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Abstract
Using machine learning has proven effective at choosing the right
set of optimizations for a particular program. For machine learning
techniques to be most effective, compiler writers have to develop
expressive means of characterizing the program being optimized.
The current state-of-the-art techniques for characterizing programs
include using a fixed-length feature vector of either source code
features extracted during compile time or performance counters
collected when running the program. For the problem of identify-
ing optimizations to apply, models constructed using performance
counter characterizations of a program have been shown to out-
perform models constructed using source code features. However,
collecting performance counters requires running the program mul-
tiple times, and this “dynamic” method of characterizing programs
can be specific to inputs of the program. It would be preferable to
have a method of characterizing programs that is as expressive as
performance counter features, but that is “static” like source code
features and therefore does not require running the program.

In this paper, we introduce a novel way of characterizing pro-
grams using a graph-based characterization, which uses the pro-
gram’s intermediate representation and an adapted learning algo-
rithm to predict good optimization sequences. To evaluate different
characterization techniques, we focus on loop-intensive programs
and construct prediction models that drive polyhedral optimiza-
tions, such as auto-parallelism and various loop transformation.

We show that our graph-based characterization technique out-
performs three current state-of-the-art characterization techniques
found in the literature. By using the sequences predicted to be the
best by our graph-based model, we achieved up to 73% of the
speedup achievable in our search space for a particular platform,
whereas we could only achieve up to 59% by other state-of-the-art
techniques we evaluated.

Categories and Subject Descriptors D.3 [Software]: Programming
Languages; D.3.4 [Programming Languages]: ProcessorsCompilers, Op-
timization; I.2.6 [Artificial intelligence]: Learning

General Terms Performance, Experimentation, Languages

Keywords compiler optimization, iterative compilation, machine learn-
ing, support vector machine, graph-based program characterization
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1. Introduction
Using a well-constructed machine learning model to choose opti-
mizations for a specific program has repeatedly been shown to out-
perform the most aggressive optimization levels in open-source and
commercial compilers [6, 10, 13, 15, 16, 19, 20, 22, 25, 30]. How-
ever, to use machine learning effectively, it is critical to use expres-
sive features that characterize programs well and that strongly cor-
relate to beneficial optimization sequences for the target program.
Previous work has introduced a variety of different ways to char-
acterize programs based on either static or dynamic program char-
acteristics. Static characterizations of a program includes collect-
ing features from a program’s source code or intermediate repre-
sentation [16, 19]. Methods to dynamically characterize a program
have consisted of either using performance counters or a technique
known as “reactions.” Performance counters can be used to col-
lect information, such as cache behavior, functional unit usage, and
dynamic instruction mix from the running program [10, 15, 22].
Reactions is a technique to dynamically characterize a program by
selecting specific program transformations to apply to a program
and using the resulting speedups to characterize a program’s be-
havior [9, 27].

In previous work, static or dynamic features have been repre-
sented as structured data, usually as fixed-length feature vectors.
Also, previous work has shown that models using dynamic charac-
terizations out-perform models using static characterizations [10].
However, dynamic characterizations have disadvantages over static
characterizations. To collect this dynamic information from a pro-
gram, the application must be run at least once, which increases
training time to construct prediction models and adds an additional
cumbersome profiling step to the compilation process. Moreover,
dynamic characterizations are sensitive to a program’s input be-
cause the information was collected during a program run.

In this paper, we introduce a novel method of using the pro-
gram’s graph-based intermediate representation (IR) and an adapted
machine learning algorithm to predict optimization sequences that
will benefit a program. A program’s graph-based IR is a static char-
acterization technique because it is collected during the compila-
tion of the program. Also, our learning technique uses the topology
of the IR, and we therefore represent the IR in an unstructured
manner, i.e., not using a fixed-length feature vector. We compared
the method introduced in this paper to three state-of-the-art charac-
terization methods from the literature. Our graph-based characteri-
zation methods gives significantly better average performance over
the other three characterization methods we evaluated.

This paper is organized as follows. In Section 2, we describe
the different program characterization techniques, including our
proposed graph-based characterization method with a motivating
example of using our proposed technique. In Section 3, we give an
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Figure 1. This graph shows actual speedups (solid line) for 600 sequences
applied to the program 2MM. We also show predicted speedups (dotted
line) for those same sequences obtained from a prediction model that is
not trained with 2MM and that uses our graph-based characterization. The
x-axis shows optimization sequences sorted by increasing order of actual
speedup, and the y-axis shows speedup obtained after applying a sequence
over some baseline (ICC -fast). Triangles correspond to the top 5 predicted
sequences, and circles correspond to next best 5 predicted sequences.

overview of our solution giving more details of how we construct
and use the prediction models. We explain our experiment setup in
Section 4 and demonstrate results and present analysis in Section
5. In Section 6, we explain and compare it to related work. Section
7 presents our conclusions and future work.

2. Characterizing the Program
Compiler researchers have proposed to use machine learning mod-
els to focus search on beneficial areas of the optimization search
space [6, 10, 11, 14, 20, 25]. An important step in using these mod-
els is to characterize (or construct features for) the programs being
optimized. Finding the “right” set of features and a good repre-
sentation for this information is one of the most challenging, and
probably the least automatable, part of the process.

Compiler researchers have used fixed-length representations of
the program’s source code features and intermediate representa-
tion [6, 20, 25]. These representations are straight-forward to ex-
tract from a program and can be collected during compilation time.
However, these representations are less expressive and are often
out-performed by more expensive dynamic techniques. Other re-
searchers have proposed using dynamic characterizations of pro-
grams; however, techniques (e.g., performance counters [10] and
reactions [15, 27]) are expensive and require running the program,
which limits their practical use.

In this section, we motivate the applicability of using the pro-
gram’s intermediate representation as unstructured data as input for
machine learning for finding good optimization sequences.

2.1 Different Ways to Characterize the Program
Program characterization techniques can be grouped into two cat-
egories: static or dynamic methods. The benefit of using a static
characterization is that we do not need to run a program. We can
capture these features during the compilation process or by parsing
the source code itself. Previous work on static features has focused
mainly on collecting source code features, such as instruction mix,
loop nest depth, etc [6]. Additionally, there has been work on col-
lecting simple summary statistics derived from a program’s inter-
mediate representation, e.g., number of nodes and edges, number

of phi nodes, etc. [16]. Previous work has put this static informa-
tion into fixed-length vectors, which is essential for traditional su-
pervised learning techniques. However, summarizing this data into
fixed-length vectors causes vital information to be lost, such as the
control flow through the program.

More recently, researchers have looked into characterizing pro-
grams using dynamic information, e.g., using performance coun-
ters or optimization reactions. Using performance counters, we can
collect multiple characteristics of the running program, such as the
behavior of the cache at each level, number of stall cycles, or the
mix of different instructions executing, etc. Another method of dy-
namically characterizing a program is through reactions. Here, we
record the performance impact from a fixed set of different opti-
mization sequences [9, 15]. Thus, we run a program K number of
times by optimizing it with K different optimization sequences, and
then obtain different speedups for each sequence. These reactions
are used to characterize the program. These dynamic techniques
have been shown to empirically out-perform static features. How-
ever, collecting dynamic information requires running the program
at least once and in many cases multiple times to collect these fea-
tures.

In this paper, we propose a novel technique to characterize a
program using its graph-based intermediate representation (IR). In
particular, we use the program’s control flow graph (CFG) as the
basis for our graph-based characterization. We also include in this
characterization information about each instruction at each CFG
node. We convert this characterization into a format that can be fed
into an adapted machine learning algorithm. This is a static charac-
terization and therefore does not require running the program. The
main difference between our technique and previous static tech-
niques is that we encode the topology of the program’s IR into
our characterization. Given this novel characterization, we can pro-
duce models that predict optimization sequences that out-perform
sequences predicted by models using other characterization tech-
niques. We also experimented with other graph-based IRs for pro-
gram characterization, and we present these results in Section 5.3.

Figure 1 shows the predictions for one program from a model
that uses our graph-based characterization technique. The solid line
shows actual speedup (sorted) optimizing 2MM from the Poly-
Bench suite [3] with random optimization sequences. We randomly
generated 600 different optimization sequences consisting of dif-
ferent loop/parallelization transformations from the PoCC source-
to-source compiler [2], and we used the ICC compiler with op-
tion -fast as the backend compiler to produce an executable from
the optimized output source code of PoCC. To obtain predictions
for a model that uses our graph-based characterization, we per-
formed leave-one-out cross-validation to construct a model. We
constructed the model by training it with the PolyBench programs
and by leaving out the benchmark 2MM. Our training data con-
sisted of each program’s graph-based CFG characterization, the
above mentioned 600 optimization sequences, and the speedups
obtained from these sequences. We constructed our models using
support vector machines (SVM). We discuss training of our mod-
els more thoroughly in Section 3.

