 (gp) = 00000000
R6 (a2) = 00000000 R14 (t6) = 00000000 R22 (s6) = 0000000 R30 (s8) = 00000000
R7 (a3) = 00000000 R15 (t7) = 00000000 R23 (s7) = 0000000 R31 (ra) = 00000000

FP0 = 0.000000 FP8 = 0.000000 FP16 = 0.00000 FP24 = 0.000000

FP6 = 0.000000 FP14 = 0.000000 FP22 = 0.00000 FP30 = 0.000000
FP4 = 0.000000 FP12 = 0.000000 FP20 = 0.00000 FP28 = 0.000000
FP2 = 0.000000 FP10 = 0.000000 FP18 = 0.00000 FP26 = 0.000000

quit load run step clear set value

print breakpt help terminal mode

SPIM Version 3.2 of January 14, 1990

Text Segments

xspim

Register
Display

Control
Buttons

User and
Kernel
Text
Segments

SPIM
Messages

General Registers

Double Floating Point Registers

Single Floating Point Registers

Data Segments

Data and
Stack
Segments

[0x00400000] 0x8fa40000 lw R4, 0(R29) []
[0x00400004] 0x27a50004 addiu R5, R29, 4 []
[0x00400008] 0x24a60004 addiu R6, R5, 4 []
[0x0040000c] 0x00041090 sll R2, R4, 2
[0x00400010] 0x00c23021 addu R6, R6, R2
[0x00400014] 0x0c000000 jal 0x00000000 []
[0x00400018] 0x3402000a ori R0, R0, 10 []
[0x0040001c] 0x0000000c syscall

[0x10000000]...[0x10010000] 0x00000000
[0x10010004] 0x74706563 0x206e6f69 0x636f2000
[0x10010010] 0x72727563 0x61206465 0x6920646e 0x726f6e67
[0x10010020] 0x000a6465 0x495b2020 0x7265746e 0x74707572
[0x10010030] 0x0000205d 0x20200000 0x616e555b 0x6e67696c
[0x10010040] 0x61206465 0x65726464 0x69207373 0x6e69206e
[0x10010050] 0x642f7473 0x20617461 0x63746566 0x00205d68
[0x10010060] 0x555b2020 0x696c616e 0x64656e67 0x64646120
[0x10010070] 0x73736572 0x206e6920 0x726f7473 0x00205d65

Figure 1: X-window interface to SPIM.

5

run

Start the program running.

step

Single-step through a program.

clear

Reinitialize registers or memory.

set value

Set the value in a register or memory location.

print

Print the value in a register or memory location.

breakpoint

Set or delete a breakpoint or list all breakpoints.

help

Print a help message.

terminal

Raise or hide the console window.

mode

Set SPIM operating modes.

The next two panes display the memory contents. The top one shows instructions from the
user and kernel text segments.2 The �rst few instructions in the text segment are startup code
(start) that loads argc and argv into registers and invokes the main routine.

The lower of these two panes displays the data and stack segments. Both panes are updated
as a program executes.

The bottom pane is used to display messages from the simulator. It does not display output
from an executing program. When a program reads or writes, its IO appears in a separate
window, called the Console, which pops up when needed.

1.3 Surprising Features

Although SPIM faithfully simulates the MIPS computer, it is a simulator and certain things are
not identical to the actual computer. The most obvious di�erences are that instruction timing
and the memory systems are not identical. SPIM does not simulate caches or memory latency,
nor does it accurate re
ect the delays for
oating point operations or multiplies and divides.

Another surprise (which occurs on the real machine as well) is that a pseudoinstruction
expands into several machine instructions. When single-stepping or examining memory, the
instructions that you see are slightly di�erent from the source program. The correspondence be-
tween the two sets of instructions is fairly simple since SPIM does not reorganize the instructions
to �ll delay slots.

2These instructions are real|not pseudo|MIPS instructions. SPIM translates assembler pseudoinstructions

to 1{3 MIPS instructions before storing the program in memory. Each source instruction appears as a comment

on the �rst instruction to which it is translated.

6

1.4 Assembler Syntax

Comments in assembler �les begin with a sharp-sign (#). Everything from the sharp-sign to the
end of the line is ignored.

Identi�ers are a sequence of alphanumeric characters, underbars (), and dots (.) that do not
begin with a number. Opcodes for instructions are reserved words that are not valid identi�ers.
Labels are declared by putting them at the beginning of a line followed by a colon, for example:

.data

item: .word 1

.text

.globl main # Must be global

main: lw $t0, item

Strings are enclosed in double-quotes ("). Special characters in strings follow the C conven-
tion:

newline \n

tab \t

quote \"

SPIM supports a subset of the assembler directives provided by the MIPS assembler:

.align n

Align the next datum on a 2n byte boundary. For example, .align 2 aligns the next value
on a word boundary. .align 0 turns o� automatic alignment of .half, .word, .float,
and .double directives until the next .data or .kdata directive.

