
Input-adaptive Parallel Sparse Fast Fourier Transform for
Stream Processing

Shuo Chen
Department of ECE

University of Delaware
Newark, DE, USA

schen@udel.edu

Xiaoming Li
Department of ECE

University of Delaware
Newark, DE, USA
xli@udel.edu

ABSTRACT

Fast Fourier Transform (FFT) is frequently invoked in stream
processing, e.g., calculating the spectral representation of
audio/video frames, and in many cases the inputs are sparse,
i.e., most of the inputs’ Fourier coefficients being zero. Many
sparse FFT algorithms have been proposed to improve FFT’s
efficiency when inputs are known to be sparse. However, like
their“dense”counterparts, existing sparse FFT implementa-
tions are input oblivious in the sense that how the algorithms
work is not affected by the value of input. The sparse FFT
computation on one frame is exactly the same as the compu-
tation on the next frame. This paper improves upon existing
sparse FFT algorithms by simultaneously exploiting the in-
put sparsity and the similarity between adjacent inputs in
stream processing. Our algorithm detects and takes advan-
tage of the similarity between input samples to automati-
cally design and customize sparse filters that lead to better
parallelism and performance. More specifically, we develop
an efficient heuristic to detect the similarity between the cur-
rent input to its predecessor in stream processing, and when
it is found to be similar, we novelly use the spectral rep-
resentation of the predecessor to accelerate the sparse FFT
computation on the current input. Given a sparse signal
that has only k non-zero Fourier coefficients, our algorithm
utilizes sparse approximation by tuning several adaptive fil-
ters to efficiently package the non-zero Fourier coefficients
into a small number of bins which can then be estimated ac-
curately. Therefore, our algorithm has runtime sub-linear to
the input size and gets rid of recursive coefficient estimation,
both of which improve parallelism and performance. Fur-
thermore, the new heuristic can detect the discontinuities
inside the streams and resumes the input adaptation very
quickly. We evaluate our input-adaptive sparse FFT imple-
mentation on Intel i7 CPU and three NVIDIA GPUs, i.e.,
NVIDIA GeForce GTX480, Tesla C2070 and Tesla C2075.
Our algorithm is faster than previous FFT implementations
both in theory and implementation. For inputs with size
N = 224, our parallel implementation outperforms FFTW

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICS’14, June 10–13 2014, Munich, Germany.

Copyright 2014 ACM 978-1-4503-2642-1/14/06 ...$15.00.

http://dx.doi.org/10.1145/2597652.2597669.

for k up to 218, which is an order of magnitude higher than
prior sparse algorithms. Furthermore, our input adaptive
sparse FFT on Tesla C2075 GPU achieves up to 77.2× and
29.3× speedups over 1-thread and 4-thread FFTW, 10.7×,
6.4×, 5.2× speedups against sFFT 1.0, sFFT 2.0, CUFFT,
and 6.9× speedup over our sequential CPU performance,
respectively.

Categories and Subject Descriptors

G.1.0 [General]: Parallel Algorithms

Keywords

Sparse FFT; Input Adaptive; Stream Processing; Parallel
Algorithm

1. INTRODUCTION
The Fast Fourier Transform (FFT) calculates the spec-

trum representation of time-domain input signals. If the
input size is N , the FFT operates in O(NlogN) steps. The
performance of FFT algorithms is known to be determined
only by input size, and not affected by the value of input.
Therefore, prior FFT optimization efforts, for example the
widely used library FFTW, have been largely focused on
improve the efficiency of FFT for various computer archi-
tectural features such as cache hierarchy, but have generally
put aside the role of input characteristics in FFT perfor-
mance.

So far the only feature of input value having been lever-
aged to improve FFT performance is input sparsity. In real
world applications, input signals are frequently sparse, i.e.,
most of the Fourier coefficients of a signal are very small or
equal to zero. If we know that an input is sparse, the com-
putational complexity of FFT can be reduced. Sub-linear
sparse Fourier algorithm was first proposed in [14], and since
then, has been extensively studied in the literatures when
applied to various fields [13, 6, 2, 7, 12, 1]. However, their
runtimes have large exponents in the polynomials of k and
logN , and their complex algorithmic structures restrict fast
and parallel implementations.

A recent highly-influential work [9] presented an improved
algorithm in the runtime of O(k

√
NlogNlogN) that makes

it faster than FFT for the sparsity parameter k up to
O(

√

N/logN). The follow-up work [10] proposed an algo-
rithm with runtime O(klogNlog(N/k)) or even the optimal
O(klogN). Just like the “dense” FFT algorithms and the
earlier sparse FFT algorithms, the latest sparse FFT algo-
rithms are oblivious to input characteristics, because input

sparsity is assumed but not measured. Furthermore, the
sparse FFT algorithms’ design is fixed for all inputs of the
same size. No part in the algorithms is adapted to other
input characteristics.

Here we make an interesting observation. We know that
in many real-world FFT applications not only inputs are
sparse, but at the same time adjacent inputs are similar.
For example, in video compression, two consecutive video
frames usually have almost identical sparse distribution in
their spectrums, and differ only in the magnitudes of some
spectrum coefficients. If the FFT on the prior input has
been computed, i.e., its spectrum representation is known,
and the current input has a similar sparse distribution to
the prior input, can the similarity help computing the sparse
FFT on the current input? To answer the question, we need
to tell whether an input is similar to its predecessor, and how
the knowledge about the predecessor’s spectral representa-
tion can help. This paper answers the two questions and pro-
pose a new sublinear and parallel algorithm for sparse FFT.
The main contributions of this paper are: 1) a heuristic to
detect the sparsity homogeneity, so that we can know when
the FFT computation can be simplified with prior knowl-
edge; and 2) an efficient input adaption process to use the
sparsity homogeneity as a template to design the customized
filters for subsequent similar inputs, so that the filters lead
to less waste of calculation on those zero coefficient bins and
can better express parallelism in sparse FFT.

Particularly interesting is that the input sparsity and the
input simularity make it easier to parallelize FFT calcula-
tion. From a very high point of view, our sparse FFT algo-
rithm applies the custom-designed sparse filters to disperse
the sparse Fourier coefficients of inputs into separate bins
directly in the spectrum domain. During the dispersion,
the calculation on those bins are independent. Therefore
it leads our sparse FFT to produce a determinatively cor-
rect output, and to be non-iterative with high arithmetic
intensity as well. Substantial data parallelism is able to be
exploited from our algorithm.

Next we briefly introduce existing sparse FFT algorithms
and overview our approach. Then we present how we cus-
tomize filters based on the sparse template, and how we use
the designed filters to reduce the overhead and the number
of iterations in the sparse FFT algorithm presented in [9],
which our work is based on. Moreover, we show how our
input adaption process efficiently and effectively classifies
homogeneous and discontinuous signals and automatically
recovers from input discontinuity. Finally, we evaluate the
performance and accuracy of our input-adaptive sparse FFT
with FFTW, CUFFT and the latest sparse FFT implemen-
tation on synthetic and real video inputs.

2. BACKGROUND AND OVERVIEW
In this section we overview FFT algorithms, including

prior works on sparse Fourier transform, and then introduce
our contribution in that context.

2.1 Prior Work on Sparse FFT
A naive discrete Fourier transform of a N -dimensional in-

put series x(n), n = 0, 1, ..., N − 1 is presented as Y (d) =
∑N−1

n=0 x(n)Wnd
N , where d = 0, 1, ..., N − 1 and N -th primi-

tive root of unity WN = e−j2π/N . Fast Fourier transform al-
gorithms recursively decompose a N -dimensional DFT into

several smaller DFTs [4], and reduce DFT’s operational com-
plexity from O(N2) into O(NlogN). There are many FFT
algorithms, or in other words, different ways to decompose
DFT problems. Prime-Factor (Good-Thomas) [8] decom-
poses a DFT of size N = N1N2, where N1 and N2 are co-
prime numbers. Twiddle factor calculation is not included
in this algorithm. Additionally, Rader’s algorithm [15] and
Bluestein’s algorithm [3] can factorize a prime-size DFT as
convolution.