We observe in Figure 1 that the predicted speedup follows the
trend of the actual speedup similarly although not perfectly. This
means there is a high probability that we will get a performance
improvement by using a sequence (x-value) with a high predicted
speedup (y-value). If we look closer at the top 10 predicted se-
quences and their predicted y-values (marked by blue triangles and
purple circles in the figure), these sequences are among the best se-
quences in terms of their actual speedup. In particular, the best pre-
dicted sequence from CFG model is the actual best sequence, which
means we achieve a speedup of around 19×. In contrast, when we
train a model for the same machine, but use performance counters



instead of our CFG characterization, we only achieved around 4× if
we use the best predicted optimization sequence. This preliminary
experiment shows the potential of using a graph-based representa-
tions to characterize programs for predictive modeling.

Program Features (P) Optimization Sequence (O)

Output: predicted speedup of
given sequence O over baseline

... ...

Figure 2. Speedup Predictor

3. Automatically constructing a model
This section describes our prediction model and a detailed descrip-
tion of the different characterization methods we evaluated. We also
give an explanation of the machine learning algorithm used for our
graph-based characterization techniques.

3.1 Speedup Prediction Model
The prediction model used in this paper is shown in Figure 2. This
model has been used in recent work [9, 13, 22] to predict good
optimization sequences for various different compilers. We refer
to this model as the speedup predictor because it takes as input a
program’s characterization (P) and an optimization sequence (O),
and it outputs the predicted speedup over some baseline for that
optimization sequence. In this paper, we use the baseline of PoCC
with no optimization and the backend compiler with its most ag-
gressive setting -fast for ICC and -O3 for GCC). We evaluate our
different characterization methods using the same set of optimiza-
tion sequences O and build a different speedup prediction model
for each different characterization method.

We evaluate our different models (characterization methods) by
using them in two different scenarios. First, we evaluate them in a
non-iterative scenario, where we use only the best predicted opti-
mization sequence from each model. This is the typical scenario,
in which a developer uses a compiler. Second, we evaluate the
different models in an iterative scenario, where we optimize our
programs with the N-best predicted optimization sequences, and
we report the speedup obtained by the sequence giving us the best
speedup. For this paper, we used N = 5 since we observed only a
gradual performance improvement after 5 sequences.

3.2 Program characteristics
We collect four different kinds of program features (shown in Fig-
ure 4.) to evaluate our different program characterization tech-
niques.

Performance Counters (PC) We collect all PC events available
on our target architectures including data/instruction cache behav-
ior, TLB, instruction types, etc. The full list of PCs used in this
paper are shown in Table 1, and all values are normalized by to-
tal number of instruction in a given architecture. To collect the PC
information, we run the program 56 times collecting one counter
during each run of the program. Note that we can collect counters
using multiplexing, but this may introduce noise. The full list of
counter events used are shown in Table 1, and we show the process
of collecting PC information on the top-left of Figure 4.

Category of PCs List of PCs selected

Cache Line Access CA-CLN, CA-ITV, CA-SHR

Level 1 Cache L1-DCA, L1-DCH, L1-DCM, L1-ICA, L1-ICH,
L1-ICM, L1-LDM, L1-STM, L1-TCA, L1-TCM

Level 2 & 3 Cache
L2-DCA, L2-DCM, L2-DCR, L2-DCW, L2-ICA,
L2-ICH, L2-ICM, L2-LDM, L2-STM, L2-TCH
L2-TCR, L2-TCW, L2/L3-TCA, L2/L3-TCM

Branch Related BR-CN, BR-INS, BR-MSP, BR-NTK,
BR-PRC, BR-TKN, BR-UCN

Floating Point DP/FP/SP-OPS, FDV/FML/FP-INS
Interrupt/Stall HW-INT, RES-STL
TLB TLB-DM, TLB-IM, TLB-SD, TLB-TL
Total Cycle/Insts. TOT-CYC, TOT-IIS, TOT-INS
Load/Store Insts. LD-INS, SR-INS
SIMD Insts. VEC-DP, VEC-INS, VEC-SP

Table 1. Performance counters (PC): We collected 56 different perfor-
mance counters available using PAPI library to characterize a program

ft1 Number of Instructions
ft2 Number of Add instruction
ft3 Number of Sub instruction
ft4 Number of Mult instruction
ft5 Number of Div instruction
ft6 Number of Load instruction
ft7 Number of Store instruction
ft8 Number of Comparisons
ft9 Number of Conditional Branches
ft10 Number of Unconditional Branches

Table 2. Control Flow Graph (CFG): We collected 10 different features
for each node (basic block) in CFG. We used MinIR to collect this informa-
tion.
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Topology of CFG

Figure 3. This figure depicts the CFG characterization for 2MM, one of
PolyBench programs. We did not include start and exit nodes in
CFG since these nodes are empty (do not include instructions).

Reactions We randomly selected a small set K of different opti-
mizations sequences and collect the performance impact for each
of these sequences on each program. The performance impact
(speedup or degradation) of these sequences serves as a signature
for a specific program and are used as input to a prediction model.
We used K=5 for this paper. We show the process of collecting
these reactions on the top-right of Figure 4.

Source Code Features (SRC) We depict the process of extracting
source code features from programs on the bottom-left of Figure
4. We collect different source code features from the Milepost
GCC [16] framework. It provides different static features including
properties of the different instructions and variables used in each
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Figure 4. Collecting Different Program Characterizations

function as well as different summary statistics pertaining to basic
blocks and edges. We used 34 features from Milepost GCC, which
were all the relevant features for our programs, i.e., we removed
features that were always zero for all our programs.

Graph-based characterization (CFG) We show the process of
extracting our graph-based characterization on the bottom-right of
Figure 4. We use MinIR [1] to extract control flow graphs from
each of our programs. Before generating our CFGs, we run SSA
on the programs to give us the property of having one definition
for each variable. From the CFG, we generate graph-based charac-
terization, which includes 1) a feature vector for each basic block
in the CFG as shown in Table 2 and 2) a list of directed edges in
the graph. MinIR can also be used to extract other graph-based IRs,
including the dominator tree, def-use-chain, etc. We describe a pre-
liminary investigation using other graph-based IRs in Section 5.3.
Figure 3 shows an example of the CFG of the 2MM program and
the extracted graph-based characterization from the graph. Note
that an important difference between this characterization and pre-
vious static characterizations is the presence of topological infor-
mation of the graph, which is used by an adapted machine learning
algorithm. Also, we collect information per basic blocks, not just
a summarization across the entire function, thus providing more
fined-grained information to the learning algorithm.

Optimization Value Used
Unrolling Factor 0 (no unrolling), 2, 4, 8
Loop Fusion nofuse, maxfuse, smartfuse
Loop Tiling 1 (no tiling), 32
Parallelization on, off
Vectorization on, off

Table 3. List of optimization used in this paper. For loop fusion and
tiling, our optimization sequences directed which loops to fuse and/or tile.
If parallelization is turned on, we parallelize the outer loop. If vectorization
is turned on, we vectorize the inner loop.

3.3 Building and Using a Prediction Model
Collecting Speedup over Baseline Table 3 gives a list of the op-
timizations used to create our optimization search space. We focus

on optimizing loops, thus our search space consists of different loop
transformations and different level of parallelism, including thread-
level and instruction-level parallelism. We exhaustively generated
all optimization sequences from this optimization space giving a
maximum of 600 optimization sequences, and we evaluate each se-
quence on our benchmark suite. We collected the speedup obtained
for each optimization sequence over the baseline of applying no
PoCC optimizations. The process of collecting speedups for each
sequence on each program is shown in Figure 5(a). The characteri-
zation of each program along with the optimization sequences and
their corresponding speedups on each program are used to construct
the training data.

Constructing the Model Once the training data is constructed, it
can be fed to a learning algorithm that will automatically induce a
prediction model as shown in Figure 5(b). We used support vector
machines (SVMs) [23] to construct our predictive models. SVMs
are a class of machine learning algorithms that can be used for both
classification and regression. SVMs use kernel functions to trans-
form the training data into a different, linearly-separable feature
space, and then a linear classifier is constructed that separates the
points into multiple classes.