.ascii str

Store the string in memory, but do not null-terminate it.

.asciiz str

Store the string in memory and null-terminate it.

.byte b1, ..., bn

Store the n values in successive bytes of memory.

.data <addr>

The following data items should be stored in the data segment. If the optional argument
addr is present, the items are stored beginning at address addr .

.double d1, ..., dn

Store the n
oating point double precision numbers in successive memory locations.

.extern sym size

Declare that the datum stored at sym is size bytes large and is a global symbol. This
directive enables the assembler to store the datum in a portion of the data segment that
is e�ciently accessed via register $gp.

.float f1, ..., fn

Store the n
oating point single precision numbers in successive memory locations.

.globl sym

Declare that symbol sym is global and can be referenced from other �les.

7

Service System Call Code Arguments Result

print int 1 $a0 = integer
print
oat 2 $f12 =
oat
print double 3 $f12 = double
print string 4 $a0 = string
read int 5 integer (in $v0)
read
oat 6
oat (in $f0)
read double 7 double (in $f0)
read string 8 $a0 = bu�er, $a1 = length
sbrk 9 $a0 = amount address (in $v0)
exit 10

Table 1: System services.

.half h1, ..., hn

Store the n 16-bit quantities in successive memory halfwords.

.kdata <addr>

The following data items should be stored in the kernel data segment. If the optional
argument addr is present, the items are stored beginning at address addr .

.ktext <addr>

The next items are put in the kernel text segment. In SPIM, these items may only be
instructions or words (see the .word directive below). If the optional argument addr is
present, the items are stored beginning at address addr .

.space n

Allocate n bytes of space in the current segment (which must be the data segment in
SPIM).

.text <addr>

The next items are put in the user text segment. In SPIM, these items may only be
instructions or words (see the .word directive below). If the optional argument addr is
present, the items are stored beginning at address addr .

.word w1, ..., wn

Store the n 32-bit quantities in successive memory words.

SPIM does not distinguish various parts of the data segment (.data, .rdata, and .sdata).

1.5 System Calls

SPIM provides a small set of operating-system-like services through the system call (syscall)
instruction. To request a service, a program loads the system call code (see Table 1) into register
$v0 and the arguments into registers $a0: : :$a3 (or $f12 for
oating point values). System calls
that return values put their result in register $v0 (or $f0 for
oating point results). For example,
to print \the answer = 5", use the commands:

.data

str: .asciiz "the answer = "

.text

8

Registers

$0

$31

.

.

.

Arithmetic
Unit

FPU (Coprocessor 1)

BadVAddr

Status

Cause

EPC

Coprocessor 0 (Traps and Memory)

Registers

$0

$31

.

.

.

Arithmetic
Unit

CPU

Multiply
Divide

Lo Hi

Memory

Figure 2: MIPS R2000 CPU and FPU

li $v0, 4 # system call code for print_str

la $a0, str # address of string to print

syscall # print the string

li $v0, 1 # system call code for print_int

li $a0, 5 # integer to print

syscall # print it

print int is passed an integer and prints it on the console. print float prints a single

oating point number. print double prints a double precision number. print string is passed
a pointer to a null-terminated string, which it writes to the console.

read int, read float, and read double read an entire line of input up to and including the
newline. Characters following the number are ignored. read string has the same semantics as
the Unix library routine fgets. It reads up to n � 1 characters into a bu�er and terminates
the string with a null byte. If there are fewer characters on the current line, it reads through
the newline and again null-terminates the string. Warning: programs that use these syscalls
to read from the terminal should not use memory-mapped IO (see Section 5).

sbrk returns a pointer to a block of memory containing n additional bytes. exit stops a
program from running.

2 Description of the MIPS R2000

9

Register Name Number Usage

zero 0 Constant 0
at 1 Reserved for assembler
v0 2 Expression evaluation and
v1 3 results of a function
a0 4 Argument 1
a1 5 Argument 2
a2 6 Argument 3
a3 7 Argument 4
t0 8 Temporary (not preserved across call)
t1 9 Temporary (not preserved across call)
t2 10 Temporary (not preserved across call)
t3 11 Temporary (not preserved across call)
t4 12 Temporary (not preserved across call)
t5 13 Temporary (not preserved across call)
t6 14 Temporary (not preserved across call)
t7 15 Temporary (not preserved across call)
s0 16 Saved temporary (preserved across call)
s1 17 Saved temporary (preserved across call)
s2 18 Saved temporary (preserved across call)
s3 19 Saved temporary (preserved across call)
s4 20 Saved temporary (preserved across call)
s5 21 Saved temporary (preserved across call)
s6 22 Saved temporary (preserved across call)
s7 23 Saved temporary (preserved across call)
t8 24 Temporary (not preserved across call)
t9 25 Temporary (not preserved across call)
k0 26 Reserved for OS kernel
k1 27 Reserved for OS kernel
gp 28 Pointer to global area
sp 29 Stack pointer
fp 30 Frame pointer
ra 31 Return address (used by function call)

Table 2: MIPS registers and the convention governing their use.