So far, the runtimes of all FFT algorithms have been
proved to be at least proportional to the size of input signal.
However, if the output of a FFT is k-sparse, i.e., most of
the Fourier coefficients of a signal are very small or equal to
zero and only k coefficients are large, sparse Fourier trans-
form is able to reduce the runtime to be only sublinear to
the signal size N . Sublinear sparse Fourier algorithm was
first proposed in [14], and since then, has been extensively
studied in many application fields [13, 6, 2, 7, 12, 1]. All
these sparse algorithms have runtimes faster than original
FFT for sparse signals. However, their runtimes still have
large exponents (larger than 3) in the polynomials of k and
logN , and their complex algorithmic structures are hard to
parallelize.

A highly influential work [9] presented an improved al-
gorithm with the complexity of O(k

√
NlogNlogN) to make

it faster than FFT for k up to O(
√

N/logN). The work
in [10] followed up with an improved algorithm with run-
time O(klogNlog(N/k)) or even the optimal O(klogN). Ba-
sically, the algorithms permute input with random parame-
ters in time domain to approximate expected permutation in
spectral domain for binning the large coefficients. The prob-
ability has to be bounded to prevent large coefficients being
binned into the same bucket. In addition, these algorithms
iterate over passes for estimating coefficients, updating the
signal and recursing on the reminder. Because dependency
exists between consecutive iterations, the algorithms cannot
be fully parallelized. Moreover, the selections of the per-
mutation probability and the filter, which are crucial to the
algorithms’ performance, are predetermined and are oblivi-
ous to input characteristics.

2.2 Our Approach
In this paper, we address these limitations by proposing a

new sublinear as well as parallel algorithm for sparse Fourier
transform. Our algorithm has a quite simple structure and
leads to a low big-Oh constant in runtime. Our sparse FFT
algorithm works efficiently in the context that the sparse
FFT is invoked on a stream of input signals, and neighbor-
ing inputs have very similar spectrum distribution including
the sparsity parameter k. The assumption is true for many
real-world applications, for example, for many video/audio
applications, where neighboring frames have almost identi-
cal spectral representations in the locations of large Fourier
coefficients, and only differing in the coefficient magnitudes.
Our algorithm adapts to the homogeneity in signal spec-
trums by utilizing the output of the previous FFT, i.e.,
the spectral representation of the previous input, as a tem-
plate to most efficiently compute the Fourier transform for
the current input signal. When the homogeneity is found
to be broken, our algorithm re-calculates the template and
restarts the input-adaptation. An effective heuristic is pro-
posed in this paper to detect such discontinuity in frame
spectrums.

(a) Original Spectrum of Signal (b) Permuted Spectrum of Signal (c) Applying Filter and

Subsampled FFT
(d) Recovered Spectrum of Output

m
a
g

n
it
u
d

e

m
a
g

n
it
u

d
e

m
a
g

n
it
u

d
e

m
a
g

n
it
u

d
e

Figure 1: Binning of non-zero Fourier coefficients.

f1 0 f2 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f3 0 0 f4 0 0 0 0 0 0

f1 0 0 0 f2 0 0 0 f3 0 0 0 f4 0 0 0

Hash

Function

Original Sparse

Coefficients

Permuted Sparse

Coefficients

Figure 2: Hash table based permutation.

To help understand the role of spectral template, Fig-
ure. 1 illustrates the binning process in our algorithm. Large
Fourier coefficients are binned into a small number of buck-
ets and each bucket is designed to have only one large coeffi-
cient whose location and magnitude can be then determined.
The bucket is represented by an n-dimensional filter D, that
is concentrated both in time and frequency [9, 10], to ensure
the runtime to be sublinear to N . What binning does is
essentially to convolute a permuted input signal with a well-
selected filter in spectral domain. During the binning, each
bucket receives only the frequencies in a narrow range cor-
responding to the length of filter D’s pass region, and pass
regions of different buckets are disjoint. The prerequisite of
a pass region having only one large coefficient is to make
it possible to evenly space all adjacent coefficients in spec-
trum later. The information of likely coefficient locations
used in the filter tuning is derived from the sparsity tem-
plate. Particularly, to achieve the expected equal distanced
permutation, we make use of a hash table structure to di-
rectly permute coefficients in the spectral domain. Fig. 2
shows the example of our hash table based permutation in
spectral domain, where fi denotes non-zero Fourier coeffi-
cients and the numbers shown above represent locations of
the coefficients.

Note that we do not permute input in time domain to ap-
proximate the equal distanced permutation with a certain
probability bound, but rather directly permute in spectral
domain. In addition, each bucket certainly bins only one
large coefficient. Therefore our sparse FFT algorithm is al-
ways capable of producing a determinative as well as correct
output. Once each bucket bins only one large coefficient, we
also need to identify its magnitudes and locations. Instead
of recovering the isolated coefficients using linear phase es-
timation [10], we can easily look up the hash table reversely
to identify binned coefficients. As a result, our algorithm
has the runtime at most O(k2logN).

Furthermore, if the distances of all adjacent frequencies
are larger than the minimum length of filter’s pass region,
we can reduce the number of permutations and therefore
further improve the runtime to O(klogNlog(klogN)).

Another desirable trait of our algorithm, compared with
prior sparse FFT algorithms, is its capability to be fully
parallelized. Since our algorithm is non-iterative with high
arithmetic intensity, substantial data parallelism can be ex-
ploited from the algorithm. The graphical processing units
(GPUs) are utilized for the well-suited data parallel com-
putations. In this work we parallelize three main steps in

our algorithm on GPU: input permutation, subsampled FFT
and coefficient estimation.

3. INPUT ADAPTIVE SPARSE FFT
In this section, we go over several algorithm versions to ex-

plain the evolution from a general sparse FFT algorithm to
the proposed input-adaptive parallel sparse FFT algorithm.
We first describe a general input adaptive sparse FFT algo-
rithm which comprises of input permutation, filtering non-
zero coefficients, subsampling FFT and recovery of locations
and magnitudes. Subsequently, we discuss how to save the
number of permutations and propose an alternatively opti-
mized version for our sparse FFT algorithm to gain runtime
improvement. Moreover, the general and the optimized ver-
sions are hybridized so that we’re able to choose a specific
version according to input characteristics. Additionally, we
show how the performance of our implementation can be
parallelized for GPU and multi-core CPU. Finally, an ex-
ample of real world application is described to illustrate our
input adaptive approach.

3.1 General Input-Adaptive Sparse FFT

3.1.1 Notations and Assumptions

For a time-domain input signal x with size N (assuming
N is an integer power of 2), its DFT is x̂. The sparsity
parameter of input, k, is defined as the number of non-zero
Fourier coefficients in x̂. In addition, [q] refers to the set of
indices {0, ..., q− 1}. supp(x) refers to the support of vector
x, i.e. the set of non-zero coordinates, and |supp(x)| denotes
the number of non-zero coordinates of x. Finally, this ini-
tial version of algorithm assumes input homogeneity, that
is, the locations locj of non-zero Fourier coefficients can be
estimated from similar prior inputs, where j ∈ [k]. The loca-
tion template is computed only once for a sequence of signal
frames that are similar to each other. The computing of the
template by our input-adaptive mechanism is described in
section 3.5.

When we find that homogeneity is broken, our algorithm
re-calculates the template and restarts the input-adaptation.

3.1.2 Hashing Permutation of Spectrum

The general sparse FFT algorithm starts with binning
large Fourier coefficients into a small number of buckets
by convoluting a permuted input signal with a well-selected
filter in spectral domain. To guarantee that each bucket
receives only one large coefficient so that its location and
magnitude can be accurately estimated, we need to permute
large adjacent coefficients of input spectrum to be equidis-
tant. Knowing the possible Fourier locations locj and their
order j ∈ [k] from the template, we can customize a hash
table to map spectral coefficients into equally distanced po-
sitions.

