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ABSTRACT
Iterative compilation techniques, which involve iterating over
different sets of optimizations, have proven useful in helping
compilers choose the right set of optimizations for a given
program. However, compilers typically have a large num-
ber of optimizations to choose from, making it impossible to
iterate over a significant fraction of the entire optimization
search space. Recent research has proposed to“intelligently”
iterate over the optimization search space using predictive
methods. In particular, state-the-art methods in iterative
compilation use characteristics of the code being optimized
to predict good optimization sequences to evaluate. Thus,
an important step in developing predictive methods for com-
pilation is deciding how to model the problem of choosing
the right optimizations.

In this paper, we evaluate three different ways of model-
ing the problem of choosing the right optimization sequences
using machine learning techniques. We evaluate a novel
prediction modeling technique, namely a tournament pre-
dictor, that is able to effectively predict good optimization
sequences. We show that our tournament predictor can out-
perform current state-of-the-art predictors and the most ag-
gressive setting of the Open64 compiler (-Ofast) on an av-
erage by 75% in just 10 iterations over a set of embedded
and scientific kernels. Moreover, using our tournament pre-
dictor, we achieved on average 10% improvement for a set
of MiBench applications.

Keywords
compiler optimization, iterative compilation, machine learn-
ing, regression

1. INTRODUCTION
Most applications can greatly benefit from a fine-tuned set

of compiler optimization sequences. However, finding the
right set of optimizations for an application is a non-trivial
task since the search space is extremely large. In addition,
it is difficult to build analytical models that can predict how
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combinations of optimizations will interact with each other.
Recent research has focused on intelligent search space ex-
ploration, in order to search for the right optimization se-
quence efficiently [5, 7, 9, 10, 14, 18, 20, 26]. In this approach,
models are developed automatically using machine learning
or statistical techniques to predict good optimizations to ap-
ply based on characteristics of the code being optimized. A
model that uses characteristics (or features) of the code has
the potential to predict optimizations that are specifically
tailored to the code.

To use this approach, a key step is “how to model” the
problem of choosing the right set of optimizations to apply
to a particular code being optimized. One common method
of modeling this problem is to develop a decision function
that takes as input a given set of features of the code to be
optimized and produces as output a prediction of whether a
specific optimization should be applied or not. We can de-
velop several of these decision functions each of which con-
trols a specific optimization. Using these decision functions,
we can construct a sequence of optimizations to apply to the
code. A key property is framing the optimization decision
problem so that the function to be learned is as simple as
possible.

This paper evaluates three different techniques for mod-
eling the problem of predicting a good set of optimizations
for a given program. Note, we do not solve the problem
of predicting the ordering of optimizations, but instead pre-
dict the set of optimizations that should be turned on. We
use a large set of kernels which provides good coverage of
a wide range of embedded and scientific applications. To
evaluate our models on a reasonable fraction of the opti-
mization search space, we used random search to generate
a set of optimization sequences. This set of randomly gen-
erated optimization sequences is used to train and evaluate
our models.

In addition, we propose a new modeling technique to pre-
dict good optimization sequences to apply for a given pro-
gram. We refer to this new modeling technique as the tour-
nament predictor, and we compare this technique to two
state-of-the-art prediction models, which we refer to as the
sequence predictor and the speedup predictor. Each of these
prediction models are constructed using performance coun-
ters to characterize the dynamic behavior of a program. In
recent work, performance counters were shown to be better
at characterizing applications than static code features [7].
We collected performance counters for kernels and optimized
those kernels with a large set of randomly selected optimiza-
tion sequences. We evaluated our three modeling techniques
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Figure 1: Three prediction models that are evaluated in this paper.

using two different machine learning algorithms, namely lin-
ear regression and support vector machines (SVMs). Also,
our models were compared in two different scenarios: a non-
iterative scenario where only the best predicted sequence is
used and in an iterative scenario where the top-N predicted
sequences are used.

Using just the top predicted sequence (i.e., the non-iterative
scenario), the tournament predictor trained using SVMs out-
performs all models achieving on our kernel suite an average
of 37% improvement over our baseline, the most aggressive
optimization setting in our compiler, Open64 using -Ofast.
When we use the top 10 predicted sequences (i.e., the itera-
tive fashion), the sequence and speedup models achieve close
to 70% improvement and the tournament predictor achieves
75% improvement over our baseline. Moreover, we tested
our models with several benchmarks from the MiBench [17]
benchmark suites to show how prediction models trained
with kernels performed with embedded applications.

The rest of the paper is organized as follows. We first de-
scribe the problem of developing predictors for intelligent
modeling, and we briefly describe the different modeling
techniques in Section 2. We then give an overview of our
solution in Section 3 giving more details of our models, in-
cluding how we construct them. Section 3.2 describes the
machine learning techniques used to build the prediction
models. Section 4 explains the characteristics of the pro-
grams and the optimization space we used in our evaluation
framework. Section 5 describes our evaluation setup, and
Section 6 presents our results and analysis. Section 7 de-
scribes related work, and Section 8 presents our conclusions.