A MIPS processor consists of an integer processing unit (the CPU) and a collection of coproces-
sors that perform ancillary tasks or operate on other types of data such as
oating point numbers
(see Figure 2). SPIM simulates two coprocessors. Coprocessor 0 handles traps, exceptions, and
the virtual memory system. SPIM simulates most of the �rst two and entirely omits details of
the memory system. Coprocessor 1 is the
oating point unit. SPIM simulates most aspects of
this unit.

2.1 CPU Registers

The MIPS (and SPIM) central processing unit contains 32 general purpose registers that
are numbered 0{31. Register n is designated by $n. Register $0 always contains the hardwired
value 0. MIPS has established a set of conventions as to how registers should be used. These
suggestions are guidelines, which are not enforced by the hardware. However a program that
violates them will not work properly with other software. Table 2 lists the registers and describes
their intended use.

10

15 10 012345

Interrupt
Mask

Old Previous Current

Ker
ne

l/

Use
r Int

er
ru

pt

Ena
ble Ker

ne
l/

Use
r Int

er
ru

pt

Ena
ble Ker

ne
l/

Use
r Int

er
ru

pt

Ena
ble

Figure 3: The Status register.

251015

Pending
Interrupts

Exception
Code

Figure 4: The Cause register.

Registers $at (1), $k0 (26), and $k1 (27) are reserved for use by the assembler and operating
system.

Registers $a0{$a3 (4{7) are used to pass the �rst four arguments to routines (remaining
arguments are passed on the stack). Registers $v0 and $v1 (2, 3) are used to return values
from functions. Registers $t0{$t9 (8{15, 24, 25) are caller-saved registers used for temporary
quantities that do not need to be preserved across calls. Registers $s0{$s7 (16{23) are callee-
saved registers that hold long-lived values that should be preserved across calls.

Register $sp (29) is the stack pointer, which points to the �rst free location on the stack.
Register $fp (30) is the frame pointer.3 Register $ra (31) is written with the return address for
a call by the jal instruction.

Register $gp (28) is a global pointer that points into the middle of a 64K block of memory
in the heap that holds constants and global variables. The objects in this heap can be quickly
accessed with a single load or store instruction.

In addition, coprocessor 0 contains registers that are useful to handle exceptions. SPIM does
not implement all of these registers, since they are not of much use in a simulator or are part of
the memory system, which is not implemented. However, it does provide the following:

Register Name Number Usage

BadVAddr 8 Memory address at which address exception occurred
Status 12 Interrupt mask and enable bits
Cause 13 Exception type and pending interrupt bits
EPC 14 Address of instruction that caused exception

These registers are part of coprocessor 0's register set and are accessed by the lwc0, mfc0, mtc0,
and swc0 instructions.

Figure 3 describes the bits in the Status register that are implemented by SPIM. The
interrupt mask contains a bit for each of the �ve interrupt levels. If a bit is one, interrupts at

3The MIPS compiler does not use a frame pointer, so this register is used as callee-saved register $s8.

11

that level are allowed. If the bit is zero, interrupts at that level are disabled. The low six bits of
the Status register implement a three-level stack for the kernel/user and interrupt enable

bits. The kernel/user bit is 0 if the program was running in the kernel when the interrupt
occurred and 1 if it was in user mode. If the interrupt enable bit is 1, interrupts are allowed.
If it is 0, they are disabled. At an interrupt, these six bits are shifted left by two bits, so the
current bits become the previous bits and the previous bits become the old bits. The current
bits are both set to 0 (i.e., kernel mode with interrupts disabled).

Figure 4 describes the bits in the Cause registers. The �ve pending interrupt bits corre-
spond to the �ve interrupt levels. A bit becomes 1 when an interrupt at its level has occurred
but has not been serviced. The exception code register contains a code from the following
table describing the cause of an exception.

Number Name Description

0 INT External interrupt
4 ADDRL Address error exception (load or instruction fetch)
5 ADDRS Address error exception (store)
6 IBUS Bus error on instruction fetch
7 DBUS Bus error on data load or store
8 SYSCALL Syscall exception
9 BKPT Breakpoint exception
10 RI Reserved instruction exception
12 OVF Arithmetic over
ow exception

2.2 Byte Order

Processors can number the bytes within a word to make the byte with the lowest number either
the leftmost or rightmost one. The convention used by a machine is its byte order . MIPS
processors can operate with either big-endian byte order:

Byte #

0 1 2 3

or little-endian byte order:

Byte #

3 2 1 0

SPIM operates with both byte orders. SPIM's byte order is determined by the byte order of
the underlying hardware running the simulator. On a DECstation 3100, SPIM is little-endian,
while on a HP Bobcat, Sun 4 or PC/RT, SPIM is big-endian.