Using the Model for Unseen Program Figure 5(c) depicts how
the model is used on an unseen program to get predictions of the
optimizations that will work best for that program. We order the
predicted speedups to determine which sequence is predicted best,
and apply it to the unseen program. We train our models using
leave-one-out cross-validation, i.e., given N programs, and we train
a model on N-1 programs and test the model on the Nth program
left out.

3.4 Graph-based SVM Kernels
The use of kernel functions is very attractive because the input
data does not always need to be expressed as feature vectors. In
our control flow graphs, we would like SVMs to perform structural
comparisons between different graphs. Note that we cannot simply
flatten this information into feature vectors, because this would re-
move important information about the structure of the graphs. Such
information is useful because it allows the learning algorithm to ef-
fectively capture the similarities between two different programs.
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characterization. We then feed this characterization along with the optimization sequences, and the model gives us predicted speedups for those sequences (c).

Thus, we are interested in kernel functions that can take discrete
structures data as inputs, e.g., control flow graphs.

Along these lines, a family of convolution kernels [18] has
been introduced as a general framework for building kernels over
discrete structures. This general framework is based on the idea of
the decomposition of objects into sub-parts in such a way that a
kernel function for a pair of objects can be defined as a convolution
of kernel functions defined over their sub-parts. Simple closure
properties of valid kernel functions (positive semi-definite) allow
the definition of kernels in this way. This finding has made great
impact, and defining kernels for discrete structures has become an
important topic in machine learning [8, 17, 24, 28]. By changing
the decomposition, several types of kernels for graphs have been
proposed so far, including shortest paths, walks, sub-trees, and
cyclic patterns.

Among all recent developments, graph kernels based on shortest
paths [7] are a remarkable class of kernel functions. They retain ex-
pressivity while comparing graphs at acceptable polynomial time.
This class of kernels is also attractive because of their wide applica-
bility. Contrary to other graph kernels, shortest path graph kernels
can deal with labeled graphs, where the nodes and edges can be
labeled by real values.

Shortest Path Graph Kernel Roughly speaking, the basic idea
of a shortest path graph kernel [7] is to quantify the number of
common shortest paths in two input graphs. To this end, prior to
the kernel computation, the original graphs must be transformed
into shortest path graphs. Given a graph G = 〈V,E〉, its shortest
path graph is denoted by Gsp = 〈V ′, E′〉, where V ′ = V and
nodes in V ′ are connected by edges e′ = (u′, v′) if there is a path
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Figure 6. The control flow graph for GESUMMV and its correspond-
ing shortest-path graph. Note: We choose the simplest CFG from the Poly-
Bench benchmark suite so that the shortest-path graph might be readable.

between nodes u and v in the original graph. Edges are labeled with
the length of the shortest distance between u and v in the original
graph. This transformation can be performed using any all-pairs
shortest path algorithm. In particular, we use the Floyd-Warshall
algorithm because it is straightforward and has time complexity
of O(n3). An example of an original CFG and its corresponding
shortest-path graph is shown in Figure 6.

Once the original graphs G1 and G2 are transformed into short-
est path graphs, the shortest path graph kernel function for a pair



of graphs Gsp1 = 〈V1, E1〉 and Gsp2 = 〈V2, E2〉 is defined as
follows:

Ksp(G1, G2) =
∑

e1∈E1

∑
e2∈E2

kwalk(e1, e2)

where kwalk is a kernel function for comparing two walks. A
walk includes an edge and its two end nodes. Let e1 be the edge
connecting nodes v1 and w1, and e2 be the edge connecting nodes
v2 and w2, then kwalk is defined as:

kwalk(e1, e2) = knode(v1, v2) · kedge(e1, e2) · knode(w1, w2)

where knode is a kernel function for comparing two nodes. Once
our control flow graphs have feature vectors at every node, we use
the well-known Gaussian kernel [23] for calculating knode. On the
other hand, kedge is a kernel function for comparing two edges. We
use a Brownian bridge kernel [23] that returns the highest value
when two edges have identical length, and 0 when the edges differ
in length more than a constant c1 as shown below:

kedge(e1, e2) = max(0, c− |weight(e1)− weight(e2)|)

4. Experimental Setup
This section describes our experimental setup, including the ma-
chine configurations and compilers we used. We evaluated each
characterization technique on two different machines: a Nehalem
2-socket 4-cores Intel Xeon 5620 (16 H/W threads) with 12MB
L3 cache and a Q9650 4-cores Intel Core 2 Quad Q9650 4 H/W
threads) with 12MB L2 cache. Our optimization search space came
from the PoCC source-to-source polyhedral compiler [2]; there-
fore, we needed a backend compiler to produce executable code
from our optimized codes. We experimented with two back-end
compilers for each machine: GCC and ICC. We used GCC V4.5
and ICC V11.0 for the Nehalem and GCC V4.4 and ICC V10.1 for
the Q9650. We show performance improvements compared to the
following baselines: -fast for ICC and -O3 for GCC. In summary,
we provide experiment results for four different machine/compiler
configurations: (a) Nehalem-GCC, (b) Nehalem-ICC, (c) Q9650-
GCC, and (d) Q9650-ICC.

We used PolyBench V2.1 [3] benchmark suite to evaluate our
characterization techniques. Polybench consists of 30 scientific
kernels and applications. We flushed the cache before every run
to reduce the amount of variability, and we took the average of
multiple runs of the same code.

To build our models, we used SVMs in Weka [5] (for perfor-
mance counters, reactions, and source code features) and Shogun [4]
with Gaussian kernel (for graph-based characterization). To eval-
uate our different program characterization techniques, we used
leave-one-out-cross validation over our set of kernel benchmarks.

5. Experimental Results
The experimental results for our four different machine/compiler
pairs are given in Tables 4 through 7. PC refers to a performance
counters characterization, 5R refers to using reactions of five op-
timization sequences, SRC refers to using Milepost source code
features, and CFG refers to our graph-based characterization us-
ing the program’s control flow graph. Note that for the reactions
characterizations, more than five reactions did not significantly im-
prove the results of that model. The first five columns show the
results for an non-iterative scenario, where we use only the best
predicted sequence from our different models. We term this sce-
nario 1-shot. The next five columns correspond to using our models

1 In this paper, we chose c = 2 after 10-fold cross-validation

in an iterative fashion by using the top ten best predicted sequences
and reporting the results of the sequences that gave the best actual
speedup. We term this scenario 5-shot. The last column, referred to
as OPT, gives the maximum performance achievable by exhaus-
tively evaluating all optimizations in our search space. We also in-
clude Random, which gives results for randomly choosing 1 and 5
optimization sequences to evaluate for each program, averaged over
30 random trials. These tables provide speedups over their baseline
followed by a percentage between parantheses indicating the per-
cent of OPT achieved.

5.1 Graph-based Characterization and other Static
Characterizations

This section compares our graph-based characterization (CFG) to
Milepost features (SRC). Milepost contains static source code and
intermediate representation characteristics represented in a fixed-
length feature vector. For the four machine/compiler configura-
tions, CFG significantly outperforms SRC both in a non-iterative
(1-shot) and an iterative (5-shot) scenario. Some programs like
2mm, 3mm, and and jacobi-2d almost always achieved better per-
formance given CFG versus SRC, regardless of the machine or
backend compiler used. We observed that some programs with sim-
ilar CFGs often have the same best optimization sequence. For ex-
ample, atax and bicg have similar CFG structures (as shown in
Figure 7) and their best sequences are the same for both machine-
compiler configurations using ICC and very similar for the other the
machine-compiler configurations using GCC. This can explain the
good performance obtained when using the best predicted sequence
for atax and bicg in Nehalem-ICC.

(b) bicg(a) atax

entry
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entry
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bb4bb6
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return

Figure 7. Control Flow Graph of atax and bicg. We observe that these
two programs have very similar structure in their CFGs. We highlight the
similarity between the two CFGs.