2. LEARNING TO OPTIMIZE
Recent work has shown that iterative compilation applied

to certain programs can achieve significant benefits over the
highest setting available in a compiler. However, many of
the proposed techniques for exploring optimizations (e.g.,
genetic algorithms [5], random search [21], statistical tech-
niques [18], or exhaustive search [20]) are expensive, which
limits their practical use. This has led compiler researchers
to propose using “intelligent” prediction models that focus
exploration to beneficial areas of the optimization search
space [4,7,11,13,22]. Prediction models can reduce the cost
of finding good optimizations, but increase complexity in the
design of the search function because models require char-
acterizing the program being optimized (e.g., with source
code features or performance counters), generation of train-
ing data, and a training phase. One important step in de-
signing the prediction model is how to phrase the problem
of choosing good optimizations for a program. Several ways
of modeling the problem of finding good optimizations have

been proposed in the literature, but there has been little ef-
fort on evaluating these different methods. In this paper, we
show this step can have a significant impact on code being
optimized. Section 2.1 describes three different prediction
models that we evaluate in this paper. In Section 2.2, we
present preliminary experiment results showing the poten-
tial of our new predictor, a tournament predictor.

2.1 Modeling the Optimization Problem
A general formulation of the problem is to construct a

prediction model that takes a characterization of a program
being optimized as input and generates a set of one or more
optimization sequences to evaluate as output (either implic-
itly or explicitly). However, there are several ways to specif-
ically model this problem. In this paper, we evaluate three
different methods of modeling the problem of finding good
optimization sequences, which we name the sequence pre-
dictor, the speedup predictor, and the tournament predictor.
Figure 1 depicts the models that we evaluate in this paper.
We briefly describe each of these predictors here and in more
detail in Section 3.1.

Previous work [7] has proposed to model the problem by
characterizing a program using performance counters and
generating an optimization sequence that will benefit the
program. The performance counter characterization serves
as input to a model, and the model predicts a probability
distribution of optimizations to apply to that program. We
term this model a sequence predictor because it can be used
to construct a sequence of optimizations. Another recent
model that has been proposed [6,12] takes as input both the
characterization of the program being compiled and an op-
timization sequence, and it predicts as output the speedup
of that optimization sequence relative to a default optimiza-
tion setting. We refer to this model as the speedup predictor.
Finally, we propose a new method of choosing optimization
sequences, the tournament predictor, which takes as input
a triple corresponding to the characterization of the pro-
gram and two optimization sequences. This model predicts
whether the speedup of the first optimization sequence will
be more or less than the second optimization sequence. We
can use this predictor to provide an ordering of a set of op-
timization sequences to be used for iterative compilation.

2.2 Preliminary Experiment of the Speedup
and Tournament Predictors

This section describes an experiment that shows the speedup
and tournament predictors are able to capture optimization
speedup trends and therefore have the potential to be used
for predicting good optimizations to use for iterative compi-
lation. First, we generated a set of 200 randomly generated
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Figure 2: Speedup Predictor and Tournament Pre-
dictor for ATAX

optimization sequences constructed from 63 optimizations
available in the Open64 compiler suite. We evaluated these
200 optimization sequences on a set of 74 kernel benchmarks
and obtained speedups relative to the most aggressive opti-
mization level available in Open64 (-Ofast). We then per-
formed leave-one-out cross validation to construct speedup
and tournament predictors, leaving out the benchmark ATAX

(one of the PolyBench programs [24]) for testing, and train-
ing our models with the remaining kernels. A linear regres-
sion technique and SVMs were used to build our models.
Our training data consists of performance counter character-
ization of our kernels and the optimization sequences from
all but one (left out) kernel. We discuss more about these
two algorithms and the training data in Section 3.

Figure 2 shows how predicted speedups with the pro-
posed models compare to actual speedup for the one un-
seen ATAX kernel we used for our test. The y-axis shows
speedup obtained after applying a sequence, and the x-axis
shows the optimization sequences sorted by increasing (ac-
tual) speedup. The solid line represents the actual speedup
and two dotted lines show the speedup estimated by two
prediction models. As can be seen, the speedup and tour-
nament predictors can predict speedups for each sequences
quite accurately. It is worth noting that the tournament
predictor’s best predicted sequence was the optimal point
of our search space, whereas the speedup predictor’s best
predicted sequence was a good, but not the optimal point in
the search space. Using these models, especially the tourna-
ment predictor, to choose good optimization sequences for
an unseen program has the potential to obtain significant
improvements when used in iterative compilation.

3. AUTOMATICALLY CONSTRUCTING A
MODEL

This section describes details of our training data, how
we trained our different models, and details of the specific
models themselves. Figure 3 depicts the four steps in con-
structing our speedup prediction model, (a) collecting per-
formance counter data from programs, (b) creating training
data by applying random optimization sequences from our
search space and obtaining speedups from the kernels, (c)
bringing the performance counter and optimization sequence
data together to construct a model, and (d) using the model

on an “unseen” program. The sequence and tournament pre-
dictor are built in a similar way, but with different inputs
and outputs.

We used the HPCToolkit [3] to extract the performance
counters to characterize each program being optimized. Us-
ing HPCToolkit, we collected 29 performance counters to
characterize each program. To collect the performance counter
values, we compiled each program using the -O0 optimiza-
tion level of the Open64 compiler. The optimization level
-O0 was selected to minimize the effects of compiler opti-
mizations on our performance counter characterization of
the program. We then sampled our optimization search
space by randomly generating 500 optimization sequences
from 45 selected Open64 optimizations. The complete list of
optimizations that were used for our experiments are shown
in Section 4.2.

We represent each optimization sequence as a bit vector T.
Optimizations that are turned off or on are represented by
a 0 or 1, respectively. Optimizations that require a numeric
value are represented by N − 1 bits where N is the number
of possible optimization values we control. For example, for
the ‘prefetch’ optimization in Open64, we use 4 different
possible values (0-3), i.e., ‘0 0 0’ for 0, ‘1 0 0’ for 1, ‘0 1 0’
for 2, and ‘0 0 1’ for 3.