2.3 Addressing Modes

MIPS is a load/store architecture, which means that only load and store instructions access
memory. Computation instructions operate only on values in registers. The bare machine
provides only one memory addressing mode: c(rx), which uses the sum of the immediate
(integer) c and the contents of register rx as the address. The virtual machine provides the
following addressing modes for load and store instructions:

12

Format Address Computation

(register) contents of register
imm immediate
imm (register) immediate + contents of register
symbol address of symbol
symbol � imm address of symbol + or � immediate
symbol � imm (register) address of symbol + or � (immediate + contents of register)

Most load and store instructions operate only on aligned data. A quantity is aligned if its
memory address is a multiple of its size in bytes. Therefore, a halfword object must be stored
at even addresses and a full word object must be stored at addresses that are a multiple of 4.
However, MIPS provides some instructions for manipulating unaligned data.

2.4 Arithmetic and Logical Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer).
The immediate forms of the instructions are only included for reference. The assembler will
translate the more general form of an instruction (e.g., add) into the immediate form (e.g.,
addi) if the second argument is constant.

abs Rdest, Rsrc Absolute Value y

Put the absolute value of the integer from register Rsrc in register Rdest.

add Rdest, Rsrc1, Src2 Addition (with over
ow)

addi Rdest, Rsrc1, Imm Addition Immediate (with over
ow)

addu Rdest, Rsrc1, Src2 Addition (without over
ow)

addiu Rdest, Rsrc1, Imm Addition Immediate (without over
ow)

Put the sum of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

and Rdest, Rsrc1, Src2 AND

andi Rdest, Rsrc1, Imm AND Immediate

Put the logical AND of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

div Rsrc1, Rsrc2 Divide (with over
ow)
divu Rsrc1, Rsrc2 Divide (without over
ow)

Divide the contents of the two registers. Leave the quotient in register lo and the remainder
in register hi. Note that if an operand is negative, the remainder is unspeci�ed by the MIPS
architecture and depends on the conventions of the machine on which SPIM is run.

div Rdest, Rsrc1, Src2 Divide (with over
ow) y

divu Rdest, Rsrc1, Src2 Divide (without over
ow) y

Put the quotient of the integers from register Rsrc1 and Src2 into register Rdest.

mul Rdest, Rsrc1, Src2 Multiply (without over
ow) y

mulo Rdest, Rsrc1, Src2 Multiply (with over
ow) y

mulou Rdest, Rsrc1, Src2 Unsigned Multiply (with over
ow) y

Put the product of the integers from register Rsrc1 and Src2 into register Rdest.

mult Rsrc1, Rsrc2 Multiply

multu Rsrc1, Rsrc2 Unsigned Multiply

13

Multiply the contents of the two registers. Leave the low-order word of the product in register
lo and the high-word in register hi.

neg Rdest, Rsrc Negate Value (with over
ow) y

negu Rdest, Rsrc Negate Value (without over
ow) y

Put the negative of the integer from register Rsrc into register Rdest.

nor Rdest, Rsrc1, Src2 NOR

Put the logical NOR of the integers from register Rsrc1 and Src2 into register Rdest.

not Rdest, Rsrc NOT y

Put the bitwise logical negation of the integer from register Rsrc into register Rdest.

or Rdest, Rsrc1, Src2 OR

ori Rdest, Rsrc1, Imm OR Immediate

Put the logical OR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

rem Rdest, Rsrc1, Src2 Remainder y

remu Rdest, Rsrc1, Src2 Unsigned Remainder y

Put the remainder from dividing the integer in register Rsrc1 by the integer in Src2 into register
Rdest. Note that if an operand is negative, the remainder is unspeci�ed by the MIPS architecture
and depends on the conventions of the machine on which SPIM is run.

rol Rdest, Rsrc1, Src2 Rotate Left y

ror Rdest, Rsrc1, Src2 Rotate Right y

Rotate the contents of register Rsrc1 left (right) by the distance indicated by Src2 and put the
result in register Rdest.

sll Rdest, Rsrc1, Src2 Shift Left Logical

sllv Rdest, Rsrc1, Rsrc2 Shift Left Logical Variable

sra Rdest, Rsrc1, Src2 Shift Right Arithmetic
srav Rdest, Rsrc1, Rsrc2 Shift Right Arithmetic Variable

srl Rdest, Rsrc1, Src2 Shift Right Logical

srlv Rdest, Rsrc1, Rsrc2 Shift Right Logical Variable

Shift the contents of register Rsrc1 left (right) by the distance indicated by Src2 (Rsrc2) and
put the result in register Rdest.

sub Rdest, Rsrc1, Src2 Subtract (with over
ow)

subu Rdest, Rsrc1, Src2 Subtract (without over
ow)

Put the di�erence of the integers from register Rsrc1 and Src2 into register Rdest.

xor Rdest, Rsrc1, Src2 XOR

xori Rdest, Rsrc1, Imm XOR Immediate

Put the logical XOR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

2.5 Constant-Manipulating Instructions

li Rdest, imm Load Immediate y

Move the immediate imm into register Rdest.