Definition 1. Define a hash function H: idx = H(j) =
j×N/k, where idx is index of permuted Fourier coefficients
and j ∈ [k].

Next we want to determine the shifting distance s between
each original location loc and its permuted position idx to
be sj = idxj − locj , j ∈ [k]. Since shifting one time moves
all non-zero Fourier coefficients with a constant factor, so in
the worst case, only one Fourier coefficient will be permuted

into the right equidistant location. In addition, since we
need to permute in total k non-zero coefficients, at most
k-time shiftings have to be performed to permute all the
coefficients into their equal distanced positions.

Moreover, the shifting factors obtained in spectral space
should be translated into correspondent operations in time
domain so that they are able to take effect with input signal
xi, i ∈ [N]. In effect, shifted spectrum x̂loc−s is equivalently

represented as xiω
si in time domain, where ω = eb2π/N is a

primitive n-th root of unity and b =
√
−1.

Definition 2. Define the permutation Ps(j) as (Ps(j)x)i =

xiω
is(j) therefore ˆPs(j)xi

= x̂(locj − s(j)), where s(j) is the
factor of j-th shifting.

Therefore, each time when we change the factor s(j), the
permutation allows us to correctly bin the large coefficient
at location locj into the bucket. The length of bucket is
determined by the flat window function designed in the next
section.

3.1.3 Flat Window Functions

In this paper, the method of constructing a flat window
function is same as that used in [9]. The concept of flat
window function is derived from standard window function
in digital signal processing. Since window functions work
as filters to bin non-zero Fourier coefficients into a small
number of buckets, the pass region of filter is expected to
be as flat as possible. Therefore, our filter is constructed
by having a standard window function convoluted with a
box-car filter [9]. Moreover, we want the filter to have a
good performance by making it to have fast attenuation in
stopband.

Definition 3. Define D(k, δ, α), where k >= 1, δ > 0,
α > 0, to be a flat window function that satisfies:

1. |supp(D)| = O(k
α
log(1

δ
));

2. D̂i ∈ [0, 1] for all i;

3. D̂i ∈ [1− δ, 1 + δ] for all |i| ≤ (1−α)N
2k

;

4. D̂i < δ for all |i| ≥ N
2k
;

In particular, a flat window function acts as a filter to
extract a certain set of elements of input x. Even if the
filter consists of N elements, most of the elements in the
filter are negligible and there are only O(k

α
log(1

δ
)) signifi-

cant elements when multiplying with x in time domain. In
addition, the flat window functions are precomputed in our
implementation to save execution time, since their construc-
tions are not dependent on input x but only dependent on
N and k. We can lookup each value of the window function
in constant time.

Fig.3 shows an example of Gaussian, Kaiser and Dolph-
Chebyshev flat window functions. Note that the spectrum
of our filters D is nearly flat along the pass region and has
an exponential tail outside it. It means that leakage from
frequencies in other buckets can be negligible. By compar-
ing the properties of the three window functions, Dolph-
Chebyshev window is the optimal one for us due to its flat
pass region as well as its quick and deep attenuation in stop-
band.

3.1.4 Subsampled FFT

The coefficients binning process convolutes input spec-
trum with flat window function. In our algorithm, this

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Samples

A
m

p
lit

u
d
e

Time domain

Gaussian

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Samples

A
m

p
lit

u
d
e

Time domain

Kaiser

0 0.2 0.4 0.6 0.8
-200

-150

-100

-50

0

50

Normalized Frequency (�✁ rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

Frequency domain

Kaiser

0 0.2 0.4 0.6 0.8
-300

-200

-100

0

100

Normalized Frequency (✂✄ rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

Frequency domain

Dolph-Chebyshev

0 0.2 0.4 0.6 0.8
-200

-150

-100

-50

0

Normalized Frequency (☎✆ rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

Frequency domain

Gaussian

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Samples

A
m

p
lit

u
d
e

Time domain

Dolph-Chebyshev

Figure 3: Dolph-Chebyshev, Gaussian and Kaiser

flat window functions for N = 1024.

convolution is actually performed in time domain by first
multiplying input with filter and then computing its sub-
sampled FFT. Suppose we have one N -dimensional complex
input series x with sparsity parameter k for its Fourier co-
efficients, we define a subsampled FFT as ŷi = x̂iN/k where
i ∈ [k] and N can be divisible by k. The FFT subsampling
expects the locations of Fourier coefficients in spectrum do-
main have been equally spaced. The proof of k-dimensional
subsampled FFT has been shown in [9] and the time cost is
in O(|supp(x)|+ klogk).

3.1.5 Reverse Hash Function for Location Recovery

After subsampling and FFT to the permuted signal, the
binned coefficients have to be reconstructed. This is done
by computing the reverse hash function Hr.

Definition 4. Define a reverse hash function Hr: rec =
Hr(idx) = idx

(N/k)
, where idx is index of permuted Fourier

coefficients and rec is the order of recovered coefficients.

Therefore, the recovery of Fourier locations can be esti-
mated as locrec by using the reconstructed order of frequen-
cies.

3.1.6 Basic Algorithm

Combining the aforementioned steps, we can piece to-
gether a baseline sparse FFT algorithm. Note that up to
this point, we have not introduced input adaptability, yet.
Assuming we have a Fourier location template with k known
Fourier locations loc and a precomputed filter D,
1. For j = 0, 1, 2, ..., k − 1, where j ∈ [k], compute hash

indices idxj = H(j) of permuted coefficients, and determine
shifting factor sj = idxj − locj .
2. Compute y = D · Ps(x), therefore |supp(y)| = |s| ×

|supp(D)| = O(|s| k
α
log(1

δ
)). We set δ = 1

4N2V
, where V is

the upperbound value of Fourier coefficients and V ≤ N .

3. Compute ui =
∑

|supp(y)|
k

−1

l=0 yi|y|+lk where i ∈ [k].
4. Compute k-dimensional subsampled FFT ûi and make

ẑidx = ûi, where i ∈ [k].
5. Location recovery for ẑidx by computing reverse hash

function to produce rec = Hr(idx) and finally output ẑloc(rec).
The computational complexity The computational com-

plexity of our general sparse FFT algorithm can be derived

from the complexity of each step: Step 1 costs O(k); step
2 and 3 cost O(|s| k

α
log(1

δ
)); step 4 costs O(klogk) for a k-

points FFT; step 5 costs O(k). Therefore the total running
time is O(|s| k

α
log(1

δ
)). It is very rarely that initial Fourier

coefficients have equidistant locations, therefore |s| equals to
|k| in general and the runtime becomes O(k

2

α
log(1

δ
)) which

is asymptotic to O(k2logN).

3.2 Optimized Input-Adaptive Sparse FFT
In this section we introduce several transformations of our

algorithm that may improve performance and facilitate par-
allelization. The complexity of the general adaptive sparse
Fourier algorithm is asymptotic to O(|s| k

α
log(1

δ
)) if initially

no adjacent Fourier coefficients are equally distanced. How-
ever, if the number of permutations can be reduced, then
|s| will be decreased. In fact, it is unnecessary to permute
all the Fourier locations to make them equidistant between
each other. Since binning the sparse Fourier coefficients is
a process of convoluting permuted input spectrum with a
customized filter, it is guaranteed that if length of filter’s
pass region ǫ is less than or equal to half of the shortest
distance distmin among all the adjacent locations of non-
zero coefficients, i.e. ǫ <= distmin/2, then we don’t need
to permute all coefficients before we do a FFT. Moreover,
in this way, we can get rid of aliasing distortions during the
binning and each pass region essentially receives only one
large coefficient. If we do not do this, aliasing error occurs
and we have to permute all spectral samples.