We used each of our 500 randomly generated optimiza-
tion sequences to compile and execute the programs. We
then ran each compiled version five times and used the av-
erage running time to calculate speedup over -Ofast. Cal-
culated speedup is used to train our models either directly,
e.g., with our speedup predictor, or indirectly, e.g., with our
tournament or sequence predictors.

3.1 Prediction Models
There are specific differences as to how the training and

test sets are used and represented depending on the type of
prediction model being developed. In this section, we de-
scribe the three different modeling techniques that we eval-
uated.

3.1.1 Sequence Predictor
With this predictor (see Figure 1a), we obtain a bit vector

corresponding to the number of optimizations we are trying
to control. We construct a separate predictor for each op-
timization. The input to each model is the performance
counter characterization of a program, and the output of
each model predicts a probability that a particular optimiza-
tion (associated with that output) would benefit the pro-
gram. Optimization sequences can be generated from this
model by sampling at the mode of the distribution of each
model’s output. The training data for this model consists
of one optimization sequence per benchmark corresponding
the optimization that achieves the best speedup for that
benchmark. Once the predictor is trained, we can use it to
predict good sequences to apply to an “unseen” program by
feeding as input the performance counter characterization of
that “unseen” program to the model. The model then out-
puts a probability pi for each bit predicting whether the bit
should be 1 or 0. For optimizations taking binary values, we
simply decide whether we turn on or off a given optimiza-
tion. For optimizations with more than two possibilities,
we use the bit position with the highest probability among
all associated bits for a specific optimization. Thus, all the
outputs form a probability distribution which we can then
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Figure 3: This figure shows how we build and use a speedup prediction model in a leave-one-out cross-
validation scenario. Figure 3(a) depicts the collecting of performance counters for N − 1 programs. Figure
3(b) shows how we collect optimization training data from N − 1 programs. Figure 3(c) depicts use of
performance counter and optimization sequence data to construct a prediction model. Figure 3(d) shows the
use of the trained prediction model.

sample from to generate an optimization sequence to apply.
This model can be used to generate multiple optimization
sequences by sampling as many times as we wish.

3.1.2 Speedup Predictor
For this predictor (see Figure 1b), the model is trained to

accurately predict the speedup of an optimization sequence
applied to a program relative to the program optimized using
-Ofast. The input to the model is the performance counter
characterization of a program and a bit vector describing
the optimization sequence. The output from the model is
the predicted speedup of that optimization sequence relative
to -Ofast. The training data for this model consists of all
500 optimization sequences applied to each kernel, and the
speedups obtained for each optimization sequence relative to
-Ofast. We use this predictor to predict good optimization
sequences for “unseen” program, by evaluating sequences in
order based on their predicted speedup. Another way of
evaluating the quality of this predictor is to use it to search
for good optimization sequences that were previously “un-
seen”. In other words, we can use this predictor to predict
the speedup of sequences that were not previously used to
train our model. Our evaluation demonstrates that this pre-
dictor is effective at finding good sequences for both“unseen”
programs and “unseen” sequences.

3.1.3 Tournament Predictor
This model (see Figure 1c) is trained to predict, which of

two different optimization sequences presented to the model
is better. The inputs supplied to this model is the perfor-
mance counter characterization of a program and two opti-
mization sequences that could be applied to the program.
The output of the model is either true or false depending on
whether the model predicts the first optimization sequence
is better or worse than the second sequence. Since it pre-
dicts speedup difference of two optimization sequences, this
model not only predicts which optimization sequence is bet-
ter, but it also predicts by how much better the optimization
sequence is. One can view this as learning a relation over
triples (PC,Oi, Oj), where PC is the characterization of the
program being optimized and O is the set of optimization
sequences from which the selection is to be made. Those
triples that belong to the relation define pairwise prefer-
ences in which the first optimization sequence is considered
preferable to the second. Each triple that does not belong
to the relation represents a pair in which the first optimiza-
tion is not better than the second. The process of selecting
the best of the optimization alternatives is like finding the
maximum of a list of numbers. We keep track of the current
best optimization sequence, and proceed with pairwise com-
parisons, always keeping the better of two sequences being
compared. This model can be used to generate sequences



to try for a new program, by sorting different optimization
sequences based on the results of the pairwise comparisons.

3.2 Learning Algorithms
A variety of learning algorithms can be brought to bear

on the task of predicting the right set of optimizations to
apply to a program. We consider two methods here. The
first method is support vector machines (SVMs) which is a
class of supervised learning algorithms that can be used for
both classification and regression. SVMs use kernel func-
tions to transform the training data into a different, linearly
separable feature space, and then a linear classifier is con-
structed that separates the points into multiple classes. The
second method we used was linear regression. This is the
standard linear regression technique found in many statisti-
cal and machine learning text books.

Category of PCs List of PCs selected

Branch Related
BR-CN, BR-INS, BR-MSP,

BR-NTK, BR-TKN

Cache Line Access CA-SHR

Level 1 Cache
L1-DCA, L1-DCM, L1-ICA,

L1-LDM, L1-STM, L1-TCM

Level 2 Cache
L2-DCR, L2-DCW, L2-ICA, L2-STM,

L2-TCA, L2-TCM, L2-TCW

Floating Point FDV-INS, FML-INS, FP-INS, FP-OPS

Interrupt/Stall RES-STL

TLB TLB-DM

Total Cycle or Insts. TOT-CYC, TOT-IIS, TOT-INS

Vector/SIMD VEC-INS

Table 1: Performance Counters: We collected 29
different performance counters available from PAPI
to characterize a program.