14

lui Rdest, imm Load Upper Immediate
Load the lower halfword of the immediate imm into the upper halfword of register Rdest. The
lower bits of the register are set to 0.

2.6 Comparison Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer).

seq Rdest, Rsrc1, Src2 Set Equal y

Set register Rdest to 1 if register Rsrc1 equals Src2 and to be 0 otherwise.

sge Rdest, Rsrc1, Src2 Set Greater Than Equal y

sgeu Rdest, Rsrc1, Src2 Set Greater Than Equal Unsigned y

Set register Rdest to 1 if register Rsrc1 is greater than or equal to Src2 and to 0 otherwise.

sgt Rdest, Rsrc1, Src2 Set Greater Than y

sgtu Rdest, Rsrc1, Src2 Set Greater Than Unsigned y

Set register Rdest to 1 if register Rsrc1 is greater than Src2 and to 0 otherwise.

sle Rdest, Rsrc1, Src2 Set Less Than Equal y

sleu Rdest, Rsrc1, Src2 Set Less Than Equal Unsigned y

Set register Rdest to 1 if register Rsrc1 is less than or equal to Src2 and to 0 otherwise.

slt Rdest, Rsrc1, Src2 Set Less Than

slti Rdest, Rsrc1, Imm Set Less Than Immediate

sltu Rdest, Rsrc1, Src2 Set Less Than Unsigned

sltiu Rdest, Rsrc1, Imm Set Less Than Unsigned Immediate

Set register Rdest to 1 if register Rsrc1 is less than Src2 (or Imm) and to 0 otherwise.

sne Rdest, Rsrc1, Src2 Set Not Equal y

Set register Rdest to 1 if register Rsrc1 is not equal to Src2 and to 0 otherwise.

2.7 Branch and Jump Instructions

In all instructions below, Src2 can either be a register or an immediate value (integer). Branch
instructions use a signed 16-bit o�set �eld; hence they can jump 215�1 instructions (not bytes)
forward or 215 instructions backwards. The jump instruction contains a 26 bit address �eld.

b label Branch instruction y

Unconditionally branch to the instruction at the label.

bczt label Branch Coprocessor z True
bczf label Branch Coprocessor z False

Conditionally branch to the instruction at the label if coprocessor z's condition
ag is true
(false).

beq Rsrc1, Src2, label Branch on Equal

Conditionally branch to the instruction at the label if the contents of register Rsrc1 equals Src2.

beqz Rsrc, label Branch on Equal Zero y

Conditionally branch to the instruction at the label if the contents of Rsrc equals 0.

15

bge Rsrc1, Src2, label Branch on Greater Than Equal y

bgeu Rsrc1, Src2, label Branch on GTE Unsigned y

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are greater
than or equal to Src2.

bgez Rsrc, label Branch on Greater Than Equal Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are greater than or
equal to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link

Conditionally branch to the instruction at the label if the contents of Rsrc are greater than or
equal to 0. Save the address of the next instruction in register 31.

bgt Rsrc1, Src2, label Branch on Greater Than y

bgtu Rsrc1, Src2, label Branch on Greater Than Unsigned y

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are greater
than Src2.

bgtz Rsrc, label Branch on Greater Than Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are greater than 0.

ble Rsrc1, Src2, label Branch on Less Than Equal y

bleu Rsrc1, Src2, label Branch on LTE Unsigned y

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are less
than or equal to Src2.

blez Rsrc, label Branch on Less Than Equal Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are less than or equal
to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link

bltzal Rsrc, label Branch on Less Than And Link

Conditionally branch to the instruction at the label if the contents of Rsrc are greater or equal
to 0 or less than 0, respectively. Save the address of the next instruction in register 31.

blt Rsrc1, Src2, label Branch on Less Than y

bltu Rsrc1, Src2, label Branch on Less Than Unsigned y

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are less
than Src2.

bltz Rsrc, label Branch on Less Than Zero

Conditionally branch to the instruction at the label if the contents of Rsrc are less than 0.

bne Rsrc1, Src2, label Branch on Not Equal

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are not
equal to Src2.

bnez Rsrc, label Branch on Not Equal Zero y

Conditionally branch to the instruction at the label if the contents of Rsrc are not equal to 0.

16

j label Jump
Unconditionally jump to the instruction at the label.

jal label Jump and Link

jalr Rsrc Jump and Link Register

Unconditionally jump to the instruction at the label or whose address is in register Rsrc. Save
the address of the next instruction in register 31.

jr Rsrc Jump Register

Unconditionally jump to the instruction whose address is in register Rsrc.