Non-Iterative Scenario (1-shot) For the non-iterative scenario,
we observed that CFG outperformed SRC in more than half
of the programs and in the average performance improvements
for all machine-compiler configurations. For 1-shot results for
the Nehalem-GCC configuration (Table 4), CFG achieved 5.7×



1-Shot 5-shot
Benchmark Random PC 5R SRC CFG Random PC 5R SRC CFG OPT

2mm 2.7×(10%) 16.0×(63%) 13.8×(54%) 16.0×(63%) 25.0×(100%) 14.3×(56%) 16.0×(63%) 13.8×(54%) 16.0×(63%) 25.1×(100%) 25.1×
3mm 3.0×(10%) 13.9×(49%) 14.8×(53%) 13.9×(49%) 25.1×(89%) 10.0×(35%) 14.0×(50%) 19.8×(70%) 14.9×(53%) 25.4×(90%) 28.0×
adi 0.9×(24%) 3.3×(95%) 3.4×(98%) 3.4×(98%) 1.0×(29%) 2.3×(68%) 3.4×(98%) 3.4×(98%) 3.4×(98%) 1.0×(29%) 3.5×
atax 0.3×(15%) 2.0×(90%) 2.0×(90%) 1.8×(82%) 1.9×(86%) 1.0×(48%) 2.2×(100%) 2.0×(91%) 2.0×(90%) 2.2×(100%) 2.2×
bicg 0.6×(31%) 1.7×(81%) 1.7×(81%) 1.7×(80%) 0.8×(39%) 1.2×(58%) 2.1×(99%) 2.1×(99%) 2.1×(99%) 0.8×(39%) 2.1×
cholesky 1.1×(96%) 1.1×(100%) 1.1×(100%) 1.1×(100%) 1.1×(100%) 1.1×(99%) 1.1×(100%) 1.1×(100%) 1.1×(100%) 1.1×(100%) 1.1×
correlation 3.9×(20%) 11.1×(57%) 13.7×(71%) 15.3×(79%) 18.8×(97%) 10.3×(53%) 11.4×(59%) 15.2×(78%) 15.3×(79%) 19.2×(100%) 19.2×
covariance 2.3×(11%) 11.4×(54%) 15.8×(75%) 8.2×(39%) 20.6×(98%) 10.5×(50%) 11.5×(55%) 15.8×(75%) 15.8×(75%) 20.6×(98%) 21.0×
doitgen 4.3×(20%) 3.1×(14%) 2.4×(11%) 3.0×(14%) 5.8×(27%) 8.8×(42%) 3.3×(15%) 2.4×(11%) 3.1×(14%) 6.4×(30%) 20.9×
durbin 1.0×(99%) 1.0×(99%) 1.0×(99%) 1.0×(99%) 1.0×(98%) 1.0×(99%) 1.0×(99%) 1.0×(99%) 1.0×(100%) 1.0×(99%) 1.0×
dynprog 0.6×(59%) 0.4×(39%) 0.6×(58%) 0.6×(58%) 0.4×(45%) 0.8×(83%) 0.4×(45%) 0.8×(83%) 0.6×(60%) 0.5×(57%) 0.9×
fdtd-2d 1.1×(21%) 1.0×(20%) 0.9×(17%) 0.9×(16%) 5.2×(100%) 2.1×(41%) 3.7×(71%) 1.0×(19%) 3.7×(71%) 5.2×(100%) 5.2×
fdtd-apml 2.5×(31%) 0.8×(9%) 4.1×(49%) 7.0×(84%) 2.8×(34%) 5.4×(65%) 0.8×(9%) 4.5×(54%) 7.3×(89%) 3.9×(47%) 8.2×
gaussfilter 1.1×(31%) 1.8×(52%) 1.7×(49%) 0.8×(24%) 0.8×(23%) 1.9×(54%) 1.8×(52%) 2.1×(60%) 0.8×(24%) 0.8×(24%) 3.5×
gemm 3.9×(14%) 11.7×(42%) 20.2×(72%) 11.6×(41%) 19.7×(70%) 11.6×(41%) 12.1×(43%) 20.2×(72%) 11.9×(43%) 27.6×(99%) 27.8×
gemver 2.9×(36%) 7.0×(89%) 6.7×(86%) 7.0×(89%) 0.6×(7%) 5.0×(63%) 7.0×(89%) 7.0×(89%) 7.0×(89%) 5.9×(76%) 7.8×
gesummv 1.1×(48%) 1.5×(65%) 1.6×(67%) 1.5×(64%) 1.6×(68%) 1.8×(77%) 1.6×(67%) 1.6×(68%) 1.6×(67%) 2.1×(90%) 2.3×
gramschm 7.6×(29%) 18.9×(74%) 19.0×(74%) 18.9×(74%) 13.6×(53%) 16.0×(63%) 19.0×(74%) 19.0×(74%) 18.9×(74%) 18.7×(73%) 25.4×
jacobi-1d 0.9×(30%) 2.9×(95%) 0.4×(12%) 3.0×(100%) 2.9×(95%) 1.4×(47%) 2.9×(95%) 2.9×(95%) 3.0×(100%) 3.0×(100%) 3.0×
jacobi-2d 0.7×(10%) 0.7×(10%) 0.5×(7%) 0.7×(10%) 3.3×(50%) 1.9×(28%) 2.7×(41%) 0.7×(10%) 0.7×(10%) 3.3×(51%) 6.5×
lu 0.5×(8%) 0.2×(3%) 6.2×(100%) 3.5×(57%) 0.9×(15%) 1.3×(21%) 0.2×(3%) 6.2×(100%) 3.5×(57%) 3.5×(57%) 6.2×
ludcmp 1.1×(97%) 1.1×(99%) 1.1×(99%) 1.1×(99%) 1.1×(100%) 1.1×(98%) 1.1×(99%) 1.1×(99%) 1.1×(99%) 1.1×(100%) 1.1×
mvt 4.5×(34%) 11.0×(83%) 11.0×(83%) 11.0×(83%) 1.0×(7%) 9.2×(70%) 12.2×(93%) 11.4×(86%) 11.4×(86%) 11.5×(87%) 13.1×
reg-detect 0.8×(41%) 0.6×(29%) 0.6×(30%) 1.3×(66%) 0.2×(12%) 1.4×(72%) 1.1×(55%) 1.6×(86%) 1.9×(96%) 0.4×(20%) 1.9×
seidel 2.0×(28%) 0.9×(13%) 0.8×(11%) 7.1×(100%) 1.0×(14%) 4.0×(56%) 7.1×(100%) 0.8×(11%) 7.1×(100%) 7.1×(100%) 7.1×
symm 1.0×(99%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×
syr2k 1.9×(19%) 4.2×(42%) 4.9×(49%) 4.9×(49%) 9.9×(99%) 5.7×(57%) 7.6×(76%) 4.9×(49%) 7.2×(72%) 10.0×(100%) 10.0×
syrk 3.0×(21%) 6.1×(45%) 3.2×(23%) 6.4×(47%) 1.3×(9%) 7.6×(55%) 6.9×(50%) 6.4×(47%) 6.9×(50%) 3.9×(28%) 13.5×
trisolv 0.5×(25%) 0.2×(11%) 0.2×(11%) 0.3×(15%) 0.8×(37%) 1.3×(66%) 1.4×(71%) 1.4×(71%) 1.8×(91%) 1.9×(95%) 2.0×
trmm 0.8×(56%) 0.8×(58%) 0.8×(58%) 0.8×(58%) 0.8×(62%) 1.0×(76%) 0.8×(58%) 1.3×(96%) 1.3×(96%) 0.8×(62%) 1.4×
AVG 2.0×(21%) 4.6×(50%) 5.2×(57%) 5.2×(56%) 5.7×(63%) 4.7×(52%) 5.2×(57%) 5.8×(63%) 5.8×(63%) 7.2×(79%) 9.1×

Table 4. Nehalem with GCC V4.5 Backend Compiler

speedup (63% of OPT) on average using CFG versus 5.2× speedup
(56% of OPT) using SRC features. CFG fares equally well against
SRC on other machine/compiler configurations for the 1-shot sce-
nario. On the Nehalem-ICC configuration (Table 5), average per-
formance for CFG and SRC are 3.0× and 2.7×, respectively. The
average performance on the Q9650-GCC configuration (Table 6)
for CFG is 2.7× speedup versus 2.2× speedup for SRC. And fi-
nally, on the Q9650-ICC configuration (Table 6), CFG gives the
best improvement over SRC, achieving on average 2.8× speedup
versus 1.8× speedup for SRC. We also observed CFG often gives
the best speedups across all characterizations for all machine-
compiler configurations. For example, CFG give the best speedups
versus all other characterizations for 13 programs for both the
Nehalem-GCC and Nehalem-ICC configurations, while SRC gives
the best results for only 5 programs for both those configurations.
For Q9650-GCC and Q9650-ICC configurations, CFG gives the
best speedups for 10 and 9 programs, respectively. The SRC char-
acterization gives the best speedups across the other characteriza-
tions for only 4 and 5 programs, respectively.