4. PROGRAM CHARACTERISTICS AND OP-
TIMIZATIONS

This section describes how we characterize programs. Sec-
tion 4.1 describes the performance counters we collected to
characterize programs, and Section 4.2 describes the opti-
mization space we selected to construct our sequences from
our testbed compiler.

4.1 Performance Counter Characterization
Each of our models predicts optimizations to apply to“un-

seen”programs that were not used in training the model. To
do this, we need to feed as input to our models a character-
ization of the “unseen” program. We use performance coun-
ters to collect dynamic features that describe the runtime
behavior of a program. Models using performance counter
characteristics of programs have been shown to out-perform
models that use only static code features of program [7]. We
used 29 different performance counters shown in Table 1.

4.2 Optimization Space
We selected 7 optimization phases from the Open64 com-

piler and 45 individual optimizations from these selected
phases. These 45 optimizations make up the optimization
space we explored with our models. Most optimizations
came from global and loop nest optimization phases because
these optimizations have the most potential to obtain signif-
icant running time improvements. Most selected optimiza-

Optimization List of

Phase Optimizations

LNO

blocking-size, cs1, cs2, fission, full-unroll,

fusion, interchange, ou-prod-max, pf2, prefetch,

prefetch-ahead, simd, trip-count

WOPT

aggcm-threshold, aggstr, value-numbering,

combine, dce-aggressive, iv-elimination,

spre, canon-expr

OPT
alias, align-padding, div-split, goto, ptr-opt,

swp, unroll-size, unroll-times-max

CG
cflow, local-sched-alg,

ptr-load-use, use-prefetchnta

GRA optimize-boundary, prioritize-by-density

TENV frame-pointer

IPA
callee-limit, ctype, dve, field-reorder, space,

plimit,pu-reorder, small-pu, min-hotness

Table 2: List of 45 Optimizations: We selected
45 optimizations from 7 optimization phases in the
Open64 compiler.

tions are either turned on or off, so they could easily be rep-
resented as binary values. However, certain optimizations
require values in a given range, e.g., loop unrolling factor or
loop tile size. All optimizations used in our paper are shown
in Table 2.

From the listed optimizations in Table 2, we generated a
set of 500 random optimization sequences. We then eval-
uated each sequence on the programs in our training set
to achieve actual speedup of that sequence over -Ofast.
The random optimization sequence and its corresponding
speedup are used as training data.

5. EXPERIMENTAL SETUP
This section describes the experimental setup including

the machine configuration and software platform used. We
also describe the benchmarks used for our experimental study.
We performed our experiments on a pair of Intel Quad CPU
Q9650 machines, each with 2.0GHz processors with 8GB of
memory, running Ubuntu Linux release 8.04. We collected
performance counters using HPCToolkit [3] and the PAPI
3.6 hardware counter library [23]. Table 1 gives a brief de-
scription of the performance counters we used for this study.
We used the open-source Open64 compiler version 4.2.1 [2],
and all speedups reported are relative to -Ofast, which is
the most aggressive optimization level available in this com-
piler. For our machine learning algorithms, we used linear
regression and support vector machines (SVMs) contained
in Weka [1] 3.6.2. For the SVMs, we used a normalized poly-
nomial kernel, and for linear regression we used the default
Weka configuration.

5.1 Benchmarks
We decided to first experiment with small pieces of code

that would allow us to quickly evaluate different learning
algorithms and modeling techniques. We collected a large
set of functions and kernels from various well-known bench-
marks suites (e.g., UTDSP, NAS, Linpack, and Polybench)
for our study. However, we noticed that several of these ker-
nels had large variability for different runs of the same op-
timized code. In order to reduce this variability, we flushed
the cache before every run to reduce possible cache interfer-
ence. We then removed all kernels that had a variability of
more than a few percent after 50 runs of the code. For the



Regression
Evaluations 1 5 10 20 30 40 50
Sequence 1.15×(59%) 1.53×(78%) 1.61×(82%) 1.70×(87%) 1.72×(88%) 1.74×(89%) 1.76×(90%)
Speedup 1.27×(65%) 1.60×(82%) 1.69×(86%) 1.80×(92%) 1.84×(94%) 1.88×(96%) 1.88×(96%)
Tournament 1.22×(62%) 1.55×(79%) 1.75×(89%) 1.80×(92%) 1.86×(95%) 1.88×(96%) 1.89×(96%)

SVM
Sequence 1.18×(60%) 1.53×(78%) 1.63×(82%) 1.81×(92%) 1.84×(94%) 1.85×(94%) 1.86×(95%)
Speedup 1.23×(63%) 1.52×(78%) 1.68×(86%) 1.87×(95%) 1.88×(96%) 1.89×(96%) 1.89×(96%)
Tournament 1.37×(70%) 1.67×(85%) 1.74×(89%) 1.86×(95%) 1.89×(96%) 1.89×(96%) 1.90×(97%)

Table 3: We show the speedup over baseline for our benchmark suite using the top 1, 5, 10, 20, 30, 40, and
50 predicted optimization sequences from our different models. Each speedup is followed by a percentage
value (in parentheses). This value shows the percentage of search space optimal speedup we achieved for a
given number of predicted sequences. We show results for our models trained using linear regression and
using support vector machines (SVMs).

remaining code, we used the standard leave-one-out cross-
validation procedure to evaluate our models. That is, the
models were trained using N − 1 benchmarks and tested on
the Nth benchmark that was left out.