2.8 Load Instructions

la Rdest, address Load Address y

Load computed address, not the contents of the location, into register Rdest.

lb Rdest, address Load Byte

lbu Rdest, address Load Unsigned Byte

Load the byte at address into register Rdest. The byte is sign-extended by the lb, but not the
lbu, instruction.

ld Rdest, address Load Double-Word y

Load the 64-bit quantity at address into registers Rdest and Rdest + 1.

lh Rdest, address Load Halfword

lhu Rdest, address Load Unsigned Halfword

Load the 16-bit quantity (halfword) at address into register Rdest. The halfword is sign-extended
by the lh, but not the lhu, instruction

lw Rdest, address Load Word

Load the 32-bit quantity (word) at address into register Rdest.

lwcz Rdest, address Load Word Coprocessor

Load the word at address into register Rdest of coprocessor z (0{3).

lwl Rdest, address Load Word Left

lwr Rdest, address Load Word Right

Load the left (right) bytes from the word at the possibly-unaligned address into register Rdest.

ulh Rdest, address Unaligned Load Halfword y

ulhu Rdest, address Unaligned Load Halfword Unsigned y

Load the 16-bit quantity (halfword) at the possibly-unaligned address into register Rdest. The
halfword is sign-extended by the ulh, but not the ulhu, instruction

ulw Rdest, address Unaligned Load Word y

Load the 32-bit quantity (word) at the possibly-unaligned address into register Rdest.

17

2.9 Store Instructions

sb Rsrc, address Store Byte

Store the low byte from register Rsrc at address.

sd Rsrc, address Store Double-Word y

Store the 64-bit quantity in registers Rsrc and Rsrc + 1 at address.

sh Rsrc, address Store Halfword

Store the low halfword from register Rsrc at address.

sw Rsrc, address Store Word

Store the word from register Rsrc at address.

swcz Rsrc, address Store Word Coprocessor
Store the word from register Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left

swr Rsrc, address Store Word Right

Store the left (right) bytes from register Rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword y

Store the low halfword from register Rsrc at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word y

Store the word from register Rsrc at the possibly-unaligned address.

2.10 Data Movement Instructions

move Rdest, Rsrc Move y

Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, hi and lo. These
instructions move values to and from these registers. The multiply, divide, and remainder
instructions described above are pseudoinstructions that make it appear as if this unit operates
on the general registers and detect error conditions such as divide by zero or over
ow.

mfhi Rdest Move From hi

mflo Rdest Move From lo

Move the contents of the hi (lo) register to register Rdest.

mthi Rdest Move To hi

mtlo Rdest Move To lo

Move the contents register Rdest to the hi (lo) register.

Coprocessors have their own register sets. These instructions move values between these
registers and the CPU's registers.

18

mfcz Rdest, CPsrc Move From Coprocessor z

Move the contents of coprocessor z's register CPsrc to CPU register Rdest.

mfc1.d Rdest, FRsrc1 Move Double From Coprocessor 1 y

Move the contents of
oating point registers FRsrc1 and FRsrc1 + 1 to CPU registers Rdest
and Rdest + 1.

mtcz Rsrc, CPdest Move To Coprocessor z

Move the contents of CPU register Rsrc to coprocessor z's register CPdest.

2.11 Floating Point Instructions

The MIPS has a
oating point coprocessor (numbered 1) that operates on single precision (32-
bit) and double precision (64-bit)
oating point numbers. This coprocessor has its own registers,
which are numbered $f0{$f31. Because these registers are only 32-bits wide, two of them are
required to hold doubles. To simplify matters,
oating point operations only use even-numbered
registers|including instructions that operate on single
oats.

Values are moved in or out of these registers a word (32-bits) at a time by lwc1, swc1, mtc1,
and mfc1 instructions described above or by the l.s, l.d, s.s, and s.d pseudoinstructions
described below. The
ag set by
oating point comparison operations is read by the CPU with
its bc1t and bc1f instructions.

In all instructions below, FRdest, FRsrc1, FRsrc2, and FRsrc are
oating point registers
(e.g., $f2).

abs.d FRdest, FRsrc Floating Point Absolute Value Double

abs.s FRdest, FRsrc Floating Point Absolute Value Single

Compute the absolute value of the
oating
oat double (single) in register FRsrc and put it in
register FRdest.

add.d FRdest, FRsrc1, FRsrc2 Floating Point Addition Double

add.s FRdest, FRsrc1, FRsrc2 Floating Point Addition Single

Compute the sum of the
oating
oat doubles (singles) in registers FRsrc1 and FRsrc2 and put
it in register FRdest.

c.eq.d FRsrc1, FRsrc2 Compare Equal Double

c.eq.s FRsrc1, FRsrc2 Compare Equal Single

Compare the
oating point double in register FRsrc1 against the one in FRsrc2 and set the

oating point condition
ag true if they are equal.

c.le.d FRsrc1, FRsrc2 Compare Less Than Equal Double

c.le.s FRsrc1, FRsrc2 Compare Less Than Equal Single

Compare the
oating point double in register FRsrc1 against the one in FRsrc2 and set the

oating point condition
ag true if the �rst is less than or equal to the second.

c.lt.d FRsrc1, FRsrc2 Compare Less Than Double

c.lt.s FRsrc1, FRsrc2 Compare Less Than Single

Compare the
oating point double in register FRsrc1 against the one in FRsrc2 and set the
condition
ag true if the �rst is less than the second.

