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ABSTRACT
In this paper, a Cooley-Tukey algorithm based multi-
dimensional FFT computation framework on GPU is pro-
posed. This framework generalizes the decomposition of
multi-dimensional FFT on GPUs using an I/O tensor repre-
sentation, and therefore provides a systematic description
of possible FFT implementations on GPUs. The frame-
work is geared to the efficiency of multi-dimensional FFT
on GPU architectures. In particular, no global transposition
among dimensions is performed and some previously unno-
ticed grouping and commutability of multiple dimensions
are highlighted in order to reduce the number of computa-
tional kernels and minimize the number of global memory
accesses. Important architectural factors and constraints of
CUDA, such as coalesced access, bank conflicts and register
pressure are also considered in this framework. Moreover,
we adapt codelets, a straight-line style FFT implementa-
tion originally developed in FFTW, into our framework and
prove that they are highly efficient on GPUs.

A 2D and 3D FFT library, currently supporting power-of-
two sizes, is implemented on this framework and empirically-
tuned results are compared with CUFFT and other recent
publications on three NVIDIA GPUs. On a high-end
NVIDIA GPU, GeForce GTX280, our 2D implementation
is 2.8× faster than CUFFT and 1.6× faster than the best
previously published results on average. Our 3D FFT im-
plementation achieves 22.7× speed up over CUFFT on av-
erage. Furthermore both implementations show better pre-
cision than CUFFT. This library and its framework are po-
tentially extensible to more general FFT problem sizes and
other parallel architectures as well.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Parallel and Vector Im-
plementation

General Terms
Algorithms, Design, Performance

Keywords
2D FFT, 3D FFT, Library Generation, Empirical Tuning,
GPU, CUDA
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1. INTRODUCTION
Graphics processing units(GPUs) have recently become

one of the most popular platforms for high performance
computing(HPC). With a large number of scalar proces-
sors and abundant bandwidth, GPUs have shown amaz-
ing computation power. NVIDIA’s current generation of
GT200 series GPUs can achieve a theoretical peak perfor-
mance of 933GFlops and a theoretical memory bandwidth
of 141.6Gbyte/s [1]. Intel’s Larrabee recently demonstrated
1TFlops peak performance in SGEMM 4K×4K calculation
[2]. The next generation NVIDIA GPU, Fermi, will have
as many as 512 cores and greater potential in double preci-
sion computation. Compared with current multi-core CPUs,
GPUs have many more parallel computing resources and can
often achieve an order of magnitude performance improve-
ment over CPUs on compute-intensive applications.

Discrete Fourier Transform(DFT) is one of the most im-
portant digital signal processing techniques. It is widely
used in spectral analysis, image processing, data compres-
sion and many other fields. Its recursive algorithms, Fast
Fourier Transforms(FFTs), reduce DFT’s complexity from
O(N2) to O(Nlog(N)). On traditional CPUs, a few FFT
libraries such as FFTW [3] and SPIRAL [4] have been able
to generate highly efficient implementations of DFT. Fur-
thermore, recent work [5] shows that if enabled with single
instruction multiple data(SIMD) extensions, these libraries
can achieve more than 10GFlops on a multi-core CPU. With
much more concurrent threads and much larger bandwidth,
GPUs have become an important platform to implement
high performance FFT. Unlike N-body simulations or ma-
trix multiplications, FFT is largely a memory-bound prob-
lem due to frequent data exchanges. Therefore achieving
peak performance on a GPU is a challenge. Before the ad-
vent of CUDA, there had been some FFT implementations
using the OpenGL graphics API [6, 7]. However, the perfor-
mance of these implementations is limited by lack of shared
memory to assist fast data exchange.

The only publicly available FFT library on CUDA is
CUFFT [8] provided by NVIDIA. It supports 1D, 2D and 3D
transforms of complex and real-valued single precision data
and 1D batched execution(multiple DFTs of the same sizes).
Govindaraju etc. [9] and Nukada etc. [10, 11] have shown
separately that CUFFT is far from optimized on high-end
GPUs. These works have achieved performance improve-
ments of 2×−4× on 1D, 2D and 5×−8× on 3D over CUFFT
implementation. Both projects choose to implement Stock-
ham radix-R FFT algorithm [12] to avoid bit-reverse in the
original Cooley-Tukey algorithm. Govindaraju’s work adopts
three computation strategies. A shared memory algorithm is
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used whenever the FFT problem can fit into shared memory.
Otherwise a global memory FFT or a hierarchical FFT algo-
rithm is used. Large prime size DFT is handled by Bluestein
algorithm [13]. In order to achieve good performance, a
couple of standard optimization techniques are applied in a
hand-code level.

For multi-dimensional FFT in [9], FFTs along the a higher
dimension is transposed to the lowest dimension before com-
putation to increase data locality. To reduce the cost of a
separate pass of transposition, it can be combined with one
step of FFT computation. Nukada etc. have demonstrated
in [10, 11] that computing FFT on a high dimension in-place
without transposition can achieve better performance for 3D
FFTs. However, this work has not presented a more general
decomposition scheme of multi-dimensional FFT and their
result is limited to two 3D FFT sizes.