For another set of experiments, we used a subset of the
MiBench benchmarks that we could both compile success-
fully with Open64 and which did not have high variability in
the runs. We evaluated our tournament predictor by train-
ing our model on kernel programs, and testing the model on
the “unseen” subset of MiBench benchmarks. We also eval-
uated our model on both the “unseen” MiBench benchmarks
and “unseen” optimization sequences. This experiment al-
lowed us to test whether our tournament predictor could be
trained using small kernels, and later used for optimizing
larger applications. In addition, this experiment allowed us
to test whether the model could generalize to optimization
sequences that it had not been trained on.

6. EXPERIMENTAL RESULTS
This section describes our experiment results that we con-

ducted to evaluate our different modeling techniques.

6.1 Leave-One-Out Cross Validation on Ker-
nels

To evaluate our modeling techniques, we used leave-one-
out cross-validation over a set of kernel benchmarks. This
allowed us to evaluate the speedups obtained between our
different modeling techniques when used to optimize “un-
seen” kernels.

Table 3 shows speedups obtained relative to -Ofast for
each of our models for 1 to 50 “evaluations.” In parenthe-
sis, we show the speedup achieved relative to the maximum
speedup found for the 500 random optimization sequences
evaluated. We show results for training our models using
linear regression and SVMs. The row labeled “Evaluations”
refers to the number of predicted sequences we evaluated
from our model. For example, 1 evaluation (first column)
corresponds to taking only the top predicted optimization
sequence from our models, i.e., using the models in a non-
iterative fashion. The rest of the columns corresponds to us-
ing the models in an iterative fashion, where N evaluations
refers to keeping the best actual speedup obtained from a
model’s top N predicted optimization sequences. As the ta-
ble shows, all our models achieve significant speedups over
-Ofast.

The speedup predictor trained using regression performed
fairly well, out-performing the tournament predictor and se-
quence predictor for 1 evaluation. Interestingly, the tourna-

ment predictor starts to catch up after 5 evaluations, and
outperforms all predictors at 10 evaluations. After 10 eval-
uations, the speedup and tournament predictors perform
about even, with the sequence predictor lagging behind.

On the other hand, we achieve better performance from
the tournament predictor when trained using SVMs versus
regression. 1 SVMs can construct non-linear models, which
obviously benefits the tournament predictors. Constructing
a tournament predictor using SVMs allows it to perform bet-
ter than any other models at 1 evaluation. As we increase
the number of evaluations to 10, all three modeling tech-
niques show good speedup, with the tournament predictor
still outperforming the other predictors. At 20 evaluations
and greater, both the speedup and tournament predictors
perform equally well. Thus, regardless of learning algorithm,
the tournament predictor performed best at 10 evaluations
by achieving 75% over -Ofast, achieving almost 90% of the
speedup available from the search space. Also, for 1 eval-
uation, the sequence predictor performs significantly worse
than the other models.

Table 4 shows detailed results for each of our models
trained using regression and SVMs for 10 evaluations. We
notice that most kernels benefit from using predicted op-
timization sequences for all predictors. Some benchmarks,
such as Livermore Loop11 (Livermr-Lp11) or bicg, obtain
large benefits from using the sequence predictor over the
other two predictors. However, the tournament and speedup
predictor perform better than sequence predictor on most
kernels. On average, the tournament predictor outperforms
the other two predictors achieving 74% of performance im-
provement over -Ofast. At 10 evaluations, both machine
learning techniques performed similarly on all predictors,
and all predictors achieved more than 80% of the maximum
available for the search space explored.

In summary, the tournament predictor trained using SVMs
works consistently well in an iterative (> 1 evaluation) and
non-iterative fashion (1 evaluation). Thus, for the remain-
der of the paper we further explore the tournament predictor
trained using SVMs.

6.2 Evaluations on MiBench
This section describes results using our tournament pre-

dictor trained on kernels and tested on MiBench bench-
marks. We performed two different kinds of experiments.
First, we tested how well our predictor found good opti-
mization sequences to apply to MiBench benchmarks from

1Note that the same training data was used with regression
and SVMs.



Regression SVM
Benchmark Sequence Speedup Tournament Sequence Speedup Tournament Opt