Next we continue to apply the flat window function D to
compute filtered vector y = Dx and then a FFT is computed
for y to produce the final output ŷ. The form of FFT we use
here is not a k-dimensional subsampled FFT described pre-
viously, since the subsampled FFT requires that locations of
non-zero Fourier coefficients are permuted to be equidistant.
Instead, we apply a general FFT subroutine into calculation
of ŷ. The size of the FFT is dependent on the length of non-
zero elements in y, which is O(k

α
log(1

δ
)) determined by non-

zero region of window function D. We treat the size of this
FFT as a region with length O(k

α
log(1

δ
)) (i.e. O(klogN))

truncated from size N . Total number of such truncated re-
gions is N

klogN
. In addition, since k sparse Fourier coefficients

are distributed in a region consisting of N elements, we have
to identify whether the output of O(k

α
log(1

δ
))-dimensional

FFT contains all non-zero Fourier coefficients. If not, we
would like to shift the unevaluated non-zero coefficient into
the truncated region. Our algorithms determines whether
to do the shifting before computing FFT. Since the loca-
tions of non-zero coefficients and the length of truncated
region are known from template, we compare the locations
with boundary of truncated region to determine the shifting
factor sf .

3.2.1 Input-Adaptive Shifting

There are two ways to shift non-zero coefficients. 1) If
k <= N

klogN
, we shift the first unevaluated non-zero coeffi-

cient into the truncated region each time; or 2) If N
klogN

< k,
we shift the unevaluated non-zero coefficient by a constant
factor klogN each time;

In the worst case, the first method performs shifting at
most O(k) times, while the second version uses at most
O(N

klogN
). However, if all large coefficients reside in only

one truncated region, we need no shifting and hence we ob-
tain the best case. Meanwhile, the shifting sfi to spectral

coefficients, i.e. ŷi+sfi is equivalent to a time domain oper-
ation by multiplying input signal yn with a twiddle factor,
i.e. yne

−b2πsfin/N where b =
√
−1. Therefore, the cost of

shifting for one time is the length of filtered vector y, i.e.
O(klogN).

3.2.2 Optimized Algorithm

Adding the optimization heuristics and the input-adaptive
shifting, the improved sparse FFT algorithm works as fol-
lowing:

1. Apply filter to input signal x:
Utilize a flat window function D to compute the filtered

vector y = Dx. Time costRT1 isO(k
α
log(1

δ
)), i.e. O(klogN).

2. Spectrum shifting: Compare k and N
klogN

to select
one of the two shifting methods and then do the shifting to
filtered vector y. The step-2’s runtime RT2 is O(klogN) ≤
RT2 < O(min{k, N

klogN
} k
α
log(1

δ
)), i.e. O(klogN) ≤ RT2 <

O(min{k, N
klogN

}klogN).

3. For e ∈ {1, 2, ...,min{k, N
klogN

}}, each shifting event

Ie is to compute O(k
α
log(1

δ
))-dimensional (i.e. O(klogN)-

dimensional) FFT ẑe as ẑe,i = ŷi in current truncated re-
gion, for i ∈ [O(k

α
log(1

δ
)) = O(klogN)]. Final output is ẑ.

The step-3’s runtime RT3 is O(klogNlog(klogN)) ≤ RT3 <
O(min{k, N

klogN
}klogNlog(klogN)).

Therefore, total runtime RT of the improved sparse FFT
algorithm is
O(klogNlog(klogN)) ≤ RT < O(min{k, N

klogN
}klogNlog(klogN)).

3.3 Hybrid Input-Adaptive Sparse FFT
It is clear from the complexity analysis of our general and

optimized sparse FFT algorithms that the two algorithm
versions are best suited for different input characteristics.
That is, the “optimized” version does not perform better
than the general version on all cases. We hybridize the two
approaches by at runtime selecting the most appropriate ver-
sion based on input characteristics.

In our optimized version of sparse FFT algorithm, it is
worth mentioning that if the required length of pass re-
gion is too short, such a filter becomes hard to construct
in practice. Therefore, we define a threshold distTD of min-
imum distance distmin. If distmin >= distTD, then the
filter can be constructed to have expected pass region. If
distmin < distTD, then our general sparse FFT has to be
applied and all the Fourier locations have to be permuted
to be equidistant. The threshold can be obtained by offline
empirical search.

Therefore, the two algorithm versions are selected based
on the following heuristic:

1. Determine the shortest distance distmin among all ad-
jacent locations of k large coefficients: Initialize minimum
distance distmin = 0; For j ∈ 1, 2, ..., k − 1, compute dis-
tances distj = locj − locj−1 between all k adjacent sparse
Fourier locations locj−1 and locj ; Then if distj <= distmin,
update distmin = distj . The runtime is O(k).

2. If distmin >= distTD, we choose the optimized ap-
proach to avoid large number of permutations; If distmin <
distTD, then our general sparse FFT has to be applied and
all the Fourier locations have to be permuted to be equidis-
tant. The threshold can be obtained by empirical search in
our filter design process.

The cost for the selecting process is only O(k), which can
be neglected compared with the runtime of either the general
version or the optimized version.

3.4 Parallel Input-Adaptive Sparse FFT
Compared with the “dense” FFT algorithms or the exist-

ing sparse FFT algorithms, our input-adaptive sparse FFT
algorithm can be better parallelized. Specifically, our algo-
rithm is non-iterative with high arithmetic intensity in most
portions. The non-iterative nature exposes good coarse-
grain parallelism. Moreover, the data parallelism in each
substep can also be exploited. In this paper, we use the
Graphic Processing Units (GPUs) for the data parallel com-
putations. Several architectural-oriented transformations are
applied to fine-tune the algorithm for the GPU architecture.

We use the general sparse FFT implementation to demon-
strate how we parallelize our input-adaptive sparse FFT al-
gorithms. The parallelization of the optimized version is
similar. Data parallelism exists in the hashed index com-
putation, input filtering and permuting, subsampling FFT,
and location recovery. Therefore, we implement a GPU
computational kernel for each step. First of all, the ker-
nel HashFunc() is responsible to compute hashed indices
of permuted coefficients and to determine shift factors. The
loop of size k is decomposed into k threads and each thread
concurrently works at each index j in the algorithm. In ad-
dition, the kernel Perm() with k2logN threads is used to
apply filter and permutation to input. Each thread mul-
tiplies the filter and the shifting factor with input for one
element. We parallelize the subsampling of input in kernel
Subsample() with total k threads before launching the FFT
kernel TunedFFT (). Finally we obtain output from loca-
tion estimation kernel Recover() with k threads parallelizing
the loop of algorithm.

3.4.1 Tuned GPU based FFT Library

Our GPU kernel decomposes a 1D FFT of size N =
N1 ×N2 into multi-dimensions N1 and N2. Therefore it en-
ables the exploitation of more parallelism for parallel FFT
implementation on GPU architectures. All N1 dimensional
1D FFTs are first calculated in parallel across N2 dimen-
sion. If the size of N1 is still large after decomposition, we
would further decompose each N1 = N11 × N12 sized 1D
FFT into two dimensional FFTs with smaller sizes N11 and
N12, respectively. On GPU, the device memory has much
higher latency and lower bandwidth than the on-chip mem-
ory. Therefore, shared memory is utilized to increase device
memory bandwidth. N1W ×N11 ×N12 sized shared mem-
ory needs to be allocated, where N1W is chosen to be 16
for half-warp of threads to enable coalesced access to device
memory. The number of threads in each block, for both
N11 and N12-step FFTs, is therefore N1W ×max(N11, N12)
to realize maximum data parallelism on GPU. To calculate
each N1-step 1D FFT, a size N11 FFT is executed to load
data from global memory into shared memory for each block.
Next, all threads in each block are synchronized before data
in shared memory is reused by the N12-step FFT and sub-
sequently written back to global memory. Experiment tests
show that such shared memory technique effectively hides
global memory latency and increases data reuse, both con-
tributing to the performance on GPU. Fig.4 shows the work-
ing flow of our GPU based parallelization.

N2

N1

N2

N12

N11
N2

N11

N12/#streams

N12

N1W

N2W

N=N1*N2 stream 0

stream 1

stream 2

stream 3
N2

For each stream

1D FFT

Cooley�Tukey

decomposition

Further

decomposition

N11/#streams

Figure 4: Working flow of GPU parallelization.

