
A Control-structure Splitting Optimization for GPGPU
Snaider Carrillo Jakob Siegel

ECE Department
University of Delaware, USA

Xiaoming Li

ABSTRACT
Control statements in a GPU program such as loops and branches
pose serious challenges for the efficient usage of GPU re-
sources because those control statements will lead to the se-
rialization of threads and consequently ruin the occupancy
of GPU, that is, the number of threads running concurrently.
Unlike traditional vector processing units that are inside a
general purpose processor, the GPU cannot leave the control
statements to the CPU because fine-grain statement schedul-
ing between GPU and CPU is impossible. We need an effec-
tive method to handle the control statements “just in place”
on the GPUs.

In this paper, we propose novel techniques to transform
control statements so that they can be executed efficiently on
GPUs. Our techniques smartly increase code redundancy,
which might be deemed as “de-optimization” for CPU, to
improve the occupancy of a program on GPU and therefore
improve performance. We focus our attention on how com-
mon programming structures such as loops and branches de-
crease the occupancy of single kernels and how to counter
that. We demonstrate our optimizations on a synthetic bench-
mark and a complex parallel algorithm, the Lattice Boltz-
mann Method (LBM). Our results show that these techniques
are very efficient and can lead to an increase in occupancy
and a drastic improvement in performance compared to non-
split version of the programs.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Performance

Keywords
CUDA, GPGPU, optimizations

1. INTRODUCTION
GPUs have become the most powerful computation de-

vices in modern of-the-shelf PCs. Until recently, it was a
challenge to implement an algorithm efficiently to run on a
GPU because the functionality of such a device was plainly
geared toward graphics acceleration, and didn’t offer an in-
terface to perform non-graphics operations. The introduc-
tion of the Compute Unified Device Architecture (CUDA)
programming framework [1] makes the computational power
of GPUs easier to utilize. However, even though the problem
of writing a program that can work on a GPU seems to have
been solved, the question of how to tune a program to make
it work well on a GPU is only rudimentary understood and
insufficiently investigated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’09, May 18–20, 2009, Ischia, Italy.
Copyright 2009 ACM 978-1-60558-413-3/09/05 ...$5.00.

A detailed description about CUDA and its supporting hard-
ware can be found in [1]. Here we briefly discuss the most
important factors that impact the performance of CUDA pro-
grams. The factors are new and unique to CUDA, hence
are not considered in the traditional CPU optimization tech-
niques.

The CUDA defines a new architecture called SIMT (single-
instruction, multiple-thread)[1] which allows a multiproces-
sor GPU chip map an individual thread to one scalar pro-
cessor core, and each scalar thread executes independently
with its own instruction address and register state. This is
a cost-effective hardware model to exploit data parallelism.
The SIMT architecture can be ineffective for algorithms that
require diverging control flow decisions, such as those gener-
ated from if-else statements, because the concurrency among
threads will be reduced if threads within the same thread
group (called warp in CUDA) follow different branches[2].

One of the main tasks of optimizing a program for CUDA
is find the optimal numbers of threads and blocks that will
keep the GPU fully occupied. Factors affecting the resource
occupancy include the size of the global data set, the maxi-
mum amount of local data that blocks of threads can share,
the number of thread processors in the GPU, and the sizes of
the on-chip local memories[1]. One important limit of occu-
pancy of a program is the number of registers each thread of
the program requires. For example, to reach the maximum
possible number of 12,288 active threads in a 128-processor
GeForce 8, the compiler cannot assign more than 10 regis-
ters per thread. However, the CUDA compiler usually over-
assigns registers per thread, which decrease the occupancy
of the kernel, because the CUDA compiler tries to optimize
the single-thread performance while ignoring the overall re-
source pressure of a multi-thread program.

This paper presents new instruction level transformation
techniques that improve the utilization of hardware resources
of the NVIDIA CUDA platform. Our techniques are novel
applications of seemingly common program transformations.
In other words, they smartly increase code redundancy, which
might be deemed as “deoptimization” for CPU, to improve
the occupancy of a program on GPU and therefore improve
performance.

2. LOOP AND BRANCH OPTIMIZATION
Optimizing a CUDA kernel for better occupancy allows for

better usage of the devices computational resources and bet-
ter hiding of memory latency, and usually gives a better per-
formance. The basic idea of our techniques is freeing hard-
ware resources by purposefully increasing code size by split-
ting common control structures.

2.1 Loop Splitting
Loop splitting or Loop fission is a simple optimization that

breaks a loop into two or more smaller loops. Loop split-
ting is especially useful for reducing the register pressure
of a CUDA kernel, which can be translated to better occu-
pancy and overall performance improvement. If a kernel
contains a loop where in the loop body multiple operations
are performed and each operation relies on different inputs
and those operations are independent, this optimization can

147

be applied. The splitting leads to smaller loop bodies and
hence reduces the loop register pressure. Therefore, this op-
timizations is applicable to kernels that don’t reach 100% oc-
cupancy because of register usage.