Iterative Scenario (5-shot): CFG also does well in an iterative
scenario by allowing a model to get closer than SRC to the maxi-
mum available speedup with the top 5 predicted sequences. For ex-
ample, Nehalem-GCC achieved 79% of OPT using CFG compared
to 63% of OPT using SRC. We emphasize that we already achieved
63% of OPT using CFG in a non-iterative scenario (1-shot model),
while SRC achieves the same result after 5 iterations. For the other
machine-compiler configurations, CFG outperforms SRC by a sig-
nificant amount. We also achieved better speedups over all charac-
terizations for a larger number of programs using CFG over SRC.
For example, for both Nehalem configurations, CFG gives the best
results for 13 and 14 programs, while SRC gives the best results for
only 3 and 4 programs.

Summary Note that Milepost features (SRC) include informa-
tion about basic blocks and edges; however, this information is
summarized over the entire function and put into a fixed-length
vector representation. In contrast, CFG provides topological infor-
mation about the program’s intermediate representation. The im-
proved performance of using a graph-based representation over a
fixed-length feature vector representation points to the additional
benefit of including topology and a specialized learning algorithm
that can use this topological information.

There were some programs (e.g., gemver) that achieved better
performance using the SRC characterization versus CFG for some
of our machine-compiler configurations. SRC has additional static
features, which we did not implement in our CFG characterization
that may be helpful for this particular program. As future work, we
will investigate adding additional features to improve our graph-
based characterization techniques.

5.2 Graph-based Characterization and Dynamic
Characterizations

We now compare CFG to two state-of-the art dynamic characteri-
zation techniques: performance counters (PC) and reactions (5R).
For our different machine-compiler combinations, CFG signifi-
cantly outperforms these two dynamic characterizations in both
non-iterative and iterative scenarios.

Non-Iterative Scenario (1-shot) For the Nehalem-GCC configu-
ration (Table 4) and 1-shot, CFG achieved 63% of OPT on average,
whereas PC and 5R achieved 50% and 57% of OPT, respectively.
Not only did CFG perform well on average, models using this char-
acterization give us good predictions on many programs that were
poorly optimized with models using the dynamic characterizations.
For this configuration, jacobi-2d and fdtd-2d achieved less than
20% of OPT for PC and 5R; however, we achieved much bet-
ter performance using CFG for those programs by achieving 50%



1-Shot 5-shot
Benchmark Random PC 5R SRC CFG Random PC 5R SRC CFG OPT

2mm 1.0×(7%) 4.0×(29%) 2.8×(21%) 2.8×(21%) 12.8×(96%) 3.6×(26%) 4.0×(29%) 4.5×(33%) 4.0×(29%) 13.4×(100%) 13.4×
3mm 0.7×(5%) 3.1×(23%) 3.0×(22%) 4.0×(30%) 13.3×(99%) 2.4×(18%) 3.1×(23%) 4.3×(32%) 4.0×(30%) 13.4×(100%) 13.4×
adi 1.0×(25%) 2.1×(56%) 2.1×(56%) 2.0×(53%) 0.9×(22%) 1.7×(45%) 2.3×(60%) 2.3×(60%) 2.3×(60%) 2.6×(67%) 3.8×
atax 0.6×(21%) 1.9×(75%) 2.2×(84%) 2.2×(84%) 1.9×(75%) 1.1×(42%) 2.2×(84%) 2.2×(84%) 2.2×(84%) 2.2×(84%) 2.6×
bicg 0.4×(25%) 1.4×(84%) 1.4×(84%) 1.4×(84%) 1.7×(100%) 0.8×(46%) 1.4×(84%) 1.4×(84%) 1.4×(84%) 1.7×(100%) 1.7×
cholesky 0.7×(71%) 0.6×(54%) 1.0×(97%) 0.6×(54%) 1.0×(97%) 0.9×(86%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×
correlation 1.0×(12%) 6.3×(74%) 6.3×(74%) 6.4×(75%) 6.3×(74%) 4.6×(54%) 6.4×(75%) 6.4×(75%) 6.4×(75%) 8.3×(97%) 8.5×
covariance 1.9×(20%) 5.9×(64%) 6.4×(70%) 6.4×(70%) 0.7×(8%) 4.8×(53%) 6.4×(70%) 6.4×(70%) 6.4×(70%) 8.8×(97%) 9.0×
doitgen 2.1×(16%) 1.5×(11%) 1.5×(11%) 1.5×(11%) 12.7×(98%) 4.9×(38%) 7.5×(57%) 4.8×(37%) 1.5×(11%) 12.7×(98%) 12.9×
durbin 1.0×(99%) 1.0×(99%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×
dynprog 0.7×(63%) 0.9×(82%) 0.6×(52%) 0.6×(52%) 0.3×(25%) 0.9×(77%) 1.0×(86%) 0.9×(81%) 0.6×(54%) 0.5×(44%) 1.1×
fdtd-2d 0.2×(23%) 0.2×(20%) 0.2×(20%) 0.2×(20%) 0.2×(20%) 0.4×(36%) 0.2×(20%) 0.2×(21%) 0.2×(21%) 0.2×(20%) 1.0×
fdtd-apml 1.6×(27%) 1.6×(26%) 2.1×(36%) 1.6×(26%) 1.3×(21%) 4.6×(77%) 2.1×(35%) 2.1×(36%) 1.8×(29%) 1.6×(26%) 6.0×
gaussfilter 2.4×(27%) 3.9×(46%) 3.9×(46%) 5.5×(65%) 1.7×(19%) 4.5×(53%) 4.4×(52%) 4.4×(52%) 5.5×(65%) 1.9×(22%) 8.5×
gemm 1.2×(8%) 2.3×(17%) 2.6×(20%) 3.9×(29%) 0.9×(6%) 3.5×(26%) 2.6×(20%) 4.0×(30%) 4.3×(32%) 11.3×(86%) 13.1×
gemver 0.5×(29%) 1.3×(77%) 1.5×(84%) 1.5×(86%) 1.6×(92%) 1.1×(60%) 1.7×(99%) 1.7×(99%) 1.7×(99%) 1.6×(92%) 1.7×
gesummv 0.5×(49%) 0.8×(80%) 0.8×(80%) 0.8×(79%) 1.0×(99%) 1.0×(91%) 0.8×(80%) 0.8×(80%) 0.8×(81%) 1.0×(99%) 1.1×
gramschm 6.5×(29%) 17.7×(79%) 18.0×(80%) 17.8×(79%) 7.1×(32%) 17.6×(78%) 17.9×(80%) 18.0×(80%) 17.9×(80%) 7.2×(32%) 22.3×
jacobi-1d 1.3×(14%) 9.1×(100%) 9.1×(100%) 7.9×(87%) 1.0×(10%) 3.2×(35%) 9.1×(100%) 9.1×(100%) 9.1×(100%) 7.9×(87%) 9.1×
jacobi-2d 0.8×(18%) 0.4×(9%) 0.4×(9%) 0.4×(10%) 3.6×(86%) 1.4×(33%) 0.4×(10%) 0.5×(12%) 0.4×(10%) 3.6×(86%) 4.2×
lu 0.4×(8%) 0.1×(3%) 0.8×(18%) 4.2×(89%) 0.7×(13%) 1.2×(26%) 0.8×(18%) 4.2×(89%) 4.2×(89%) 1.2×(26%) 4.7×
ludcmp 1.0×(97%) 1.0×(100%) 1.0×(98%) 1.0×(96%) 1.0×(98%) 1.0×(99%) 1.0×(100%) 1.0×(98%) 1.0×(100%) 1.0×(98%) 1.0×
mvt 0.5×(25%) 1.4×(68%) 1.7×(84%) 1.7×(80%) 2.0×(97%) 1.2×(56%) 1.5×(71%) 1.7×(84%) 1.7×(84%) 2.1×(100%) 2.1×
reg-detect 0.6×(43%) 0.5×(35%) 0.7×(47%) 1.0×(67%) 0.3×(19%) 1.0×(70%) 1.1×(81%) 1.0×(71%) 1.2×(87%) 0.3×(19%) 1.4×
seidel 2.0×(16%) 1.0×(8%) 0.9×(7%) 1.0×(8%) 9.0×(72%) 7.1×(57%) 8.6×(69%) 5.6×(45%) 1.1×(8%) 10.1×(82%) 12.3×
symm 1.0×(99%) 1.0×(99%) 1.0×(99%) 1.0×(99%) 1.0×(99%) 1.0×(100%) 1.0×(100%) 1.0×(99%) 1.0×(100%) 1.0×(100%) 1.0×
syr2k 0.4×(37%) 0.8×(77%) 1.0×(100%) 0.4×(39%) 1.0×(100%) 0.8×(76%) 0.8×(77%) 1.0×(100%) 0.8×(77%) 1.0×(100%) 1.0×
syrk 0.2×(16%) 0.6×(58%) 0.3×(33%) 0.6×(58%) 1.0×(96%) 0.5×(45%) 0.6×(58%) 0.6×(58%) 0.6×(58%) 1.0×(99%) 1.1×
trisolv 1.0×(36%) 0.3×(9%) 0.3×(9%) 0.7×(24%) 1.0×(36%) 1.6×(58%) 2.0×(73%) 2.0×(73%) 2.6×(95%) 2.6×(95%) 2.7×
trmm 0.9×(16%) 0.9×(16%) 0.9×(16%) 0.9×(16%) 1.0×(18%) 1.8×(34%) 5.4×(100%) 5.4×(100%) 1.0×(18%) 1.0×(18%) 5.4×
AVG 1.1×(20%) 2.5×(43%) 2.5×(45%) 2.7×(48%) 3.0×(53%) 2.7×(48%) 3.3×(58%) 3.3×(59%) 2.9×(52%) 4.1×(73%) 5.6×