In this paper, we propose a general computation frame-
work of multi-dimensional FFTs based on Cooley-Tukey al-
gorithm and a set of highly efficient straight-line code called
codelet that is generated for small size DFTs. This frame-
work covers a large number of possible DFT implementa-
tions, and it takes special performance characteristics of
GPUs into consideration. More specifically, this framework
spans a search space by decomposing FFT on each dimen-
sion, and grouping or exchanging FFT steps among compu-
tation kernels. Empirical search is then used to find a good
implementation within the search space. Our implementa-
tion of 2D and 3D FFTs using this framework outperforms
all currently released results on a high-end GPU, GTX280.

2. OVERVIEW OF CUDA AND MULTI-
DIMENSIONAL FFT

2.1 Overview of NVIDIA CUDA
To make the computation power of modern NVIDIA GPUs

available for general purpose applications, NVIDIA intro-
duced compute unified device architecture(CUDA) [8] which
consists of a special CUDA driver, an API in the form of a C
language extension, the nvcc compiler-driver tool chain and
the actual GPU hardware. The API allows programmers to
write programs that utilize GPU’s processing power without
the need to use graphics APIs such as OpenGL or DirectX
to access the device resources. A CUDA GPU is most eas-
ily described as a collection of Multiprocessors(MPs). The
number of MPs varies from one device model to another.
All the MPs have access to a global memory space which
is the only resource on the device that can be read/written
by all MPs. Each MP consists of 8 Streaming Processor
Units (SPUs) that are driven by a single instruction unit.
Furthermore all the threads that are running in parallel on
a MP share computation resources on the MP. Those re-
sources limit the number of threads that can be handled by
at MP at the same time.

A kernel that is executed on the device will run in a Single
Instruction Multiple Thread(SIMT) fashion. This is compa-
rable to a SIMD execution, except that the threads are free
to diverge. This diverging is handled by either serializing the
different execution paths or by predication. The threads are
organized in a grid of thread blocks, where all the threads
of one block are always executed by the same MP. Commu-
nication and synchronization is limited to the threads inside
the same block.

The hardware as well as the programming model put many
constrains on what kind of application can be efficiently im-

plemented on a GPU. The cost of communication and syn-
chronization between threads, the constraint of shared hard-
ware resources and the SIMT model further limit the possi-
ble complexity of a single kernel. Some candidates of CUDA
implementation are obviously parallel algorithms(e.g. N-
body simulation or ray tracing). However, many other prob-
lems still can greatly benefit from utilizing the GPUs pro-
cessing power at least for their computational intense sec-
tions.

2.2 Representation of Multi-dimensional DFT
Multi-dimensional DFT can be represented in many differ-

ent forms. In this work, we adopt an extended I/O tensor
representation which is originated from FFTW [14]. This
tensor representation can neatly expose many optimization
opportunities and make the data movement in multi-
dimensional DFT explicit, which is particularly important
for the optimization on a GPU. This representation assumes
constant-stride access of input and output data, which is
true for both multi-dimensional DFT and the Cooley-Tukey
algorithm. First, an I/O dimension d1 is defined as d1 =
d(n, i, o, I, O), where n is the DFT size, i and o are input
and output strides, I and O are the pointers pointing to the
starting addresses of input and output arrays. The d repre-
sents direct(normal) DFT while a t represents twiddle DFT
as we will explain later. A couple of I/O dimensions compose
an I/O tensor t = {d1, d2, ..., dp} which represents a multi-
dimensional DFT. As in this paper, a tensor of nested loops,
as is described in FFTW, is not used and a DFT problem is
fully described in a single I/O tensor. A DFT on an input
array of X points, a0...aX−1, is defined in equation (1).

Ak =

X−1X
x=0

axe−
2πi
X

kx (1)

If this DFT is to be transformed from input address I to out-
put address O and the data is be loaded and stored contin-
uously, it can be compactly represented as {d(X, 1, 1, I, O)}
in I/O tensor form.

A multi-dimensional DFT is defined recursively following
Equation (1) along each dimension of a multi-dimensional
array. For example, a 3D DFT of transform length X, Y, Z
is defined in equation (2).
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If the 3D array is stored continuously along X dimension,
this 3D transform can be compactly denoted as {d(Z, XY,
XY, I, O), d(Y, X, X, O, I), d(X, 1, 1, I, O)} in I/O tensor for-
mat. The tensor notation of multi-dimensional DFT not
only specifies the sequence of 1D transforms to perform but
also tells that these transforms are performed out-of-place
each time, i.e. first I to O, then O to I, finally I to O. Fol-
lowing the multi-dimensional DFT definition or this tensor
notation, a row-column algorithm computes XY 1D DFTs
of size Z along dimension Z first, then similar batched 1D
DFTs along Y and X are performed. Since the summa-
tions in (2) are interchangeable, the computation along dif-
ferent dimensions can be done in any order. Directly follow-
ing the definition, a d dimensional DFT of total data size

N = N1N2N3...Nd has a complexity of O(N
d+1

d ). If FFT
algorithms are used for each 1D transformation , the overall
complexity decreases to O(Nlog(N)).