3.5 Input Adaption Heuristics and Process
In this section, we describe our overall input adaption

process. We first detail when and how Fourier location tem-
plates are generated. Then, we elaborate how our sparse
FFT adapts to inputs with homogeneous and discontinuous
characteristics.

3.5.1 Scenario Establishment

Assume we use a fix video camera to record the move-
ment of a 2D object for a duration of time. Each frame
of the object can be represented as a 2D matrix img(g, h)
whose values stand for color digits, where # of rows is ro,
of columns is col, and g ∈ [ro], h ∈ [col]. In this pa-
per, we flatten the 2D matrix into a row-major 1D signal
xi = x(i = g ∗ col + h) = img(g, h). If the interval be-
tween the same object in two time-adjacent video frames is
m in X dimension and v in Y dimension, it is clear that
the shifting factor (m, v) to img(g, h) is the same as xi since
img(g−v, h−m) = x(g ∗col−v ∗col+h−m) = xi−v∗col−m.
Therefore, the process of video recording is modeled as a
time shifting process to xi, and we want to compute its
Fourier transform x̂j .

3.5.2 Input Adaption for Homogeneous Signals

If the scene doesn’t switch to another scene, i.e., the shifted
object signals are homogeneous, the signals will have same
amplitudes but differ in the X dimensional displacement.
As a result, in the spectral domain, the neighboring frames
have identical Fourier locations but differ in the coefficients.

In the beginning, the input signal xi,T0 is captured in a
video frame at the initial time slot T0. We generate the
Fourier template Tmp once by calculating xi,T0’s Fourier
transform x̂j,T0 using a dense FFT if x̂ is not sparse or
using a sparse FFT if x̂ is sparse. The Fourier template
Tmp containing all the locations of non-zero Fourier co-
efficients and their order for x̂i at T0. The cost includes
runtime of a full FFT, i.e. O(FFT), plus the time to iden-
tify sparse Fourier locations, i.e. O(N). Next, we need to
compute Fourier transform for xi−m1 at time T1. Since the
time-shifted xi−m1 corresponds to x̂je

−b2πm1j/N in spectral
domain, where b =

√
−1, hence the locations of non-zero

Fourier coefficients in x̂j,T1 is same as those in x̂j,T0, but
only the coefficients differ. As a consequence, the Fourier
template Tmp is used to compute sparse FFT for xi−m1,T1

at T1 and for xi−mt,T t in the following time slots Tt. There-
fore, we only compute dense FFT once on each segment of
homogeneous inputs. Except for the first input in the seg-
ment, our adaptive sparse FFT is used.

3.5.3 Input Adaption for Discontinuous Signals

When the homogeneity is broken, the input-adaptation
restarts by re-calculating the spectral template. There are
two types of discontinuity: Case 1, the signal size is invari-
able, but its amplitudes vary; Case 2, both signal size and
amplitudes vary.

Table 1: Sub-steps parameters of input adaption
Parameters Functionality
#frames Total # of video frames per segment.
#segment Total # of stream segments.
Full FFT Time of the full dense or sparse FFT

to generate Fourier location template.
Partial FFT Time of the partial-size FFT

to detect discontinuity.
T loc Time to find sparse Fourier locations.
IA sFFT Time of our input-adaptive sparse FFT.

We develop an effective heuristic to detect such discon-
tinuity in frame spectrums. Conceptually, if the standard
FFT is computed for each input and the output is com-
pared with the output of our sparse FFT, the deviations
between the two will be small in the case of homogeneity,
but will become large at the discontinuity point. However,
we cannot run a O(NlogN)-time standard FFT to detect
the discontinuity, which will void all performance advantage
of the sparse FFT. Instead, we use sampling. A partial size
FFT is calcuated as the standard, and its runtime is limited
to klogN so that the complexity of our library plus partial
standard FFT is still kept to be strictly sublinear to N and
to be smaller than the runtime of other sparse FFTs as well.
We tried two sampling methods: First-Partial Method, sim-
ply chooses the first klogN portion from the output; and
Partial Sampling Method, samples the output by a rate of

N
klogN

.
Subsequently, we need to quantitively define discontinu-

ity. We use the first-level deviation devi by comparing the
outputs of our sparse FFT with that of sampled FFT. We
further conduct a second-level deviation metric
dev 2nd(devi, devi−1) to determine the relative degree of
difference between devi for current signal xi and devi−1

for signal xi−1 in the prior frame i − 1. From the eval-
uation in section 4.2, if discontinuity occurs at frame i,
dev 2nd(devi, devi−1) at the discontinuous point will be much
larger than dev 2nd(devi−m, devi−m−1), 1 ≤ m < #frames,
of the previously homogeneous cases, and can be accurately
separated. Since we only need compute the second-level
metric once, the cost for the entire detection is
O(our sparse fft) + klogN +O(1) and is asymptotic to only
O(our sparse fft). Finally, after the discontinuity has been
detected, our algorithm re-calculates the template and re-
sumes the input-adaptation.

The overall performance of our input-adaptive sparse FFT
algorithm can be decomposed into the time components
listed in Table 1. Suppose there are #segment segments of
inputs in a stream. In each segment, the first #frames− 1
frames are homogeneous and discontinuity occurs at the last
frame. The execution time of our algorithm over the whole
stream can be summarized as T ime = Full FFT +T loc+
(IA sFFT+Partial FFT)×(#frames−1)×#segments+
(Full FFT + T loc+ IA sFFT)×#segments.

4. EXPERIMENTAL EVALUATION
In this section we evaluate our input-adaptive sparse FFT

implementation and its performance in a real-world-like ap-
plication. All inputs are double-precision. The evaluation
is conducted on three heterogeneous computer configura-
tions. The sequential version is implemented on the Intel
i7 920 CPU and the parallel implementation is tuned for
three different NVIDIA GPUs, i.e. GeForce GTX480, Tesla

C2070 and Tesla C2075. For both sequential and paral-
lel versions, we evaluate our general and optimized sparse
FFT approaches, and compare them against four highly-
influential FFT libraries: 1) FFTW 3.3.3 [5], the latest
FFTW which is one of the most efficient implementations
of dense FFT. In FFTW, Streaming Single Instruction Mul-
tiple Data Extensions (SSE) on Intel CPU is enabled for
better performance. Furthermore, we use two levels of op-
timizations in FFTW, i.e. ESTIMATE (a basic optimiza-
tion level marked as ’FFTW’ in the plots) and MEASURE
(a more aggressively optimized version marked as ’FFTW
OPT’). The 4-thread enabled FFTW is used in evaluation
of the parallel version. 2) sFFT 1.0 and 2.0 [9], which is
one of the fastest sublinear algorithms of sparse FFT. 3)
AAFFT 0.9 [11], which is another recent sublinear algorithm
with fast empirical runtime. 4) CUFFT 3.2, the NVIDIA
CUDA FFT library for GPU-based dense FFT implemen-
tation. The GPU performance reported in this paper in-
cludes the time for both computation and data transferring
between host and device. The configurations of GPUs and
CPU are summarized in Table 1.

Table 2: Configurations of GPUs and CPU
GPU Memory NVCC PCI

GeForce GTX480 1.5GB 3.2 PCIe2.0 x16
Tesla C2070 6GB 3.2 PCIe2.0 x16
Tesla C2075 6GB 3.2 PCIe2.0 x16

CPU Frequency/Cores Memory Cache
Intel i7 920 2.66GHz/4 cores 24GB 8192KB

4.1 Input-Adaptive Sparse FFT
We evaluate both the sequential and the parallel versions

of our general sparse FFT in two cases: First, we fix the
sparsity parameter k = 64 and plot the execution time of
our library and the other libraries for 18 different signal sizes
from N = 210 to 227. Second, we fix the signal size to N =
224 and evaluate the running time under different numbers
of non-zero frequencies, i.e. k.