Table 5. Nehalem with ICC v11.0 Backend Compiler

for jacobi-2d and 100% for fdtd-2d. For the Nehalem-ICC con-
figuration (Table 5), CFG achieved much better performance im-
provement than both PC and 5R on average. CFG achieved 53%
of the maximum available performance, with PC and 5R achiev-
ing 45% and 48%, respectively. For the Q9650-GCC configuration
(Table 6), CFG also performed better than the two dynamic char-
acterization techniques by achieving 74% of OPT, while PC and
5R only achieved 59%. Finally, for the Nehalem-ICC configuration
(Table 5), we again achieved better performance improvement for
1-shot using CFG. CFG achieves 60% of the available performance
while PC and 5R achieve 46% and 40%, respectively.

Iterative Scenario (5-shot) For the iterative scenario, CFG achieves
at least 73% of OPT on average on the Nehalem-ICC config-
uration and up to 88% of OPT on the Nehalem-GCC configu-
ration. Both 5R and PC perform well; 5R slightly outperforms
PC for both Nehalem configurations, and it performs as well as
PC for both Q9650 configurations. However, CFG significantly
outperformed the two dynamic characterizations for all machine-
compiler configurations. In summary, CFG achieves results closer
to the space-optimal performance than both dynamic characteriza-
tion techniques for our iterative approach.

Summary We noticed that CFG outperforms PC and 5R in the av-
erage performance improvement for all machine-compiler configu-
rations. Moreover, CFG is a static technique and unlike the dynamic
characterization techniques does not require running the compiled
program at all. Thus, our experimental results indicate a potential
in using graph-based characterzations such as CFG in predictive
modeling.

5.3 Evaluation of Different IRs
We performed additional experiments with a different type of IR to
statically characterize our programs. We used the program’s domi-
nator tree (DOM), often used for static analysis in compilers, e.g.,

1-Shot 5-shot
Configuration CFG DOM CFG DOM

Nehalem-GCC 5.7×(63%) 5.1×(57%) 7.2×(79%) 6.6×(72%)
Nehalem-ICC 3.0×(53%) 3.0×(54%) 4.1×(73%) 4.2×(75%)
Q9650-GCC 2.7×(74%) 2.7×(74%) 3.2×(88%) 3.2×(88%)
Q9650-ICC 2.8×(60%) 2.7×(60%) 3.5×(76%) 3.4×(75%)

Table 8. Average speedup achieved on 4 different test configuration.
DOM is the prediction model based on dominator tree of the program.

in building SSA form. We used the same prediction model and
simply the program characterization that the model was using to
the program’s DOM. Table 8 shows the results when using DOM
compared to using CFG. DOM is competitive with CFG, even out-
performing CFG on the Nehalem-ICC configuration. Still, CFG
significantly out-performs DOM on the Nehalem-GCC configura-
tion and remains competitive on all other configurations. Therefore,
we favor the CFG over DOM. We tried to create graphs that com-
bined CFG and DOM, but the results were sometimes worse than
just using CFG and DOM alone. We believe combining other types
of graph-based IRs that give additional (not redundant) informa-
tion will help improve our results. For example, as we mentioned
in Section 5.2, we plan to look at a combination of CFG with the
data flow graph (DFG) in future work.

5.4 Using Models in Iterative Compilation
We also evaluated how our different characterization techniques
would perform for larger iterative compilation evaluations. We
evaluated the top 100 predicted optimization sequences for each
characterization method and measured the performance improve-
ment for each pair of machine/compiler configuration. We pro-
duced line graphs showing best actual performance (y-axis) achieved
as compared to the number of predicted sequences evaluated