fir.arrays 1.27×(60%) 2.11×(100%) 2.11×(100%) 1.58×(74%) 1.72×(81%) 2.11×(100%) 2.11×
fir.arrays-SWP 1.83×(59%) 2.76×(90%) 2.76×(90%) 2.01×(65%) 2.49×(81%) 2.76×(90%) 3.07×
fir.ptrs 1.84×(64%) 1.72×(60%) 2.83×(99%) 1.45×(51%) 2.83×(100%) 2.83×(99%) 2.83×
fir.ptrs-SWP 1.34×(57%) 1.95×(83%) 1.91×(82%) 2.49×(107%) 2.32×(100%) 1.45×(62%) 2.32×
latnrm.arrays 1.64×(47%) 3.47×(100%) 3.47×(99%) 1.91×(55%) 3.47×(100%) 2.75×(79%) 3.47×
latnrm.arrays-SWP 1.98×(70%) 2.80×(100%) 2.76×(98%) 2.24×(80%) 2.76×(98%) 2.76×(98%) 2.80×
latnrm.ptrs 2.59×(87%) 1.49×(49%) 2.98×(100%) 2.47×(82%) 2.98×(100%) 2.98×(100%) 2.98×
latnrm.ptrs-SWP 2.35×(111%) 2.11×(100%) 1.84×(87%) 2.41×(114%) 2.11×(100%) 1.84×(87%) 2.11×
lmsfir.arrays 2.80×(87%) 1.57×(49%) 1.37×(42%) 1.45×(45%) 1.76×(54%) 3.21×(100%) 3.21×
lmsfir.arrays-SWP 1.16×(50%) 1.45×(62%) 2.12×(91%) 2.23×(96%) 1.68×(72%) 2.12×(91%) 2.31×
lmsfir.ptrs 1.87×(91%) 1.61×(78%) 2.04×(100%) 1.91×(93%) 1.70×(83%) 1.61×(78%) 2.04×
lmsfir.ptrs-SWP 1.70×(55%) 3.05×(100%) 1.66×(54%) 1.00×(32%) 3.05×(100%) 1.76×(57%) 3.05×
mult.arrays 0.99×(53%) 1.53×(82%) 1.71×(92%) 1.76×(94%) 1.71×(92%) 1.71×(92%) 1.86×
mult.arrays-SWP 1.07×(41%) 2.54×(100%) 1.98×(78%) 0.91×(36%) 1.98×(78%) 1.98×(78%) 2.54×
mult.ptrs 1.04×(35%) 2.96×(100%) 2.63×(88%) 2.81×(95%) 1.87×(63%) 2.63×(88%) 2.96×
mult.ptrs-SWP 1.27×(37%) 3.35×(100%) 3.35×(100%) 1.18×(35%) 1.88×(56%) 3.01×(89%) 3.35×
appsp 1.11×(90%) 1.18×(95%) 1.18×(95%) 1.06×(85%) 1.04×(83%) 1.18×(95%) 1.24×
clinpack 1.00×(73%) 1.31×(96%) 1.37×(100%) 0.97×(70%) 1.22×(89%) 1.33×(97%) 1.37×
Livermr-Lp2 1.01×(83%) 1.08×(89%) 1.12×(92%) 1.06×(87%) 1.08×(89%) 1.12×(92%) 1.21×
Livermr-Lp3 2.36×(76%) 2.17×(69%) 2.17×(69%) 2.71×(87%) 2.17×(69%) 3.11×(100%) 3.11×
Livermr-Lp4 1.69×(153%) 0.81×(73%) 0.92×(83%) 0.93×(84%) 1.04×(94%) 1.04×(94%) 1.10×
Livermr-Lp5 1.24×(83%) 1.33×(89%) 1.42×(96%) 1.39×(94%) 1.33×(89%) 1.36×(92%) 1.48×
Livermr-Lp10 2.71×(144%) 1.48×(78%) 1.48×(78%) 3.61×(192%) 1.76×(93%) 1.48×(78%) 1.88×
Livermr-Lp11 2.53×(118%) 1.63×(76%) 2.14×(100%) 2.41×(112%) 1.60×(74%) 2.14×(100%) 2.14×
Livermr-Lp12 2.11×(89%) 1.40×(59%) 2.37×(99%) 2.49×(105%) 2.37×(100%) 1.40×(59%) 2.37×
Livermr-Lp13 1.86×(72%) 2.56×(100%) 2.42×(94%) 1.85×(72%) 2.54×(98%) 2.54×(99%) 2.56×
Livermr-Lp14 2.71×(123%) 2.09×(94%) 2.09×(94%) 1.43×(65%) 1.55×(70%) 2.09×(94%) 2.20×
Livermr-Lp15 2.37×(112%) 2.10×(99%) 2.10×(99%) 2.27×(107%) 2.10×(99%) 2.10×(100%) 2.10×
Livermr-Lp16 2.15×(120%) 1.79×(100%) 1.73×(96%) 3.62×(202%) 1.79×(100%) 1.73×(96%) 1.79×
Livermr-Lp17 1.45×(52%) 2.63×(94%) 2.63×(94%) 1.09×(39%) 2.65×(95%) 2.77×(99%) 2.77×
Livermr-Lp18 1.98×(74%) 1.46×(55%) 2.64×(100%) 2.13×(80%) 2.64×(100%) 2.64×(100%) 2.64×
Livermr-Lp19 2.33×(96%) 1.61×(66%) 1.61×(66%) 2.50×(103%) 2.36×(97%) 2.06×(84%) 2.42×
Livermr-Lp20 2.11×(89%) 2.27×(96%) 2.27×(96%) 1.80×(76%) 1.48×(62%) 1.93×(81%) 2.37×
Livermr-Lp21 1.81×(72%) 2.49×(100%) 2.49×(100%) 1.67×(66%) 1.76×(70%) 2.49×(100%) 2.49×
Livermr-Lp22 3.05×(106%) 2.28×(79%) 2.28×(79%) 2.87×(100%) 1.96×(68%) 2.53×(88%) 2.85×
Livermr-Lp23 2.54×(99%) 2.54×(100%) 2.54×(100%) 2.00×(78%) 1.50×(58%) 2.16×(84%) 2.54×
Livermr-Lp24 1.21×(47%) 1.60×(62%) 1.60×(62%) 2.14×(83%) 1.58×(61%) 1.60×(62%) 2.56×
adi 1.14×(102%) 1.04×(93%) 1.11×(99%) 0.60×(54%) 1.03×(92%) 1.11×(99%) 1.11×
atax 1.33×(73%) 1.65×(91%) 1.60×(87%) 1.36×(74%) 1.82×(100%) 1.58×(87%) 1.82×
bicg 2.55×(129%) 1.94×(98%) 1.85×(94%) 2.27×(115%) 1.94×(98%) 1.85×(94%) 1.97×
cholesky 1.10×(103%) 1.06×(99%) 1.03×(97%) 1.02×(95%) 1.05×(98%) 1.06×(99%) 1.06×
correlation 0.58×(88%) 0.62×(94%) 0.65×(98%) 0.59×(90%) 0.59×(89%) 0.63×(94%) 0.66×
covariance 0.62×(102%) 0.57×(95%) 0.60×(98%) 0.61×(100%) 0.60×(98%) 0.59×(97%) 0.60×
doitgen 0.47×(88%) 0.52×(98%) 0.50×(94%) 0.42×(80%) 0.51×(96%) 0.50×(94%) 0.53×
durbin 1.06×(89%) 1.14×(96%) 1.14×(96%) 1.07×(90%) 1.16×(98%) 1.14×(96%) 1.18×
dynprog 1.19×(102%) 1.00×(85%) 0.98×(83%) 1.06×(90%) 1.11×(95%) 1.08×(93%) 1.17×
fdtd-2d 0.93×(77%) 1.18×(98%) 1.14×(94%) 0.96×(80%) 1.13×(94%) 1.14×(94%) 1.20×
fdtd-apml 1.19×(92%) 1.17×(90%) 1.18×(91%) 1.17×(90%) 1.18×(91%) 1.16×(90%) 1.28×
gauss-filter 0.86×(78%) 0.94×(84%) 0.97×(88%) 0.95×(86%) 0.82×(74%) 0.94×(84%) 1.10×
gemm 0.97×(85%) 1.06×(92%) 1.06×(92%) 0.93×(81%) 1.00×(87%) 1.06×(92%) 1.15×
gemver 0.94×(96%) 0.93×(95%) 0.94×(96%) 0.88×(89%) 0.91×(93%) 0.93×(95%) 0.97×
gesummv 1.84×(93%) 1.62×(82%) 1.64×(83%) 1.95×(98%) 1.76×(89%) 1.66×(84%) 1.97×
gramschmidt 3.91×(93%) 4.07×(97%) 4.06×(97%) 3.95×(94%) 4.04×(97%) 4.15×(99%) 4.16×
jacobi-1d-imper 1.77×(90%) 1.82×(93%) 1.82×(93%) 1.61×(82%) 1.87×(95%) 1.80×(91%) 1.96×
jacobi-2d-imper 1.02×(93%) 1.02×(93%) 1.05×(96%) 1.01×(93%) 1.08×(99%) 1.05×(96%) 1.09×
lu 2.16×(92%) 1.06×(45%) 1.06×(45%) 1.04×(44%) 1.05×(44%) 1.08×(46%) 2.34×
ludcmp 1.02×(86%) 1.18×(100%) 1.18×(100%) 1.03×(87%) 1.14×(97%) 1.16×(98%) 1.18×
mvt 1.13×(72%) 1.41×(90%) 1.47×(94%) 1.42×(91%) 1.55×(99%) 1.39×(89%) 1.56×
reg-detect 1.17×(89%) 1.19×(91%) 1.24×(94%) 1.15×(87%) 1.27×(97%) 1.19×(91%) 1.31×
seidel 0.87×(79%) 1.08×(99%) 1.08×(98%) 0.99×(90%) 1.06×(97%) 1.05×(95%) 1.09×
symm 1.01×(96%) 1.00×(95%) 1.01×(96%) 0.98×(93%) 1.00×(95%) 0.98×(93%) 1.05×
syr2k 0.99×(78%) 1.11×(88%) 1.12×(88%) 0.91×(72%) 1.14×(90%) 1.09×(86%) 1.26×
syrk 1.13×(99%) 1.11×(97%) 1.04×(91%) 1.11×(97%) 1.07×(94%) 1.04×(91%) 1.14×
trisolv 2.40×(104%) 1.91×(83%) 1.96×(85%) 2.26×(98%) 1.80×(78%) 1.91×(83%) 2.30×
trmm 1.09×(103%) 1.05×(100%) 1.05×(100%) 0.68×(64%) 1.01×(95%) 1.05×(100%) 1.05×
AVG 1.61×(82%) 1.69×(86%) 1.75×(89%) 1.63×(83%) 1.68×(85%) 1.75×(89%) 1.96×