4.1.1 Sequential Input-Adaptive Sparse FFT

Fig. 5 and Fig. 6 show our sequential sparse FFT on an
Intel i7 CPU. The basic version of our library is labeled as
flag ’General’, and the average and the best case of our op-
timized version is marked as ’OPT-AVG’ and ’OPT-BEST’,
respectively. Specifically, our optimized version performs
best when all large coefficients reside in only one truncated
region of length O(klogN) so that no shifting is needed.
The ’OPT-AVG’ case instead runs on a random input for 10
times and then takes an average.

In Fig. 5, we fix k = 64 but vary N . The running time
of FFTW is linear in the signal size N and sFFT 1.0/2.0
shows approximately linear in N when N > 220. However,
our sparse FFT’s performance appears almost constant as
the signal size increases, which reflects the sub-linear com-
plexity of our algorithm. In addition, AAFFT 0.9 is sta-
ble over different N but its performance is lower than ours
and sFFT. Overall, our approach outperforms over sFFT,
FFTW and AAFFT. Our general version, the average case
and the optimal case of our optimized library become faster
than FFTW with N ≥ 218, N ≥ 217, and N ≥ 214, respec-
tively, while sFFT and AAFFT achieve this goal with much
larger input sizes, i.e., N ≥ 219 and N ≥ 224, respectively.
In Fig. 6, we fix N = 224 but change k. FFTW shows

invariance in performance since its complexity is O(NlogN)
which is independent to k. Our general sparse FFT main-

✥�✁✂✄

✂☎✂✂✂✥

✂☎✂✂✥

✂☎✂✥

✂☎✥

✥

✥✂

✷✶✆ ✷✶✶ ✷✶✝ ✷✶✞ ✷✶✟ ✷✶✠ ✷✶✡ ✷✶☛ ✷✶☞ ✷✶✌ ✷✝✆ ✷✝✶ ✷✝✝ ✷✝✞ ✷✝✟ ✷✝✠ ✷✝✡ ✷✝☛

❘
✍
✎
✏
✑✒
✓
✔✕
✓
✖
✗

❙✘✙✚✛✜ ❙✘✢✣ ✤✦✧

★✩✪ ✫✬✭✮ ✯✰ ✱✬✲✪✳✴ ✱✬✵✮ ✸✹✺✻✼✽

❋❋✾✿ ❀ ❁❂❃❄❅❆
❋❋✾✿ ❇❈✾ ❀ ❁❂❃❄❅❆
❇❖❃ ❇❈✾❉❊●❍✾ ■❈❏

❇❖❃ ❇❈✾❉❑▲▼ ■❈❏
❇❖❃ ▼❄◆❄❃❅P ■❈❏

s❋❋✾ ❀◗❚

s❋❋✾ ❯◗❚
❑❑❋❋✾ ❚◗❱

Figure 5: Sequential performance vs. signal size.

❲❳❨❩❬

❩❭❩❩❩❲

❩❭❩❩❲

❩❭❩❲

❩❭❲

❲

❲❩

❲❩❩

❲❩❩❩

❪❫ ❪❫❫
❪❫❫❫

❪❫❫❫❫

❪❫❫❫❫❫

❴
❵
❛
❜
❝❞
❡
❢❣
❡
❤
✐

❥❦❧♠♥♦ ♣q ❥♣rt✉♥♦♣ ✈♦♥✇❦♥r①②♥③ ④⑤⑥

⑦⑧⑨ ⑩❶❷❸ ❹❺ ❻❼❽❾❺❶❿➀ ➁➂➃➄
➅➆

➇

➈➈➉➊ ➋ ➌➍➎➏➐➑
➈➈➉➊ ➒➓➉ ➋ ➌➍➎➏➐➑
➒➔➎ ➒➓➉→➣↔↕➉ ➙➓➛

➒➔➎ ➒➓➉→➜➝➞ ➙➓➛
➒➔➎ ➞➏➟➏➎➐➠ ➙➓➛

➡➈➈➉ ➋➢➤

➡➈➈➉ ➥➢➤
➜➜➈➈➉ ➤➢➦

Figure 6: Sequential performance vs. sparsity.

tains its performance superiority over FFTW for k up to
3000 and 2000, respectively. Our optimal version shows a
faster performance than FFTW before k reaches 100000.
However, sFFT 1.0, sFFT 2.0 and AAFFT 0.9 are faster
than basic FFTW only when k is less than 900, 1000 and
100. Therefore, our approach extends the range of input
sparsity parameter k in which a sparse FFT outperforms a
dense FFT, the range being an indicative and widely used
efficiency metric when evaluating a sparse FFT algorithm.
Furthermore, our library performs better than all other com-
pared FFT libraries on average.

4.1.2 Parallel Input-Adaptive Sparse FFT

Fig. 7 shows the parallel versions of our sparse FFT on
three GPUs. Since there is no parallel version of either sFFT
or AAFFT, we only compare to the 4-thread FFTW and
CUFFT. In Fig. 7, we fix k = 64 and vary N . Both 4-thread
FFTW and CUFFT are linear in the signal size N , however,
our parallel performance appears constant as N increases.
Our general version implementations on the three GPUs are
faster than the 1-thread FFTW, the 4-thread FFTW and
CUFFT when N ≥ 214, N ≥ 216 and N ≥ 217. Further-
more, the optimal performance of our parallel case is faster

➧➨➩➫➭

➫➯➫➫➫➧

➫➯➫➫➧

➫➯➫➧

➫➯➧

➧

➧➫

➲➳➵ ➲➳➳ ➲➳➸ ➲➳➺ ➲➳➻ ➲➳➼ ➲➳➽ ➲➳➾ ➲➳➚ ➲➳➪ ➲➸➵ ➲➸➳ ➲➸➸ ➲➸➺ ➲➸➻ ➲➸➼ ➲➸➽ ➲➸➾

➶
➹
➘
➴
➷➬
➮
➱✃
➮
❐
❒

❮❰ÏÐÑÒ ❮❰ÓÔ ÕÖ×

ØÙÚ ÛÜÝÞ ßà áÜâÚãä áÜåÞ æçèéêë

ììíî ï ðñòóôõö
ììíî ÷øí ï ðñòóôõö

ùúììí

÷ûò ÷øí ùüýþÿ
÷ûò ÷øí ùüýþý

÷ûò ÷øí ❖í�ï✁ý

÷ûò ❖ó✂óòô✄ ùüýþÿ
÷ûò ❖ó✂óòô✄ ùüýþý

÷ûò ❖ó✂óòô✄ ❖í�ï✁ý

Figure 7: Parallel performance vs. signal size.

than 1-thread FFTW, 4-thread FFTW and CUFFT when
N ≥ 212, N ≥ 214 and N ≥ 214.
In Fig. 8, we fix N = 224 and change k. Specifically,

our parallel performance of basic version on GTX480, Tesla
C2070 and C2075 has a runtime faster than 1-thread FFTW
for k up to 30000, 40000, 50000, faster than 4-thread FFTW
before k reaches to 20000, 30000, 30000, and faster than
CUFFT for k less than 6000, 8000, 9000, respectively. Ad-
ditionally, the optimal performance of our parallel case is
better than 1-thread FFTW, 4-thread FFTW, CUFFT for
k up to 500000, 100000, 40000, respectively.

✥☎✆✝✞

✝✟✝✝✝✥

✝✟✝✝✥

✝✟✝✥

✝✟✥

✥

✥✝

✥✝✝

✥✝✝✝

✠✡ ✠✡✡
✠✡✡✡

✠✡✡✡✡

✠✡✡✡✡✡

❘
☛
☞
✌
✍✎
✏
✑✒
✏
✓
✔

◆✕✖✗✘✙ ✚✛ ◆✚✜✢✣✘✙✚ ✤✙✘✦✕✘✜✧★✘✩ ✪✫✬

✭✮✯ ✰✱✲✳ ✴✵ ✶✷✸✹✵✱✺✻ ✼✽✾✿
❀❁

❂

❋❋❃❄ ❅ ❆❇❈❉❊●❍
❋❋❃❄ ■❏❃ ❅ ❆❇❈❉❊●❍

❑▲❋❋❃

■▼❈ ■❏❃ ❑P◗❙❚
■▼❈ ■❏❃ ❑P◗❙◗

■▼❈ ■❏❃ ❯❃❱❅❲◗

■▼❈ ❯❉❳❉❈❊❨ ❑P◗❙❚
■▼❈ ❯❉❳❉❈❊❨ ❑P◗❙◗

■▼❈ ❯❉❳❉❈❊❨ ❯❃❱❅❲◗

Figure 8: Parallel performance vs. sparsity.