1-Shot 5-shot
Benchmark Random PC 5R SRC CFG Random PC 5R SRC CFG OPT

2mm 1.6×(27%) 3.7×(63%) 3.8×(64%) 3.8×(64%) 5.6×(96%) 3.5×(59%) 3.8×(65%) 3.8×(65%) 3.8×(65%) 5.8×(100%) 5.8×
3mm 1.3×(12%) 0.7×(6%) 4.1×(39%) 4.1×(39%) 10.5×(99%) 4.1×(38%) 4.1×(39%) 4.2×(39%) 4.2×(39%) 10.6×(100%) 10.6×
adi 0.5×(34%) 1.1×(76%) 1.1×(82%) 1.1×(82%) 1.0×(74%) 0.7×(51%) 1.1×(82%) 1.4×(100%) 1.1×(82%) 1.0×(74%) 1.4×
atax 0.3×(31%) 0.7×(70%) 1.0×(98%) 0.7×(70%) 0.5×(50%) 0.6×(57%) 0.7×(71%) 1.0×(98%) 0.7×(71%) 0.5×(50%) 1.0×
bicg 0.3×(25%) 0.6×(52%) 1.0×(100%) 0.5×(50%) 0.3×(26%) 0.5×(51%) 0.6×(52%) 1.0×(100%) 0.6×(52%) 0.3×(31%) 1.0×
cholesky 1.0×(97%) 1.0×(96%) 1.0×(95%) 1.0×(95%) 1.0×(96%) 1.0×(98%) 1.0×(98%) 1.0×(97%) 1.0×(97%) 1.0×(97%) 1.1×
correlation 4.2×(29%) 7.2×(49%) 7.5×(52%) 7.8×(54%) 13.8×(95%) 8.7×(60%) 7.3×(50%) 8.4×(58%) 8.1×(56%) 14.4×(100%) 14.4×
covariance 3.1×(20%) 10.9×(70%) 8.1×(52%) 8.1×(52%) 14.6×(94%) 7.5×(48%) 10.9×(70%) 8.1×(52%) 8.1×(52%) 15.4×(100%) 15.4×
doitgen 1.7×(29%) 2.5×(43%) 2.5×(43%) 2.4×(42%) 2.2×(37%) 3.4×(58%) 2.5×(43%) 2.5×(43%) 2.5×(43%) 5.6×(97%) 5.8×
durbin 1.0×(96%) 1.0×(98%) 1.0×(97%) 1.0×(97%) 1.0×(98%) 1.0×(98%) 1.0×(99%) 1.0×(99%) 1.0×(99%) 1.0×(98%) 1.0×
dynprog 0.5×(53%) 0.2×(23%) 0.4×(41%) 0.2×(19%) 0.3×(27%) 0.8×(83%) 0.6×(59%) 0.4×(44%) 0.3×(28%) 0.3×(28%) 1.0×
fdtd-2d 1.3×(35%) 2.0×(52%) 2.0×(52%) 2.0×(52%) 2.0×(52%) 2.3×(59%) 3.1×(83%) 3.0×(78%) 3.0×(78%) 3.1×(83%) 3.8×
fdtd-apml 1.5×(43%) 0.8×(21%) 1.9×(54%) 3.3×(94%) 0.8×(21%) 2.6×(75%) 3.5×(98%) 2.1×(59%) 3.3×(94%) 2.7×(76%) 3.5×
gaussfilter 0.6×(42%) 0.8×(58%) 0.8×(57%) 0.6×(40%) 0.2×(14%) 0.9×(60%) 0.8×(58%) 0.8×(58%) 0.6×(40%) 0.3×(22%) 1.4×
gemm 1.6×(37%) 3.3×(77%) 3.2×(77%) 3.3×(77%) 4.1×(96%) 3.1×(72%) 3.3×(78%) 3.3×(77%) 3.3×(78%) 4.2×(100%) 4.2×
gemver 1.3×(59%) 2.2×(99%) 2.2×(100%) 2.0×(90%) 1.4×(62%) 1.6×(73%) 2.2×(99%) 2.2×(100%) 2.2×(100%) 1.5×(69%) 2.2×
gesummv 0.9×(46%) 1.1×(58%) 1.1×(58%) 1.8×(93%) 1.1×(59%) 1.5×(80%) 1.9×(100%) 1.9×(100%) 1.8×(93%) 1.1×(61%) 1.9×
gramschm 3.4×(42%) 3.1×(39%) 3.3×(41%) 3.4×(42%) 4.9×(61%) 5.6×(70%) 3.4×(42%) 3.4×(42%) 3.4×(42%) 5.8×(73%) 8.0×
jacobi-1d 0.2×(23%) 0.1×(6%) 0.2×(16%) 0.3×(31%) 0.2×(17%) 0.5×(53%) 0.3×(31%) 1.0×(97%) 0.3×(31%) 0.3×(31%) 1.0×
jacobi-2d 1.3×(43%) 2.5×(85%) 2.5×(85%) 2.5×(85%) 2.7×(94%) 2.0×(69%) 2.5×(85%) 2.5×(85%) 2.5×(85%) 2.9×(100%) 2.9×
lu 0.5×(15%) 0.2×(5%) 3.1×(93%) 0.6×(19%) 0.5×(13%) 1.3×(37%) 0.6×(17%) 3.1×(93%) 3.2×(96%) 1.2×(34%) 3.4×
ludcmp 1.0×(99%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×
mvt 1.3×(55%) 2.2×(93%) 2.2×(93%) 2.2×(93%) 2.0×(85%) 1.9×(80%) 2.2×(94%) 2.2×(93%) 2.2×(93%) 2.2×(93%) 2.3×
reg-detect 0.9×(37%) 1.1×(45%) 0.2×(10%) 2.0×(78%) 0.4×(15%) 1.7×(68%) 2.0×(78%) 2.5×(99%) 2.5×(100%) 1.6×(65%) 2.5×
seidel 1.1×(38%) 0.8×(29%) 0.9×(33%) 0.9×(32%) 0.9×(30%) 1.9×(66%) 2.5×(89%) 0.9×(33%) 0.9×(32%) 2.8×(100%) 2.8×
symm 1.0×(97%) 1.0×(100%) 1.0×(97%) 1.0×(98%) 1.0×(98%) 1.0×(99%) 1.0×(100%) 1.0×(99%) 1.0×(99%) 1.0×(99%) 1.0×
syr2k 1.1×(27%) 4.1×(99%) 3.9×(94%) 3.9×(94%) 2.1×(51%) 2.6×(63%) 4.1×(99%) 4.0×(96%) 4.1×(99%) 3.8×(92%) 4.1×
syrk 1.7×(47%) 2.9×(81%) 3.3×(91%) 3.3×(91%) 3.5×(97%) 2.8×(79%) 3.3×(92%) 3.5×(97%) 3.5×(97%) 3.6×(99%) 3.6×
trisolv 0.6×(60%) 0.6×(64%) 0.6×(64%) 0.1×(15%) 0.9×(95%) 0.9×(94%) 0.9×(94%) 1.0×(100%) 1.0×(99%) 0.9×(95%) 1.0×
trmm 0.6×(54%) 0.6×(58%) 0.6×(58%) 0.6×(58%) 0.6×(57%) 0.8×(78%) 1.0×(100%) 1.0×(100%) 0.6×(61%) 0.6×(61%) 1.0×
AVG 1.2×(34%) 2.0×(54%) 2.2×(59%) 2.2×(59%) 2.7×(74%) 2.3×(61%) 2.4×(66%) 2.4×(66%) 2.4×(65%) 3.2×(88%) 3.7×

Table 6. Q9650 with GCC V4.4 Backend Compiler

(graphs not shown due to space constraints). The CFG line always
had a steeper curve compared to the other three characterization
techniques. Also, the CFG line was typically always above the
lines of the other characterization methods. For the Q9650 configu-
rations, PC only slightly out-performed CFG after many iterations
(>40).

6. Related Work
There has also been some research on improving the program

characterization to be used with machine learning for selecting
good optimizations. In particular, Leather et al. [19] used com-
piler’s IR and genetic programming to construct automatically new
features from the GCC RTL representation of loops to improve a
machine learning algorithm’s performance on loop unrolling. How-
ever, the static features discovered are those that can be summarized
into a fixed-length feature vector. Also, their technique only out-
performs static source code features (such as, SRC) by only a cou-
ple of percent on average. Fursin et al. [16] also use the program’s
intermediate representation along with source code information in
the Milepost GCC project [16]. These features are used to con-
struct models that predict good optimization strategies according
to metrics desired by the user (e.g., performance or code size). The
authors collect summary statistics about the different instructions
and from the control flow graph for each function, but again, these
features are summarized into a fixed-length feature vector.

Wang et al. [29] also used an intermediate representation called
the streaming graph to extract static program features. In this work,
they focus on streaming programs, and they constructed a model
that automatically predicts the ideal partitioning structure of each
streaming program. Their program feature includes two sets of fea-
ture, one is the summary characteristics of streaming program, e.g.,
instruction mix, and other characteristics of critical path extracted
from stream IR. Again, these features are summarized in a fixed-

length feature vector. They developed a tool that automatically gen-
erates small training examples for this predictive model.

In contrast to these previous works, we extract topological infor-
mation from the program’s control flow graph, and we provide fine-
grained statistics in our graph-based characterization correspond-
ing to each node in the CFG.

Demme et al. [12] propose to cluster similar functions in a
program based on various program characterizations including
static instruction mix, different graph-based intermediate repre-
sentations, and functions’ reactions to a set of optimizations. To
determine the similarity of two graphs, the authors use a tech-
nique called “flooding-based graph distance” to score the similar-
ity of two graphs. They show the potential of using graph-based
representations to characterize input programs by demonstrating
that clustering functions based on their graphical representations is
more effective in classifying their behavior/reaction on very small
set of optimization combinations (15) out of four optimizations.
In our work, we demonstrate the potential of using graph-based
characterization on a much larger set of optimization combinations
(hundreds of optimization combinations) by building a prediction
model using machine learning algorithm, specifically SVM.

Recent research has focused on using dynamic program features
to improve the performance of models used to predict good opti-
mization sequences. For example, performance counters have been
used by Cavazos et al. [10] for PathScale EkoPath compiler to pre-
dict good sequences to use for that compiler. Parello et al. [21]
also used performance counters to identify “anomalies” and iter-
atively apply optimizations to a program. These techniques have
been shown to out-perform static characterization methods that use
fixed-length feature vectors. Unfortunately, these dynamic tech-
niques require running the program to collect these features. These
features may also be specific to program inputs, since they were
collected from one or more runs of the program.