306



3. A MULTI-DIMENSIONAL FFT FRAME-
WORK ON CUDA

3.1 Cooley-Tukey and Codelet in Tensor Form
We base our multi-dimensional FFT work on the Cooley-

Tukey algorithm, which decomposes a large DFT problem
to smaller ones recursively and solves sub-problems directly
when they become small enough. The other key compo-
nent of our framework are codelets, straight-line code that
implements small size DFTs. Codelets are generated by a
special purpose compiler genfft [15] and are originally used
in FFTW. Genfft selects a FFT algorithm that is most likely
to be efficient for a particular DFT size, creates a directed
acyclic graph(DAG), simplifies the DAG, schedules instruc-
tions and un-parses to C. In the simplification step, several
common compiler techniques and DFT specific transforms,
such as making constants positive and DAG transposition,
are applied. The instructions in a codelet is further sched-
uled with an algorithm to asymptotically minimized regis-
ter spills. As a result, codelets have equal or fewer num-
ber of operations than the most sophisticated hand-written
FFT implementation [15] and frequently have less regis-
ter pressure. These straight-line style codelets have been
proven to be highly-efficient on CPUs within the framework
of FFTW [14]. However, no prior work on GPUs has imple-
mented DFT using codelets as far as we know. In this work,
we revised the codelets which are designed for the optimiza-
tion on CPUs and successfully integrated them into our work
on GPUs. Each codelet handles a small DFT and there is
no data exchange between threads. After eliminating the
loops in the codelets, they become completely branchless
which is perfect for an execution on GPUs. Register pres-
sure of codelets is typically much smaller than hand-written
programs. For example, 51 or 52 registers are used for each
thread in [10] for a 16-point FFT implementation on CUDA.
A codelet computing the same FFT uses only 40 registers per
thread. After carefully spilling 7 variables into the shared
memory, the register usage drops to 32, which increases the
occupancy from 25% to 50%.

There are primarily two kinds of codelets namely, direct
and twiddle codelets. A Cooley-Tukey algorithm decom-
poses the DFT d(rm, i, o, I, O) by computing r DFTs of size
m, multiplying twiddle factors and computing m DFTs of
size r. There are two implementation scenarios of Cooley-
Tukey, decimation in time(DIT) and decimation in frequency
(DIF). DIT recurses on the first batch of DFTs and DIF re-
curses on the second batch. Both cases are applicable in
our multi-dimensional FFT framework. Take DIT as an ex-
ample, a loop of DFTs d(m, ri, o, I, O) are computed first,
then twiddle factor multiplication and the second half loops
of DFTs d(r, mo, mo, O, O) are combined and solved using
a twiddle codelet. The DIT algorithm recurses on the first
part until DFT size is small enough to be solved by a direct
codelet. Instead of treating the DFT loop as a second tensor
as is in FFTW, we view it as an increase in the dimensions
of the DFT problem. In our new notation, the above DIT
algorithm is represented in equation (3),

{d(rm, i, o, I, O)} = {d(m, ir, o, I, O), tm
r (r, mo, mo, O, O)}

(3)
where tm

r is the twiddle codelet of size r including twiddle
factors of m by r. With this notation, we overcome the in-
ability to represent twiddle factor multiplication in FFTW
and clearly specify the data movement in each step of the
Cooley-Tukey algorithm. The capability to explicitly repre-
sent data movement in FFT is crucial to the success of our

framework because the performance of FFT is to largely
bounded by the memory accesses overhead on CUDA. As is
shown in equation (3), r out-of-place DFTs of size m with
transposition is performed first. Then m DFTs of size r with
m by r twiddle factors multiplication is performed in place.
In the case of DIF, the twiddle factors are multiplied to the
output of the first batch of DFTs and these two steps are
fused into one twiddle codelet. In our tensor form, DIF can
be computed as is shown in equation (4).

{d(rm, i, o, I, O)} = {tr
m(r, im, im, I, I), d(m, i, ro, I, O)}

(4)
In FFTW, twiddle codelets are in-place and transposition
is always performed in direct DFTs. We have revised twid-
dle codelets so that they can perform transposition as well.
Thus, the same problem can be solved with two more meth-
ods other than equation (3) and (4) where the transpose is
performed out-of-place in the twiddle codelets.

3.2 Important Architecture Factors and Con-
straints of CUDA in the Framework

It is important that our multi-dimensional FFT frame-
work adapts to CUDA architectural features: the global
memory access, the shared memory usage, and the register
pressure. This section briefly describes the characteristics of
the three architectural factors and generally how they im-
pact the performance of DFTs. In the next subsection, we
detail the interaction of the factors with the transformation
rules in our framework.

In CUDA, the latency of accessing global memory is much
larger than that of shared memory. However large amount of
input, output and intermediate results must reside on global
memory because it is the only writable memory that is large
enough to hold those data. If threads of a half-warp access
continuous words of size 1, 2, 4 or 8 Bytes, the individual
reads are grouped together into a single coalesced access,
which can be much more efficient than individual memory
accesses. CUDA 1.2 or higher version uses minimal num-
ber of coalesced accesses to cover the region touched by the
half-warp. In a bandwidth-bound application like FFT, coa-
lesced access to global memory is among the top priorities in
optimization. In our tensor representation, an I/O dimen-
sion d(d, i, o, I, O) denotes one step of computation from I to
O on global memory in a multi-dimensional FFT problem.
If i = 16 ∗ 2j where j >= 0, o = 16 ∗ 2k where k >= 0
and I, O are aligned to 128Byte, this I/O dimension ensures
128Byte coalesced access.

When the above coalescing condition is not satisfied but
the overall accessed region is a continuous block, shared
memory can be used to assist coalesced access. For exam-
ple, a 2D FFT is denoted as {d(y, x, x, I, O)d(x, 1, 1, O, O)}
and a direct computation of X dimension violates coalescing
condition. In this case, we can copy the data to shared mem-
ory first, then perform the computation along X in shared
memory before copying back. This process can be denoted
as equation (5) if x = 16 ∗ 2j , j >= 0 and xy < 2048.