Table 4: We show speedups over baseline (ICC -fast) using the top 10 predictions for the sequence, speedup,
and tournament predictor. We include (in parenthesis) the percent of search space optimal speedup that was
obtained. The last column ‘Opt’ represents search space optimal speedup.
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Figure 4: This figure shows the maximum speedup obtained with 10 predictions for our tournament predictor
trained using SVM for a subset of the MiBench benchmarks, which we could compile. Two different predictors
were evaluated, one using a set of “seen” optimization sequences were the benchmarks were not seen and
another using on a set of “unseen” sequences and “unseen” benchmarks. The SVM predictors achieved an
average speedup for “seen” and “unseen” sequences of 10% and 6%, respectively.

the same set of optimization sequences we had used in the
kernel training data. That is, a tournament predictor was
trained on kernels and tested on MiBench (“unseen”) bench-
marks, but the optimizations sequences used for training
and testing were the same. Second, we again constructed
a tournament predictor on kernels, but this time we tested
the predictor on both “unseen” benchmarks (MiBench) and
“unseen” sequences.

As is shown in Figure 4, the tournament predictor signif-
icantly out-performed -Ofast on most benchmarks (except
for cjpeg and typeset) for “seen” sequences. For “seen” se-
quences, we achieve on average 10% performance improve-
ment over -Ofast, where the maximum speedup available
found was 15.4%. We also achieved good performance im-
provements with “unseen” sequences by obtaining 6% on av-
erage, where the maximum speedup found was 12%. We
note that performance improvement is better for “seen” se-
quences, however, we can still achieve good results using our
models to predict the performance of “unseen” sequences.