4.2 Detection for Signal Discontinuity
In section 4.1, the performance of our pure sparse-FFT

library is evaluated based on homogeneous input signals.
When the homogeneity is broken, the heuristic introduced
in the section 3.5 is used to detect when the discontinuity
happens. Next, we evaluate how well our heuristic works
and how much overhead it incurs.

We use test cases similar to the image streaming process-
ing scenario described in section 3.5.3. In total 3 segments
of image frames are used. In each segment, the frames are
homogeneous except for the last frame at which discontinu-
ity occurs. For the case-1 discontinuity, we keep to use the

✥

�✥

✁✥

✂✥

✄✥

☎✥

✆✥

� ✂✁ ✆✄ ✾✆

❘
✝
✞
✟

❋✠✡☛☞

✭✌✍ ✎✏✑✒✓✔✕✌✑✓✏✌✖ ✗✘✓✘✙✓✏✚✛ ✜✚✑ ✢✌✒✘✔✣ ✗✏✒✙✚✛✓✏✛✤✏✓✦

✭✧ ✒✘★✩✘✛✓✒✪ ✧✫ ✜✑✌✩✘✒ ✬✘✑ ✒✘★✩✘✛✓✍

✮✯✰✱✲ ✳✴✵✶✷✸✹✺✴✻ ✼✹✽✿ ❀❀❁❂ ❃✻❄❅❆❇❈❇❆ ✮✯✰✱

❉

❊❉

●❉

❍❉

■❉

❏❉

❑❉

❊ ❍● ❑■ ▲❑

▼
◆
❖
P

◗❙❚❯❱

❲❳❨ ❩❬❭❪❫❬❴ ❵❬❛❜❴❫❝❞ ❡❢❪❢❣❪❫❤❝ ✐❤❭ ❥❬❦❢❧♠ ❡❫❦❣❤❝❪❫❝♥❫❪♦

❲♣ ❦❢❞❛❢❝❪❦q ♣r ✐❭❬❛❢❦ ❜❢❭ ❦❢❞❛❢❝❪❨

st✉✈✇ ①②③④⑤⑥⑦⑧②⑨ ⑩⑦❶❷ ❸❸❹❺ ❻⑨❼❽❾❿➀❿❾ st✉✈

➁

➂➁

➃➁

➄➁

➅➁

➆➁

➇➁

➂ ➄➃ ➇➅ ➈➇

➉
➊
➋
➌

➍➎➏➐➑

➒➓➔ →➣↔↕➙➣➛ ➜➣➝➞➛➙➟➠ ➡➢↕➢➓↕➙➤➟ ➥➤↔ ➦➣➧➢➨➩ ➡➙➧➓➤➟↕➙➟➫➙↕➭

➒➯ ➧➢➠➝➢➟↕➧➲ ➯➩ ➥↔➣➝➢➧ ➞➢↔ ➧➢➠➝➢➟↕➔

➳➵➸➺➻ ➼➽➾➚➪➶➹➘➽➴ ➷➹➬➮ ➱➱✃❐ ❒➴❮❰ÏÐÑÐÏ ➳➵➸➺

Ò

ÓÒ

ÔÒ

ÕÒ

ÖÒ

×Ò

ØÒ

Ó ÓÔÙ Ô×Ø ÕÙÖ

Ú
Û
Ü
Ý

Þßàáâ

ãäå æçèéêçë ìçíîëêïð ñòéòóéêôï õôè öç÷òøù ñê÷óôïéêïúêéû

ãü ÷òðíòïé÷ý þùÿ õèçíò÷ îòè ÷òðíòïéå

❘�✁✂✄ ☎✆✝✞✟✠✡☛✆☞ ✌✡✍✎ ✏✏✑✒ ✷☞✓✔✕✖✗✖✕ ❘�✁✂

Figure 9: Detection for signal discontinuity.

same signal size N , but re-generate signal with randomly
picked amplitudes differing from the homogeneous signals.
For the case-2 discontinuity, the signal size is cut down to
N/2 and its amplitudes are randomly re-generated. The size
of each image signal is N = 222 and the sparsity parameter
k = 64.

Fig. 9(a) and Fig. 9(b) show the first-partial method and
the partial sampling detection method for the case-1 dis-
continuity. There are 3 segments and 32 frames per seg-
ment. For each homogeneous frame, it shifts by a displace-
ment of 217 points. We use the Root-Mean-Square-Error
(RMSE) between the sampled FFT and our sparse FFT as
the deviation metric (Sec. 3.5.3). The RMSE is defined as
√

∑N−1
i=0 [(Fx−fx)2+(Fy−fy)2]

2N
.

As shown in Fig. 9(b), our library and the sampled FFT
produce almost the same results for homogeneous frames
with the 1st-level RMSEs in the small range of (4.43 ×
101, 4.52× 101). However, the outputs are significantly dif-
ferent at the three discontinuity points with the 1st-level
RMSEs being 5.35 × 101, 5.31 × 101 and 5.41 × 101, re-
spectively. The spectrally similar signals will produce much
closer RMSEs than the discontinuous cases. We can further
calculate the 2nd-level RMSE as the RMSE of the 1st-level
RMSEs of adjacent frames. The line in the figure represents
the 2nd-level RMSE clearly shows values smaller than 2.7 for
the homogeneous cases and larger than 8.5 for the discon-
tinuous points. The two boundaries are separated by a large
margin. Therefore, the discontinuity is accurately detected
at frame 32, 64 and 96 by both sampling methods . Fig. 9(c)
shows the partial sampling detection method for case-2 dis-
continuity with 3 segments and 32 frames per segment. Each
homogeneous frame shifts by 217 points. Similarly, disconti-
nuities are detected at frame 32, 64 and 96, and the RMSE
of case-2 discontinuity is larger that of the case-1. Fig. 9(d)
shows the partial sampling detection for case-2 discontinu-
ity with 3 segments and 128 frames per segment. For each
homogeneous frame, it shifts by a factor of 215. The discon-
tinuities at the frames 128, 256 and 384 are also successfully
detected.

4.3 Performance of Input Adaption Process
When discontinuity is detected by the heuristic, the Fourier

templates will be re-generated. This section evaluates the
impact of this input adaption process to the overall perfor-
mance.

In this section, the input size is N = 222 and the sparsity
parameter k = 64. The overall performance is measured
including the overhead of the detection heuristic, the recal-
culation of spectrum templates when discontinuity is found,
and the adaptive sparse FFT. Clearly, the more frequently
the spectrum templates are calculated, the higher the over-
head is, and the lower the performance advantage of our
adaptive sparse FFT over the existing input oblivious algo-
rithms. Therefore, we try to determine the break-even point
by varying the number of homogeneous frames in a video
segment, i.e., in each segment all frames are homogeneous
except for the last frame where discontinuity occurs.