{d(y, x, x, I, O)d(x, 1, 1, O, O)} = {d(y, x, x, I, S),
{d(x, 1, 1, S, S) + cp(y, x, x, S, O)}} (5)

Here, S stands for an address on shared memory and cp
stands for data copy. The size of shared memory on CUDA
is currently 16KByte and that can hold fewer than 2048
complex numbers.

Another constraint of CUDA implementation is the bank
conflict on shared memory. As described in the NVIDIA
CUDA Programming Guide [16], bank conflict is eliminated
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if strides between adjacent threads are odd and each thread
accesses 32bit word at one time. Thus data type should
be changed from float2 in global memory to float in shared
memory. For the above problem, one padding should be
added at the end of X axis in shared memory if y is even.
For our multi-dimensional framework, a more complicated
higher dimensional padding scheme in shared memory is
used and will be described in the next section.

In a multi-dimensional DFT of total size N = d1d2...dn,
the total number of threads needed to compute one I/O di-
mension d(di, i, o, I, O) is N/di. A CUDA block can hold at
most 512 threads. Further limitations depends on the us-
age of register per thread and 16KByte shared memory per
block. Table 1 shows the number of stack variables reported
in codelets and register usage per thread of some codelets
we use. The number of register usage is an average because

direct codelet n1 2 n1 4 n1 8 n1 16 n1 32 n1 64
variables in code 5 13 36 82 136 202
register usage 6 12 18 40 60 40

twiddle codelet t1 2 t1 4 t1 8 t1 16 t1 32 t1 64
variables in code 11 31 61 97 135 228
register usage 12 18 30 57 58 60

Table 1: Register usage per thread of some codelets

nvcc may use different numbers of registers between compi-
lations. As we can see, the total number of variables grows
rapidly with the increase of codelet size, but register usage
grows much slower. As a result, all these codelets can run
with at least 25% occupancy on GTX280 if shared memory
usage is limited. Moreover, if the register usage is slightly
more than 16 or 32 and free space on shared memory allows,
we sometimes can double the occupancy by spilling a couple
of carefully chosen variables in codelets to shared memory.

3.3 Transformations of Multi-dimensional
DFT in Tensor Form

An implementation of a multi-dimensional DFT includes
a series of transformation steps of the original problem. We
solve a multi-dimensional DFT by a sequence of CUDA
kernel functions. Each kernel implements one or several
steps in the transform series and each kernel typically loads
and stores the multi-dimensional array once. There are a
large number of valid kernel sequences for a specific DFT.
The problem is how to define a meaningful subset of the
search space on CUDA and find the best performing se-
quence within it. As is shown in [9, 10], multi-dimensional
DFT is largely a bandwidth-bound problem for CUDA. On
one hand, the number of CUDA kernels(i.e. passes of global
memory data accesses) should be minimized. On the other
hand, each kernel should have abundant parallelism and the
overall computation complexity should be kept low. We ad-
dress the this problem and the optimization problem from
a novel angle. The key point of our framework is a group
of transforms of multi-dimensional DFTs in extended ten-
sor form. These tensors have clear implication with regard
to the interaction with the GPU architectural factors and
provides guideline in performance tuning. Overall, these
transforms span a huge enough search space of DFT imple-
mentations and the optimal solution within this search space
can be found by empirical search.

A. Cooley-Tukey Decomposition of Multi-dimensional
DFTs.

We will primarily use the DIT Cooley-Tukey algorithm on
2D DFT to describe our decomposition transforms. DIF and

higher dimensional cases are similar. The row-column com-
putation of a 2D DFT is represented as {d(y, x, x, I, O), d(x,
1, 1, O, O)}. As is stated earlier, Y dimension DFTs natu-
rally have coalesced global memory access if x = 16 ∗ 2j and
j >= 0. X dimension DFT can be computed within shared
memory and coalesced access of global memory is achieved.
However, such a direct solution is inefficient or even impos-
sible for large size DFTs. There are primarily three reasons
to decompose a DFT into smaller ones. First, decomposi-
tion reduces codelet length and overall complexity. Second,
it generates more parallelism so that more CUDA resources
can be used. For instance, directly solving the 2D DFT
of size 256×256 using codelet n1 256 will allow only 256
threads and each thread needs to execute a codelet of about
7400 lines long. Finally, 1D DFT problems of size equal to
or larger than 2048 will not fit into shared memory before
decomposition.

If y = y1y2 and x = x1x2, we can apply a DIT Cooley-
Tukey algorithm, as is represented in equation (3), to both
dimensions of the 2D DFT. The resulted tensor expression
is given in formula (6).

{d(y1, xy2, x, I, O), ty1
y2(y2, xy1, xy1, O, O),

d(x1, x2, x2, O, S), tx1
x2(x2, 1, x1, S, O)} (6)

If the DFT size is large enough, we can recursively apply
Cooley-Tukey algorithm to decompose the DFT. However,
this process is not always beneficial when the codelet is too
small due to the increase of global memory accesses and
synchronization overheads. For instance, substituting the
codelet n1 16 with two codelets n1 4 and t1 4 using shared
memory results in a performance decrease for 2D FFT of
size 256×256. This decrease occurs probably because the
latency of global memory load and store can not be hidden
well with the presence of a synchronization between n1 4
and t1 4. From our tuning experience, a codelet of size 8
to 32 is usually small enough to stop this decomposition
process.