19

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double

Convert the single precision
oating point number or integer in register FRsrc to a double
precision number and put it in register FRdest.

cvt.s.d FRdest, FRsrc Convert Double to Single

cvt.s.w FRdest, FRsrc Convert Integer to Single

Convert the double precision
oating point number or integer in register FRsrc to a single
precision number and put it in register FRdest.

cvt.w.d FRdest, FRsrc Convert Double to Integer

cvt.w.s FRdest, FRsrc Convert Single to Integer

Convert the double or single precision
oating point number in register FRsrc to an integer and
put it in register FRdest.

div.d FRdest, FRsrc1, FRsrc2 Floating Point Divide Double

div.s FRdest, FRsrc1, FRsrc2 Floating Point Divide Single

Compute the quotient of the
oating
oat doubles (singles) in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

l.d FRdest, address Load Floating Point Double y

l.s FRdest, address Load Floating Point Single y

Load the
oating
oat double (single) at address into register FRdest.

mov.d FRdest, FRsrc Move Floating Point Double

mov.s FRdest, FRsrc Move Floating Point Single

Move the
oating
oat double (single) from register FRsrc to register FRdest.

mul.d FRdest, FRsrc1, FRsrc2 Floating Point Multiply Double

mul.s FRdest, FRsrc1, FRsrc2 Floating Point Multiply Single

Compute the product of the
oating
oat doubles (singles) in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single

Negate the
oating point double (single) in register FRsrc and put it in register FRdest.

s.d FRdest, address Store Floating Point Double y

s.s FRdest, address Store Floating Point Single y

Store the
oating
oat double (single) in register FRdest at address.

sub.d FRdest, FRsrc1, FRsrc2 Floating Point Subtract Double

sub.s FRdest, FRsrc1, FRsrc2 Floating Point Subtract Single

Compute the di�erence of the
oating
oat doubles (singles) in registers FRsrc1 and FRsrc2

and put it in register FRdest.

20

Reserved

Text Segment

Data Segment

Stack Segment

0x400000

0x7fffffff

Figure 5: Layout of memory.

2.12 Exception and Trap Instructions

rfe Return From Exception

Restore the Status register.

syscall System Call

Register $v0 contains the number of the system call (see Table 1) provided by SPIM.

break n Break

Cause exception n. Exception 1 is reserved for the debugger.

nop No operation

Do nothing.

3 Memory Usage

The organization of memory in MIPS systems is conventional. A program's address space is
composed of three parts (see Figure 5).

At the bottom of the user address space (0x400000) is the text segment, which holds the
instructions for a program.

Above the text segment is the data segment (starting at 0x10000000), which is divided into
two parts. The static data portion contains objects whose size and address are known to the

21

 .
 .
 .
local variables
 .
 .
 .

 .
 .
 .
dynamic area
 .
 .
 .

$sp

memory
addresses

$fp

argument 5

argument 6

...

arguments 1−4
 .
 .
saved registers
 .
 .
 .

Figure 6: Layout of a stack frame. The frame pointer points just below the last argument passed
on the stack. The stack pointer points to the �rst word after the frame.

compiler and linker. Immediately above these objects is dynamic data. As a program allocates
space dynamically (i.e., by malloc), the sbrk system call moves the top of the data segment up.

The program stack resides at the top of the address space (0x7���f). It grows down, towards
the data segment.

4 Calling Convention

The calling convention described in this section is the one used by gcc, not the native MIPS
compiler, which uses a more complex convention that is slightly faster.

Figure 6 shows a diagram of a stack frame. A frame consists of the memory between the
frame pointer ($fp), which points to the word immediately after the last argument passed on the
stack, and the stack pointer ($sp), which points to the �rst free word on the stack. As typical
of Unix systems, the stack grows down from higher memory addresses, so the frame pointer is
above stack pointer.

The following steps are necessary to e�ect a call:

1. Pass the arguments. By convention, the �rst four arguments are passed in registers $a0{
$a3 (though simplier compilers may choose to ignore this convention and pass all arguments
via the stack). The remaining arguments are pushed on the stack.

2. Save the caller-saved registers. This includes registers $t0{$t9, if they contain live values
at the call site.

22

3. Execute a jal instruction.

Within the called routine, the following steps are necessary:

1. Establish the stack frame by subtracting the frame size from the stack pointer.

2. Save the callee-saved registers in the frame. Register $fp is always saved. Register $ra

needs to be saved if the routine itself makes calls. Any of the registers $s0{$s7 that are
used by the callee need to be saved.