Fig. 10 and Fig. 11 illustrates the performance of our in-
put adaption process with 3 segments of frames on CPU and
GPUs, respectively. In Fig 10, when the #frames ≥ 8, our
sequential library on Intel i7 920 CPU is faster than both
1-thread and 4-thread FFTW, while when #frames ≥ 32,
our library is faster than sFFT 1.0 and 2.0. Moreover, when
#frames = 128, on average our algorithm gains 30.2×,
11.5× speedup over the 1-thread and the 4-thread FFTW,
and 4.2×, 2.6× speedup over sFFT 1.0 and 2.0, respec-
tively. In Fig. 11, when the #frames ≥ 8, our paral-
lel library on the three GPUs is faster than both 1-thread
and 4-thread FFTW, while when #frames > 16, our li-
brary is faster than sFFT 1.0, 2.0 and CUFFT. Furthermore,
when #frames = 128, our implementation on Tesla C2075
GPU achieves 77.2×, 29.3× speedup over 1-thread and 4-
thread FFTW, and 10.7×, 6.4×, 5.2× speedup over sFFT
1.0, sFFT 2.0 and CUFFT, respectively. Meanwhile, when
#frames = 128, our optimal performance on Tesla C2075
obtains 6.9× speedup against that of our own sequential
CPU version.

✥✘✙

✙

✙✥

✙✥✥

✚ ✽ ✙✶ ✸✚ ✶✻ ✙✚✽

✛
✜
✢
✣
✤✦
✧
★✩
✧
✪
✫

◆✬✭✮✯✰ ✱✲ ✳✰✴✭✯✵ ✹✯✰ ✺✯✼✭✯✾✿

P❀❁❂❃❁❄❅❆❇❀ ❃❂ ❈❆❉❀❊ ❋● ❍P■ ❏❋❉❑ ▲❑❁❀❀ ▼❀❖❄❀❆❉◗

❙❚❯ ❱❲❳ ❙❲❨
❙❚❯ ❱❲❳

s❩❩❨ ❬❭❪
s❩❩❨ ❫❭❪

❩❩❨❴ ❵ ❛❜❯❝❞❡s
❩❩❨❴ ❫ ❛❜❯❝❞❡

Figure 10: CPU performance with 3 video segments.

4.4 Precision of Our Sparse FFT
The accuracy of our sparse FFT implementation is ver-

ified by comparing its complex Fourier transform (Fx, Fy)
with the output (fx, fy) of FFTW, which is a widely used
standard FFT library, for the same double-precision input.
The difference in output is quantified as RMSE which has
been defined in section 4.2. Lower RMSE value means the
two computation routines produce more similar result.

The RMSEs of different signal sizes N and sparsity pa-
rameters k are shown in Fig. 12. The RMSE is extremely

✥�✁

✁

✁✥

✁✥✥

✷ ✽ ✁✶ ✸✷ ✶✻ ✁✷✽

❘
✂
✄
☎
✆✝
✞
✟✠
✞✡
☛

◆☞✌✍✎✏ ✑✒ ✓✏✔✌✎✕ ✖✎✏ ✗✎✘✌✎✙✚

P✛✜✢✣✜✤✦✧★✛ ✣✢ ✩✪✜✛✛ ✫P✬✭ ✮✯✰✪ ✩✪✜✛✛ ✱✛✲✤✛✧✰✭

❖✳✴ ✵✹✺✼✾ ❖✿❀
❖✳✴ ✵✹✺✼✺ ❖✿❀

❖✳✴ ❁❀❂❃❄✺ ❖✿❀
❖✳✴ ✵✹✺✼✾

❖✳✴ ✵✹✺✼✺
❖✳✴ ❁❀❂❃❄✺

✵❈❅❅❀
s❅❅❀ ✹❆✺

s❅❅❀ ❇❆✺
❅❅❀❋ ❃ ❉❊✴●❍■s
❅❅❀❋ ❇ ❉❊✴●❍■

Figure 11: GPU performance with 3 video segments.

❏❑▲❏▼

❏❑▲❏❏

❏❑▲❏◗

❏❑▲◗❙

▼❚❯ ▼❱❲ ▼❱❚ ▼❱❱ ▼❱❳

❨
❩
❬
❭

❪❫❴❵❛❜ ❪❫❝❞ ❡❢❣

❤✐❥❦❧♠❧♥♦ ♣qrt✉r✈❧♥♦

✇①②③
✇①④⑤
✇①③⑥
✇①②⑤⑦

Figure 12: Precision of our algorithm.

small and is in the range of (4.1× 10−11, 1.5× 10−10). Ad-
ditionally, the RMSE of k-sparse coefficients between our
output and FFTW has been measured and is in the range of
(1.61× 10−8, 3.12× 10−8). In other words, our sparse FFT
produces the same accurate results as FFTW. Interestingly,
with the decrease of k for each N , the RMSE decreases.
Meanwhile, under the same k, when N increases, the RMSE
shows a slight decrease.

5. CONCLUSION
The main contribution of this paper is the exploitation of

the similarity between sparse input samples in stream pro-
cessing to improve the efficiency of sparse FFT. Specifically,
our work develops an effective heuristic to detect input sim-
ilarity, and dynamically customizes the algorithm design to
achieve better performance. In particular, we integrate and
tune several adaptive filters to package non-zero Fourier co-
efficients into sparse bins which can be estimated accurately.
Moreover, our algorithm is non-iterative with high compu-
tation intensity such that parallelism can be exploited for
multi-CPUs and GPU to improve performance. Overall, our
algorithm is faster than other FFTs both in theory and im-
plementation, and the range of sparsity parameter k that
our approach can outperform dense FFT is larger than that
of other sparse Fourier algorithms.

Acknowledgement: This work is partly supported by
NSF Grant 1115771, AFOSR Grant FA9550-13-1-0213, and
gifts from NVIDIA.

6. REFERENCES
[1] A. Akavia. Deterministic sparse fourier approximation

via fooling arithmetic progressions. In The 23rd
Conference on Learning Theory, pages 381–393, 2010.

[2] A. Akavia, Goldwasser, and S. S., Safra. Proving
hard-core predicates using list decoding. In The 44th
Symposium on Foundations of Computer Science,
pages 146–157. IEEE, 2003.

[3] L. Bluestein. A linear filtering approach to the
computation of discrete Fourier transform. Audio and
Electroacoustics, IEEE Transactions on,
18(4):451–455, 1970.

[4] P. Duhamel and M. Vetterli. Fast fourier transforms:
a tutorial review and a state of the art. Signal
Process., 4(19):259–299, Apr. 1990.

[5] M. Frigo and S. G. Johnson. The design and
implementation of fftw3. Proceeding of the IEEE,
93(2):216–231, 2005.

[6] A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan,
and M. Strauss. Near-optimal sparse fourier
representations via sampling. In Proceedings on 34th
Annual ACM Symposium on Theory of Computing,
pages 152–161. ACM, 2002.

[7] A. Gilbert, M. Muthukrishnan, and M. Strauss.
Improved time bounds for near-optimal space fourier
representations. In Proceedings of SPIE Wavelets XI,
2005.

[8] I. Good. The interaction algorithm and practical
Fourier analysis. Journal of the Royal Statistical
Society, Series B (Methodological), 20(2):361–372,
1958.

[9] H. H., I. P., D. Katabi, and P. E. Simple and practical
algorithm for sparse fourier transform. In Proceedings
of the 23th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1183–1194. ACM, 2012.

[10] H. Hassanieh, P. Indyk, D. Katabi, and P. E. Nearly
optimal sparse fourier transform. In Proceedings of the
44th symposium on Theory of Computing, pages
563–578. ACM, 2012.

[11] M. Iwen. AAFFT (Ann Arbor Fast Fourier Transform)
http://sourceforge.net/projects/aafftannarborfa/,
2008.

[12] M. Iwen. Combinatorial sublinear-time fourier
algorithms. Foundations of Computational
Mathematics, 10(3):303–338, 2010.

[13] Y. Mansour. Randomized interpolation and
approximation of sparse polynomials. In The 19th
International Colloquium on Automata, Languages
and Programming, pages 261–272. Springer, 1992.

[14] A. Nukada and S. Matsuoka. Learning decision trees
using the fourier spectrum. In Proceedings of the
Conference on High Performance Computing
Networking, Storage and Analysis, pages 455–464.
ACM, 1991.

[15] C. Rader. Discrete Fourier transforms when the
number of data samples is prime. Proceedings of the
IEEE, 56(6):1107–1108, 1968.