B. Grouping of Codelets.
In a sequence of codelets computing a multi-dimensional

DFT, each codelet can form an independent kernel that
loads from and stores to global memory. On the other hand,
some codelets can be grouped into one kernel with interme-
diate results stored in shared memory. The benefit of group-
ing codelets into fewer kernels is obvious, i.e. fewer passes
of global memory accesses. Nevertheless, certain limits ex-
ist to prevent grouping many codelets into a single kernel.
Grouped kernels use shared memory to store intermediate
results and there is only 16KByte of it on current NVIDIA
GPU. Suppose the size of the last codelet along X dimension
is xi, where xi >= 16, and the product of the sizes of the
codelets need to be grouped is N . If the codelet sequence
includes codelet xi, the group naturally contains continuous
data along X and N is limited by 2048 due to shared memory
size. If the sequence does not include xi, 16 continuous data
along X axis need to be grouped so that coalescing access
is achieved. In this case, 16N < 2048, i.e. N < 128, is the
constraint.

What many other multi-dimensional DFT implementa-
tions did not notice is that different dimensions or compu-
tation steps of different dimensions can be grouped into one
computation kernel. For example, 2D DFT of size 128×128
can be expressed in formula (6), where y1 = x1 = 16 and
y2 = x2 = 8. According to the grouping constraints men-
tioned above, the two X codelets can be easily grouped into
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one kernel. But Y codelets has to be computed separately
resulting in three passes of global memory access. How-
ever, codelet y2 can be combined into the X kernel after the
rewriting as is shown in formula (7). The last three codelets
can be computed efficiently within one kernel.

{d(y1, xy2, x, I, O), ty1
y2(y2, xy1, xy1, O, S),

d(x1, x2, x2, S, S), tx1
x2(x2, 1, x1, S, O)} (7)

Exploiting this possibility of grouping kernels is of crucial
importance to the performance of many multi-dimensional
DFTs. In the case of 2D FFT of size 128×128, the total
number of global memory accesses reduces by one-third and
performance increases by more than 22% after eliminating
one kernel.

For each computation step, a codelets is often computed
in-place and the least number of data transposition is achieved
in this framework. In the above example (7), two codelets
along X and Y dimension are in-place and the other two are
out-of-place. If y = y1y2y3, we can apply equation (3) two
times and the resulted codelet sequence along Y dimension
is shown in formula (8).

{d(y1, xy2y3, x, I, O), ty1
y2(y2, xy1, xy1, O, O),

ty1y2
y3 (y3, xy1y2, xy1y2, O, O)} (8)

Unlike the Hierarchical FFT described in [9] where each de-
composition step associates with a data transposition, the
above formula shows that our method needs only one trans-
position step for each dimension despite of how many codelets
are used. Such a scheme applies to higher dimensions or
X dimension, because (z, xy, xy, I, O) and (x1, x2, x2, O, S)
are essentially the same kind of problem as (y, x, x, I, O).
If there are more than two transpositions in the I/O di-
mensions you want to group together, the computation on
shared memory has to be out-of-place. An in-place compu-
tation kernel on shared memory handles twice the size of
DFT compared with an out-of-place kernel.

C. Commutability and Partial Order.
An important property of multi-dimensional DFT is its

commutability among dimensions. Because the summations
in equation (2) is commutable, different orders of computing
1D DFT along all dimensions are mathematically equiva-
lent. After applying Cooley-Tukey algorithm and the multi-
dimensional DFT is expressed in tensor form, certain partial
commutability exists. Part of the codelets sequence of one
dimension can be moved into the codelets sequence of an-
other dimension. However, the partial order among codelets
of one dimension should be preserved. An example of such a
partial order exchange of formula (7) is shown in formula (9).

{d(y1, xy2, x, I, O), d(x1, x2, x2, O, O),
ty1
y2(y2, xy1, xy1, O, S), tx1

x2(x2, 1, x1, S, O)} (9)

However formula (10), on the other hand, is an invalid ex-
change because the partial order of codelets x1 and x2 within
X dimension is destroyed.

{d(y1, xy2, x, I, O), tx1
x2(x2, 1, x1, O, S),

ty1
y2(y2, xy1, xy1, O, S), d(x1, x2, x2, S, S)} (10)

This partial commutability is given without a strict mathe-
matical proof but its validity is obvious and has been verified
via our implementation.

Performing partial order exchange sometimes provides more
choices in grouping codelets into kernels. Taking 2D DFT
of size 16×16 as an example, a direct row-column algorithm
{d(16, 16, 16, I, S), d(16, 1, 1, S, O)} has only 16 threads for
global memory access and non-coalesced writes to O. If we
use DIT Cooley-Tukey algorithm once on Y dimension and
exchange codelet order across dimensions, the following im-

plementation (11) is available.

{d(16, 16, 16, I, S), (16, 1, 1, S, O)} =

{d(4, 64, 64, I, S), d(16, 1, 1, S, S), t44(4, 16, 16, S, O)} (11)

Thus, only one kernel is used to solve this 2D FFT. It al-
lows 64 threads to access global memory in 128Byte coa-
lescing and the padding on shared memory is also easy as
we will discuss later. Such a one kernel implementation en-
abled by partial commutability across dimensions increases
the performance by about 100% and achieves 197GFlops on
GTX280 for batched execution.