6.3 Optimization Sequences Across Different
Machines

This section looks at the portability of our models across
different machines. We looked at three different Intel ma-
chines that varied in processor speed, cache, and memory
size. Machine 1 is an Intel Quad Core2 Q9300 2.5GHz with
4GB RAM and 6MB L2 cache, Machine 2 is an Intel Quad
Core2 Q9650 3.0GHz with 8GB RAM and 12MB L2 cache,
and Machine 3 is an Intel Xeon E5335 2.0GHz with 2GB
RAM and 8MB L2 cache. We evaluated 500 different op-
timization sequences on a representative benchmark FFT-

inverse from the MiBench suite. Figure 5 shows the opti-
mization sequences sorted by their performance on Machine
1. Note, the optimization sequences for this benchmark have

the same speedup trends on the different machines. We con-
clude that sequences performing well on our models trained
on one machine would perform well on other similar archi-
tectures. We saw similar trends for our other programs.

7. RELATED WORK
In recent years, several previous works have shown the

benefits of iterative compilation [5,14,18,19]. Iterative com-
pilation has been shown to regularly outperform the most
aggressive compilation settings of most commercial compil-
ers and has been shown to be comparable to hand-optimized
library functions [15,25,27].

However, iterative compilation techniques can be expen-
sive, and current research has looked into improving the
speed of these techniques. Almagor et al. [5] take a radical
approach to reduce the total number of evaluations. They
examine the structure of the search space, in particular the
distribution of local minima relative to the global minima
and devise new search based algorithms that outperform
generic search techniques. Kulkarni et al. [20] introduced
a system where they tried to use databases to store previ-
ously tested code and thus save on running time. They also
disabled some optimizations that did not seem to improve
the running time of the kernel. These techniques may miss
opportunities because the constrain the search space a-priori
before optimizing a program. Cooper et al. [10] use genetic
algorithms to solve the compilation phase-ordering problem.
They were concerned with finding“good”compiler optimiza-
tion sequences that reduced code size. Their technique was
successful at reducing code size by as much as 40%. Unfortu-
nately, all these techniques are application-specific. That is,
these search algorithms (e.g., genetic algorithms) have to be
“retrained” for each program to decide the best optimization
sequence for that program.
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Figure 5: This graph represents how each optimization sequence performs over different architectures for the
benchmark FFT-inverse. Other benchmarks produce similar graphs. The x-axis shows the sequences sorted by
speedup on Machine 1. The y-axis shows the speedup over baseline, which is -Ofast. Machine 1 is Intel Quad
Core2 Q9300 2.5GHz 4GB RAM and 6MB L2 cache, Machine 2 is Intel Quad Core2 Q9650 3.0GHz 8GB
RAM and 12MB L2 cache, and Machine 3 is Intel Xeon E5335 2.0GHz 2GB RAM and 8MB L2 cache. We
observe the sequence that gives us good performance on one machine usually works well on other machines.

Several researchers have also looked at using machine learn-
ing to construct heuristics that control a single optimization.
Stephenson et al. [26] used genetic programming (GP) to
tune heuristic priority functions for three compiler optimiza-
tions: hyper block selection, register allocation, and data
prefetching within the Trimaran’s IMPACT compiler. How-
ever, a closer look at the results for two of their optimizations
indicate that most of the improvement was obtained from
the initial population indicating that these two pre-existing
heuristics were not well tuned. For the third optimization,
register allocation, they were able to achieve on average only
a 2% increase over the manually tuned heuristic.

Fursin et al. [16] discuss an extension to GCC called Mile-
post GCC, which can provide optimization strategies ac-
cording to an objective function that user seeks to improve.
Milepost GCC uses static features of a program to make
predictions of good optimizations to apply. In this work,
we used dynamic features of a programs, which have been
shown to be better predictors [7] of of good optimization
sequences. In contrast to this work, Fursin et al. [16] do not
evaluate different methods of modeling the problem of how
to predict good optimization sequences.

Cavazos et al. [8] used supervised learning to create a pre-
dictor model specialized to decide to enable or disable in-
struction scheduling. This reduced up to 75% of the schedul-
ing effort without losing any performance. Recently, Cava-
zos et al. [9] describe using static code features and super-
vised learning to control several optimizations to apply dur-
ing method compilation in a JIT compiler. Since Java meth-
ods are typically small, static code features were successfully
used to characterizing them.

8. CONCLUSION
In this paper, we introduce and evaluate a novel mod-

eling technique, the tournament predictor, for predicting
good compiler optimizations to apply to an “unseen” pro-
gram. Moreover, we compare this modeling technique to two
state-of-the-art modeling techniques, namely the sequence

and speedup predictor. We build our models by using two
machine learning techniques, regression and SVMs. These
models predict good code optimization sequences to apply
given a program’s performance counter characterization. We
first evaluated the prediction models on a large set of kernels
with leave-one-out cross validation. From our experimen-
tal results, speedup and tournament predictors performed
better than sequence predictor. The tournament predictor
out-performed both the sequence and speedup predictor at 1
evaluation and 10 evaluations, and in 10 evaluations achiev-
ing 75% improvement over -Ofast in Open64 compiler. We
trained the tournament predictor on kernels to evaluate a
set of embedded domain applications from MiBench with
“seen” and “unseen” sequences. We achieved good perfor-
mance improvement with 10% and 6% for “seen” and “un-
seen” sequences respectively, which is 65% and 50% of the
maximum speedup found for the 500 random optimization
sequences evaluated.

For future work, we expect to apply additional machine
learning algorithms to construct our prediction models. We
will also extend our testbed to different domains of applica-
tions, different compilers, and a larger optimization space.
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