1-Shot 5-shot
Benchmark Random PC 5R SRC CFG Random PC 5R SRC CFG OPT

2mm 3.1×(15%) 3.8×(19%) 5.2×(26%) 5.3×(27%) 19.5×(100%) 6.2×(31%) 7.6×(39%) 7.6×(39%) 14.4×(73%) 19.5×(100%) 19.5×
3mm 2.0×(8%) 4.3×(17%) 6.8×(27%) 8.9×(36%) 24.7×(99%) 6.4×(25%) 5.9×(23%) 8.9×(36%) 8.9×(36%) 24.8×(100%) 24.8×
adi 0.8×(42%) 1.4×(75%) 0.6×(30%) 0.9×(49%) 1.0×(52%) 1.3×(69%) 1.4×(75%) 0.6×(31%) 1.0×(54%) 1.0×(54%) 1.9×
atax 0.8×(30%) 1.8×(70%) 1.7×(68%) 2.1×(80%) 2.5×(100%) 1.7×(67%) 2.1×(82%) 1.8×(69%) 2.1×(83%) 2.5×(100%) 2.5×
bicg 0.5×(34%) 1.3×(83%) 1.3×(80%) 1.3×(80%) 1.0×(64%) 1.0×(64%) 1.3×(83%) 1.5×(96%) 1.3×(80%) 1.5×(96%) 1.6×
cholesky 0.8×(70%) 1.1×(99%) 0.6×(56%) 0.6×(56%) 1.1×(100%) 1.0×(87%) 1.1×(99%) 1.1×(100%) 1.1×(99%) 1.1×(100%) 1.1×
correlation 3.3×(49%) 2.7×(40%) 4.5×(67%) 2.6×(38%) 1.4×(21%) 4.9×(73%) 5.1×(76%) 4.9×(73%) 4.2×(64%) 4.5×(67%) 6.6×
covariance 3.1×(59%) 3.0×(57%) 4.0×(75%) 3.7×(70%) 4.0×(77%) 4.0×(77%) 4.4×(83%) 4.2×(79%) 3.7×(70%) 4.0×(77%) 5.2×
doitgen 1.0×(33%) 0.8×(28%) 0.7×(24%) 1.4×(50%) 1.4×(49%) 1.5×(51%) 1.5×(52%) 1.4×(50%) 1.5×(53%) 2.1×(73%) 2.9×
durbin 1.0×(92%) 0.7×(67%) 1.0×(94%) 1.0×(94%) 1.0×(94%) 1.0×(97%) 1.0×(95%) 1.0×(95%) 1.0×(98%) 1.0×(96%) 1.1×
dynprog 0.5×(29%) 0.9×(52%) 0.3×(16%) 0.2×(11%) 0.2×(13%) 0.9×(48%) 0.9×(52%) 0.3×(17%) 0.2×(11%) 0.2×(13%) 1.8×
fdtd-2d 1.5×(45%) 3.1×(98%) 3.1×(99%) 2.5×(78%) 0.5×(17%) 2.6×(80%) 3.1×(98%) 3.2×(99%) 3.1×(98%) 2.7×(86%) 3.2×
fdtd-apml 1.0×(35%) 1.7×(63%) 0.9×(32%) 0.4×(15%) 0.4×(14%) 2.0×(75%) 2.6×(98%) 1.6×(58%) 0.4×(15%) 0.6×(20%) 2.7×
gaussfilter 1.7×(37%) 1.4×(30%) 2.1×(46%) 1.4×(30%) 1.1×(24%) 2.4×(52%) 2.2×(49%) 2.2×(49%) 1.5×(33%) 1.8×(39%) 4.5×
gemm 0.7×(24%) 0.8×(28%) 1.3×(47%) 0.8×(29%) 1.6×(57%) 1.4×(49%) 1.1×(39%) 1.4×(51%) 0.8×(29%) 2.2×(79%) 2.8×
gemver 0.9×(61%) 0.5×(35%) 1.2×(83%) 1.3×(89%) 0.5×(34%) 1.2×(80%) 1.5×(99%) 1.3×(85%) 1.3×(89%) 0.8×(51%) 1.5×
gesummv 0.9×(52%) 0.9×(50%) 0.9×(50%) 1.4×(78%) 0.7×(37%) 1.2×(67%) 1.8×(100%) 0.9×(50%) 1.5×(88%) 0.8×(46%) 1.8×
gramschm 6.8×(29%) 6.0×(26%) 6.1×(26%) 1.4×(6%) 7.7×(33%) 13.1×(57%) 13.2×(57%) 6.1×(26%) 6.0×(26%) 13.2×(57%) 22.9×
jacobi-1d 2.3×(48%) 2.1×(44%) 3.5×(75%) 3.8×(80%) 1.1×(22%) 3.7×(77%) 3.8×(80%) 3.5×(75%) 3.8×(80%) 2.8×(59%) 4.7×
jacobi-2d 2.9×(47%) 3.9×(62%) 4.8×(76%) 3.9×(63%) 2.7×(43%) 4.1×(66%) 5.4×(87%) 5.5×(89%) 5.4×(87%) 5.4×(87%) 6.2×
lu 0.4×(12%) 0.8×(22%) 3.5×(100%) 0.7×(19%) 0.1×(4%) 1.2×(34%) 0.8×(22%) 3.5×(100%) 1.7×(47%) 0.1×(4%) 3.5×
ludcmp 1.0×(98%) 1.0×(99%) 1.0×(100%) 1.0×(99%) 1.0×(100%) 1.0×(99%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×
mvt 1.1×(59%) 0.5×(26%) 1.7×(89%) 1.5×(77%) 1.6×(81%) 1.6×(81%) 1.5×(79%) 1.9×(96%) 1.9×(96%) 1.8×(94%) 1.9×
reg-detect 0.6×(58%) 0.3×(29%) 1.0×(90%) 0.9×(82%) 0.9×(82%) 0.9×(82%) 1.0×(85%) 1.0×(91%) 0.9×(82%) 0.9×(82%) 1.1×
seidel 1.0×(44%) 1.0×(42%) 1.1×(45%) 1.1×(44%) 1.1×(46%) 1.5×(64%) 1.7×(72%) 1.3×(54%) 1.2×(51%) 1.9×(80%) 2.4×
symm 0.9×(86%) 0.8×(82%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(97%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×(100%) 1.0×
syr2k 0.2×(21%) 1.0×(100%) 1.0×(100%) 0.9×(87%) 0.9×(87%) 0.5×(51%) 1.0×(100%) 1.0×(100%) 0.9×(88%) 0.9×(87%) 1.0×
syrk 0.2×(15%) 0.8×(77%) 1.0×(93%) 0.2×(15%) 0.1×(5%) 0.5×(44%) 1.1×(100%) 1.0×(96%) 0.9×(79%) 1.1×(100%) 1.1×
trisolv 1.0×(30%) 1.3×(41%) 1.3×(41%) 1.9×(59%) 1.0×(31%) 1.6×(52%) 1.9×(59%) 1.9×(59%) 1.9×(59%) 1.5×(47%) 3.1×
trmm 0.8×(51%) 1.0×(63%) 1.0×(63%) 0.8×(50%) 1.0×(63%) 1.0×(67%) 1.0×(63%) 1.0×(63%) 0.8×(53%) 1.0×(63%) 1.6×
AVG 1.4×(31%) 1.7×(37%) 2.1×(46%) 1.8×(40%) 2.8×(60%) 2.4×(52%) 2.6×(57%) 2.5×(53%) 2.5×(55%) 3.5×(76%) 4.6×

Table 7. Q9650 with ICC v10.1 Backend Compiler

There has been an attempt to use a hybrid of dynamic and
static features together for predictive modeling. Tournavitis et
al. [26] used both static and dynamic features to control an auto-
parallelizing compiler. They first used a profiling-based approach
to reveal application parallelism, and then they used a machine
learning-based model to decide whether to parallelize a given loop
or not. Their prediction model was constructed using an SVM clas-
sifier based on both the dynamic and static program features, in-
cluding instruction count, memory access count, and loop iteration
count of loop body.

Our optimization search space also includes auto-parallelism,
however, our model predicts the speedup for auto-parallelism being
used along with other important loop transformations. The idea of
using a hybrid characterization of both static and dynamic features
is interesting, and one we will explore in future work.

7. Conclusion
In this paper, we address the problem of developing an expressive
program characterization technique for predicting compiler opti-
mizations by using the program’s control flow graph. Moreover, we
evaluate this technique along with three state-of-the-art techniques,
which are source code features, performance counters, and reac-
tions. Prediction models were constructed using support vector ma-
chines, and these models were used predict auto-parallelization and
loop transformations in the polyhedral compiler PoCC. We evalu-
ated our characterization techniques on a large set of scientific ker-
nels that came from the PolyBench suite using leave-one-out cross-
validation. From our experiment results, our graph-based charac-
terization approach performed significantly better than other char-
acterization approaches. Specifically, our approach achieved up to
74% of the maximum speedup available in our search space for a
non-iterative scenario. When used in an iterative scenario, models
that use our graph-based characterization obtained up to 88% on

average of the maximum available speedup in our search space in
just 5 iterations.

For future work, we expect to evaluate our graph-based char-
acterization technique using other machine learning algorithms to
build our prediction models. In addition, we also plan to investigate
additional graph-based IRs, in particular, the PDG, which includes
both control and data dependencies in one graph. Further, we plan
to extend our testbed to different domains of applications, different
compilers, and larger optimization spaces.
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