4. IMPLEMENTATION OF 2D AND 3D FFT
LIBRARY ON CUDA

In this section, we describe the most important implemen-
tation and optimization issues that are considered when we
implement and tune a 2D and 3D FFT library for CUDA
based on the the multi-dimensional DFT framework intro-
duced in the last section. Our library currently supports 2D
and 3D DFTs of power-of-two sizes on NVIDIA GPU and
provides batched execution.

4.1 Efficient Use of Global and Shared Mem-
ory on CUDA

Coalesced global memory access is of crucial importance
for memory-bound applications on CUDA. Even for the lat-
est compute models, where the memory access is organized
in segments and strict coalescing is not needed, the group-
ing of the global memory accesses results in a better perfor-
mance. As is shown in [17], by ordering the data to guar-
antee coalesced 64bit or 128bit reads, a higher throughput
can be achieved for all used compute models. We arranged
the data on global memory as arrays of type float2, com-
bining two single precision floating point elements for real
and complex parts in one structure. By using this layout all
the needed operands for one warp can be read in a single
128Byte segment (compute model ≥ 1.3) or as 16 coalesced
64bit reads (compute model < 1.3). More transactions and
memory latency for other warps can be hidden in the fol-
low up computations without having to wait on additional
memory operations. Our experiments show an implementa-
tion using float2 on global memory is about 13% faster than
using arrays of float.

Data arrays on shared memory, on the other hand, are
of type float so as to avoid bank conflict. Codelets typically
have several revised versions with different input and output
data types so that it can be used on or between global and
shared memory. Unlike 3D FFT library [10, 11], twiddle fac-
tors in our 2D and 3D FFT library are computed on the fly.
Thus, codelets are revised so that they compute the twid-
dle factors instead of reading them from memory. In most
cases, computing twiddle factors using sin(x) and cos(x)
math library functions is faster than reading precalculated
values from any memory location. The throughput of these
math functions is 1 operation per clock and the accuracy of
the overall implementation is better than CUFFT as we will
show later.

Avoiding or minimizing bank conflicts on shared memory
is also important to the performance of our FFT library.
Our implementation typically has a sequence of thread ac-
cess patterns(up to three) on the same data set and minimal
bank conflicts in each access step is desired. For a 2D array
of size x×y on shared memory, threads along the Y axis with
data stride x are always bank-conflict-free. If threads along
the X axis with stride 1 also need to access the 2D array
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and x is even, one padding is added at then end of each X
array. Otherwise, no padding is necessary if x is odd [16]. It
is not always possible to achieve a bank-conflict-free layout
for a 3D data array of size x×y×z on shared memory that
has threads accessing along all three dimensions. However,
two special cases are frequently encountered, and we develop
efficient padding schemes for both of them so that bank con-
flicts are eliminated. The first case is when x = 16, where
only one padding is needed at the end of each X array sim-
ilar to 2D even-x case is needed to eliminate bank conflicts
for each dimension. If y = 16 and x is even, a 2D padding is
illustrated in figure 1. Subfigure(a), (b) and (c) show thread
blocks accessing along Z, Y and X axes. With this padding,
at most 2-way bank conflict occurs when threads access ele-
ments along the Z axis. The second case is y = 16 and x is
odd, no padding is needed at the end of each X array com-
pared with the above case and and no bank conflict exists
along any dimension.
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Figure 1: 3D array padding on shared memory when
y==16. ”0” denotes padding and ti represents the
elements accessed by thread i

4.2 Optimization Tradeoffs
Generally, fewer computation kernels or passes of global

memory access are crucial for a better performance. How-
ever it is not always obvious whether splitting or grouping
should be performed in kernels and it is important to find
a good tradeoff. Table 2 shows the passes of global mem-
ory access and overall bandwidth achieved for 2D FFT on
GTX280. On average, we achieve 74.8GB/s bandwidth on a
GTX280 which has a theoretical bandwidth of 141.6GB/s.

N 16 32 64 128 256 512 1024 2048 4096
Passes 1 2 2 2 3 3 3 5 5
GBps 78 87 65 58 87 74 63 70 79

Table 2: Passes of global memory accesses and effec-
tive bandwidth(GBps) of 2D FFTs N×N on GTX280

We are not always using the least possible number of ker-
nels and passes of global memory access because they will
force us to use either large codelets or multiple passes of
small codelets in shared memory. Large codelets reduce the
total number of threads, i.e. parallelism, and waste the com-
putation power within GPU. A codelet of size 256 has more
than 7000 lines of code and executing it in a single thread
takes much more time than distributing it to, for example, 16
threads. On the other hand, it is not always a good idea to
use small codelets and the overhead of synchronization and
transposition has to be justified. Frequently, a kernel com-
puting one middle size codelet can perfectly hide the latency
of global memory access without using shared memory. De-
composing it into two smaller codelets adds the overheads of
a synchronization and shared memory accesses, which pre-
vent a good hiding of latency and can result in much worse

performance. Computing multiple codelets within shared
memory is also limited by the shared memory size and bank
conflict issues of multi-dimensional arrays. If there are more
than two transpositions involved, the computation has to be
out-of-place in shared memory, which further reduces the
shared memory capacity. One last constraint comes from
the static assignment of registers to thread blocks during
compilation. Total register usage is estimated by multiply-
ing the total number of threads and the largest number of
registers used by individual threads. Such an pessimistic
estimation of register pressure frequently decreases the oc-
cupancy of different codelets when they are grouped together
into shared memory.