3. Establish the frame pointer by adding the stack frame size to the address in $sp.

Finally, to return from a call, a function places the returned value into $v0 and executes the
following steps:

1. Restore any callee-saved registers that were saved upon entry (including the frame pointer
$fp).

2. Pop the stack frame by subtracting the frame size from $sp.

3. Return by jumping to the address in register $ra.

5 Input and Output

In addition to simulating the basic operation of the CPU and operating system, SPIM also
simulates a memory-mapped terminal connected to the machine. When a program is \running,"
SPIM connects its own terminal (or a separate console window in xspim) to the processor. The
program can read characters that you type while the processor is running. Similarly, if SPIM
executes instructions to write characters to the terminal, the characters will appear on SPIM's
terminal or console window. One exception to this rule is control-C: it is not passed to the
processor, but instead causes SPIM to stop simulating and return to command mode. When the
processor stops executing (for example, because you typed control-C or because the machine hit
a breakpoint), the terminal is reconnected to SPIM so you can type SPIM commands. To use
memory-mapped IO, spim or xspim must be started with the -mapped io
ag.

The terminal device consists of two independent units: a receiver and a transmitter . The
receiver unit reads characters from the keyboard as they are typed. The transmitter unit writes
characters to the terminal's display. The two units are completely independent. This means, for
example, that characters typed at the keyboard are not automatically \echoed" on the display.
Instead, the processor must get an input character from the receiver and re-transmit it to echo
it.

The processor accesses the terminal using four memory-mapped device registers, as shown
in Figure 7. \Memory-mapped" means that each register appears as a special memory location.
The Receiver Control Register is at location 0x��0000; only two of its bits are actually used.
Bit 0 is called \ready": if it is one it means that a character has arrived from the keyboard but
has not yet been read from the receiver data register. The ready bit is read-only: attempts to
write it are ignored. The ready bit changes automatically from zero to one when a character
is typed at the keyboard, and it changes automatically from one to zero when the character is
read from the receiver data register.

Bit one of the Receiver Control Register is \interrupt enable". This bit may be both read
and written by the processor. The interrupt enable is initially zero. If it is set to one by the

23

1 1

Interrupt
Enable

Ready

Receiver Control
(0xffff0000)

1 1

Interrupt
Enable

Ready

Transmitter Control
(0xffff0008)

Receiver Data
(0xffff0004)

8

Received Byte

Transmitter Data
(0xffff000c)

8

Transmitted Byte

Unused

Unused

Unused

Unused

Figure 7: The terminal is controlled by four device registers, each of which appears as a special
memory location at the given address. Only a few bits of the registers are actually used: the
others always read as zeroes and are ignored on writes.

24

processor, an interrupt is requested by the terminal on level zero whenever the ready bit is one.
For the interrupt actually to be received by the processor, interrupts must be enabled in the
status register of the system coprocessor (see Section 2).

Other bits of the Receiver Control Register are unused: they always read as zeroes and are
ignored in writes.

The second terminal device register is the Receiver Data Register (at address 0x��0004).
The low-order eight bits of this register contain the last character typed on the keyboard, and
all the other bits contain zeroes. This register is read-only and only changes value when a new
character is typed on the keyboard. Reading the Receiver Data Register causes the ready bit in
the Receiver Control Register to be reset to zero.

The third terminal device register is the Transmitter Control Register (at address 0x��0008).
Only the low-order two bits of this register are used, and they behave much like the corresponding
bits of the Receiver Control Register. Bit 0 is called \ready" and is read-only. If it is one it
means the transmitter is ready to accept a new character for output. If it is zero it means the
transmitter is still busy outputting the previous character given to it. Bit one is \interrupt
enable"; it is readable and writable. If it is set to one, then an interrupt will be requested on
level one whenever the ready bit is one.

The �nal device register is the Transmitter Data Register (at address 0x��000c). When it is
written, the low-order eight bits are taken as an ASCII character to output to the display. When
the Transmitter Data Register is written, the ready bit in the Transmitter Control Register will
be reset to zero. The bit will stay zero until enough time has elapsed to transmit the character
to the terminal; then the ready bit will be set back to one again. The Transmitter Data Register
should only be written when the ready bit of the Transmitter Control Register is one; if the
transmitter isn't ready then writes to the Transmitter Data Register are ignored (the write
appears to succeed but the character will not be output).

In real computers it takes time to send characters over the serial lines that connect terminals
to computers. These time lags are simulated by SPIM. For example, after the transmitter starts
transmitting a character, the transmitter's ready bit will become zero for a while. SPIMmeasures
this time in instructions executed, not in real clock time. This means that the transmitter will
not become ready again until the processor has executed a certain number of instructions. If
you stop the machine and look at the ready bit using SPIM, it will not change. However, if you
let the machine run then the bit will eventually change back to one.

25