Our 2D and 3D FFT library supports batched FFT im-
plementation, which has more parallelism than a single run
and achieves better performance. The largest batch size is
limited by 1 GByte of global memory. Furthermore, at least
32 threads are needed to efficiently utilize global memory
bandwidth. For relatively large FFT sizes, there are enough
threads within each block. However, 2D FFTs less than
16×16 and 3D FFTs less than 8×8 can only achieve 64Byte
and 32Byte coalesced access respectively. Therefore, We
batch 2 to 8 identical FFT problems into a single block to
get more parallelism and each block has at least 32 threads.
The assumption of a batch size being no less than 8 for small
DFTs is reasonable. For batched 2D and 3D FFT of size 2,
data is copied between global memory and shared memory
in a separate step, where 128Byte coalescing is achieved.

5. EVALUATION
We evaluate the performance of our 2D and 3D FFT li-

brary for power-of-two sizes on three NVIDIA GPU cards,
GeForce GTX280, Quadro FX5600 and GeForce 9500GT,
which represent the three generations of NVIDIA’s CUDA
architecture that have been released so far. Their configu-
rations are listed in table 3. The data copy time between
host and device is limited by PCI bus bandwidth. It is inde-
pendent to the performance of code running on GPU, and
therefore is excluded from our measurements. The measured
runtime of each FFT is normalized to be around 1 second by
repeated execution and the minimum is reported out of four
such measurements. The correctness of our FFT output is
verified by comparing with FFTW double precision imple-
mentation. Our implementation supports both in-place and
out-of-place FFT computation if the total data size is less
than 2048. Otherwise, the computation has to be out-of-
place. No planning or pre-calculation is needed for this FFT
library and the twiddle factors are computed on the fly. We
support batched execution for both 2D and 3D FFTs and
maximum batch size is limited by 1GBytes of global mem-
ory. For a D dimensional FFT with a total data size of
M = N1N2...ND and with execution time of t seconds, its
performance is reported in GFlops defined in equation (12).

GFlops =
5M

PD
d=1 log2Nd

t
∗ 10−9 (12)

5.1 Performance of 2D and 3D FFTs on
GeForce GTX280

Figure 2 shows the performance of 2D single and batched
FFT of size N×N on GeForce GTX280. Subfigure (a) com-
pares the GFlops achieved by our implementation, CUFFT
and Govindaraju’s work [9]. Normalized runtime against our
2D FFT library is shown in subfigure (b) to highlight the
runtime difference for small transform sizes. As we can see,
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GPU Compute
capability

Multi-
processors

Bandwidth
(GBps)

Driver Nvcc &
Cufft

Gcc

GeForce GTX280 1.3 30 141.7 185.18.08 2.2 4.3.2
Quadro FX5600 1.0 16 76.8 190.18 2.3 4.1.2-46
GeForce 9500GT 1.1 4 25.6 190.18 2.3 4.1.2

Table 3: Configuration of tested GPUs
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Figure 2: Performance of 2D FFT of size N×N on GTX280

we perform better than CUFFT and Govindaraju’s work on
all power-of-two N×N sizes that can fit into global mem-
ory. We achieve 2.65× speedup over CUFFT and 1.78× over
Govindaraju’s results on average. Performance of batched
2D FFTs of size N×N is shown in the two subfigures (c)
and (d). Batch size is 224/N2 for a size N×N FFT, the
maximum supported on CUDA. CUFFT does not provide
batched implementation of 2D FFT, and therefore is not
listed. Our batched implementation is faster than Govin-
daraju’s results on all sizes. Particularly, batched 2D FFT of
size of 16×16 achieves 197GFlops, 2.8× faster than Govin-
daraju’s result. On average, we have a speed up of 1.4 times.

The performance of a single FFT execution generally in-
creases with the FFT size. Larger FFT problems have more
parallelism, therefore improving the utilization of the com-
putation power of GPU. The performance increase stops
when more passes of global memory access is needed for
some large FFT sizes. The performance of both single and
batched execution presents irregular shapes. The reason for
the irregular shapes is that this library is hand-tuned and
not all optimization techniques are applied to every FFT
size. Some techniques such as the grouping and exchange of
codelets are only beneficial for some particular DFT sizes,
i.e., when they can indeed decrease the number of kernels
or passes of global memory access. Therefore, the speedups
for different DFT sizes are not even.

Figure 3 shows the performance comparison of 3D FFT
among CUFFT, Nukada’s work [11] and our implementa-
tion. Subfigure (a) compares the GFlops achieved and sub-
figures (b) shows the normalized execution time against our
single execution. Similarly, batch size is 224/N3 for a size
N×N×N FFT. A single run of our 3D FFT implementa-
tion is up to 48.8 times and, on average, 17.4 times faster
than CUFFT. Our batched 3D FFTs achieve 163.9GFlops
on average and reach peak performance of 259GFlops on
size 8×8×8. Nukada’s work [11] reports only two N×N×N
3D DFT results. For size 256×256×256, our implementation
achieves the same performance, and we are about 20GFlops
faster than their result on size 128×128×128. Our library
demonstrates higher speedup over CUFFT on 3D than 2D
FFT. This is because 3D FFT exposes more chances for
codelet grouping or exchange techniques so as to reduce or
assist memory access. CUFFT probably uses transposition
three times for 3D FFT and two times for 2D FFT and our
library uses none for either cases. The overhead of transpo-
sition can be a huge overhead for 3D FFT.

Figure 4 presents the performance of 2D FFTs of size
N1×N2 and 3D FFTs of size N1×N2×N3 on GTX280. We
compare the GFlops achieved by CUFFT, our single and
batched implementation for some randomly chosen sizes.
Our single FFT implementation is faster than CUFFT by
3× for 2D and 28× for 3D FFTs for these test sizes. Our
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Figure 3: Performance of 3D FFT of size N×N×N on GTX280
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Figure 4: Performance of 2D FFTs of size N1×N2 and 3D FFTs of size N1×N2×N3 on GTX280

batched implementation achieves 122GFlops for 2D and
130GFlops for 3D FFTs on average. For FFTs with the
same total data size, CUFFT often has similar performance
because it transposes each dimension to the lowest one and
computes 1D FFT there. However, our library exploits the
size difference in these FFTs and therefore performs differ-
ent on different sizes. For example, we achieve better per-
formance for 2D FFT of size 2048×512 than for 512×2048
because FFTs along X axis of the former can fit into shared
memory but that of the other one can not.

5.2 Performance of 2D and 3D FFT on Quadro
FX5600 and GeForce 9500GT

Figure 5 and figure 6 show the performance of 2D and
3D FFTs on Quadro FX5600 and GeForce 9500GT GPUs.
Compared with a GTX280, these two graphic cards have
fewer registers, active warps and smaller global memory
bandwidth. The Quadro FX5600 has 16 multiprocessors
and the GeForce 9500GT has only 4. CUFFT performs rel-
atively better on these older generation GPUs, especially
for large 2D and 3D DFT sizes. For 2D FFTs of sizes
1024×1024, 2048×2048 and 4096×4096, CUFFT is about
29% faster than our implementation on FX5600 and 19%
faster on 9500GT. However, our implementation is faster
than CUFFT on all other 2D and 3D sizes on both GPUs.
More specifically for our single execution, we achieve an av-
erage speedup of 2.46× for 2D FFT and 11.5× for 3D FFT
over CUFFT on a FX5600. Batched 2D and 3D FFTs have
an average performance of 60GFlops and 71GFlops. For
9500GT, our library is faster than CUFFT by 1.97× for 2D

and 7.56× for 3D FFTs. Batched 2D and 3D FFTs achieve
16GFlops and 17GFlops on average.

The better performance of CUFFT on large 2D FFT sizes
might result from data locality being of greater important
on low-end GPUs than high-end ones. Therefore the cost
of computing high dimensional FFTs in place increases as
DFT sizes grows for our implementation. Though we do
not have the source code of CUFFT but CUFFT probably
uses transposition and only computes FFTs on the lowest
dimension. And this is justified for large FFT sizes on low-
end cards .

5.3 Precision evaluation
As a benefit of less computational complexity of the codelet,

our FFT library has better precision than CUFFT. The
root mean squared error(RMSE) of our FFT library and
CUFFT is compared in figure 7. Input of these FFTs are
unified pseudo-random numbers in the range of [−0.5, 0.5).
RMSE is computed by comparing FFT outputs on CUDA
with FFTW double precision outputs. Absolute values of
the RMSE are in the range of 10−8 to 10−3. In figure 7, the
normalized RMSE shows our precision is about 17 − 19%
better than CUFFT’s on average. Besides the limitation
of single precision numbers, another major source of error
is the low-precision CUDA trigonometric functions that we
use, i.e. sin and cos. Better precision is achieved in
another version of our library where pre-calculated twiddle
factors are loaded to the device. But this decreases the over-
all performance at times.

In summary, even though our current implementation is
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Figure 5: Performance of 2D and 3D FFT of size N×N and N×N×N on FX5600

not tuned with fully automated empirical search, it already
shows a good potential of our multi-dimensional FFT frame-
work. Furthermore, better performance may be achievable
by exhaustive search in the search space we described in this
paper.

6. CONCLUSION
A Cooley-Tukey algorithm and codelet based multi-

dimensional FFT computation framework for GPU is pro-
posed in this paper. Some important architecture factors
and constraints of the GPU are mapped to an extended I/O
tensor format. Higher dimensional FFTs are computed in-
place without being transposed to lower dimensions. Fur-
thermore, grouping and commutability among dimensions
are highlighted to reduce passes of global memory access
and assist bank-conflict-free access to shared memory. A 2D
and 3D FFT library using this framework is implemented on
NVIDIA CUDA. On a currently high-end GPU, GTX280,
our 2D library is 1.6× faster than the best previously pub-
lished results and 2.8× faster than CUFFT on average. our
3D FFT library, on the other hand, is 22.7× faster than
CUFFT. Experiments on older GPUs show our work achieves
about 2×− 12× speedup over NVIDIA’s CUFFT. Further-
more, our implementation shows better precision than
CUFFT as well. The main contribution of this paper is the
computation framework of multi-dimensional FFTs that is
based on decomposition, grouping and commutability. Even
though this search space is only partially explored in our 2D
and 3D library on CUDA by hand-tuning, our test results
have shown the success of this proposed multi-dimensional
FFT framework.

Further performance improvements are expected if auto-

tuning is used in this empirical search process. This work
can be extended to non-power-of-two and higher multi-
dimensional FFTs. Other parallel systems than GPUs, espe-
cially those that use shared memory, can also be the target
platforms of this computation framework.
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