Figure 1 left, shows a pseudo code segment from a CUDA
kernel where we can split the loop. After splitting, only ptr1
and ptr2 have to be kept in registers for the first loop and ptr3
and ptr4 for the second loop. This can be done because all the
pointers are parameters passed to the kernel and if we only
use those parameters in the loop body, we don’t have to load
the data into registers before the actual usage. Therefore ptr1
and ptr2 are getting loaded into registers when the first loop
is executed and ptr3 and ptr4 are loaded when the second
loop is executed. This frees at least 2 register which can in
many cases give an increase in occupancy of up to 33%.

2.2 Branch Splitting
As with loop splitting, the general idea behind branch split-

ting is to reduce the usage of hardware resources such as reg-
isters and shared memory of a kernel. Branch splitting is only
useful for kernels that don’t run with 100% occupancy. In
particular, even only one branch of an if statement has lower
occupancy, e.g., using excessive registers or shared memory,
the whole if statement will always run with that lower occu-
pancy even if the branch that leads to the lower occupancy is
never executed.

The branch splitting technique splits a branch of the initial
kernel into two kernels, where one kernel executes only the
if-branch and the other kernel only executes the else branch.
Even that additional kernel invocations incur overhead, we
get an increase in performance since the occupancy got in-
creased for at least part of the initial kernel.

The best scenario for branch splitting, that is, the worst
case for using the single kernel approach, is when at least
two threads in a warp execute different branches. Because in
the SIMT architecture, in this case every thread of a warp has
to step through the instructions of all branches and the device
can only be utilized to the minimum occupancy defined by
the branch with the highest usage of hardware resources. Af-
ter splitting, both the kernels still have to be executed. How-
ever, instead of running both branches with the lower occu-
pancy of the two branches, now the kernel with the branch
that uses fewer hardware resources can be executed with a
higher occupancy. Especially for kernels that work on large
datasets and where every data element is handled by a sin-
gle thread which is pretty common for CUDA, the increase
in occupancy can easily outperform the overhead of the ad-
ditional kernel invocation. To calculate the theoretical max-
imum speedup for branch splitting, the following formula
can be used:

speedup =
T

Pn

i=1

ti

ρi

ρmin

+ overhead
(1)

T is the runtime for the worst case of the branch-version
when the instructions of all branches n are executed. In ideal
conditions, neglecting all optimizations that are applied at
hardware level, T can roughly be expected to be T =

Pn

i=1
ti.

ρi is the occupancy possible for branch i when it would run
on its own, ρmin is the occupancy the branched version gets
executed with and ti is the runtime of the single branch be-
fore the splitting. As an example we assume that the branches
in the original branched version run roughly at the same
speed and T = sumn

i=1ti and the occupancy of one branch
is limited to 67% while the other branch could run at 100%.
When neglecting the overhead, the maximum speedup is 19.7%.
If the branch that might run with higher occupancy has a

runtime that is much lower than the low occupancy branch,
the additional occupancy might fail to compensate for the
overhead incurred by the branch splitting. As a guideline,
we use the following rules to determine if a kernel with branch
statements will benefit from the branch splitting transforma-
tion: A kernel (1) does not run at 100% occupancy; (2) con-
tains two or more branches; and (3) has branches utilizing
different amounts of hardware resources.

3. SYNTHETIC BENCHMARK AND APPLI-
CATION

The probability of how often either branch of an “if-else”
statement is taken plays a major role in the overall perfor-
mance of the transformed code. To show how the perfor-
mance changes we designed a synthetic benchmark where
we have full control over which branch is taken by a deci-
sion mask. The benchmarks are synthesized in a way that
the if-branch uses fewer registers than the else-branch. This
allows for a possible occupancy of 100% for the if- and 67%
for the else-branch. The benchmark works on a fixed data set
of 4 million elements. The overall runtime for the kernel exe-
cutions is measured. For the split version the measurements
also include the host-side overhead for the additional kernel
invocation to give a fair comparison of the overall change
in performance. To show how the distribution and density
of which branch is taken affects the performance we synthe-
size 2 different layouts of the decision mask, a linear decision
mask and a random decision mask as illustrated in Figure 3.
Figure 2 show the pseudo code of the synthetic kernel and
its split version respectively. The benchmark runs on a Intel
dual core 2.8 GHz with 2GB of ram and two GeForce 8800
GTX GPUs where only one was used for this benchmark.

3.1 Layout 1: two section decision masks
First a decision mask that gets filled up from one side,

that is, the else-branch taken probability is increased steadily
from 0% to 100% is used, Figure 3 left. Therefore we have
only two sections in the mask: a growing else-branch sec-
tion and a decreasing if-branch section . For the first itera-
tion none thread will execute the else-branch or else-kernel.
For the last iteration every thread executes the else-branch or
else-kernel.

The change in performance throughout the iterations is a
smooth transition between the two extreme cases of 0% and
100% else-branch executions in the first and the last iteration,
Figure 4. This can be explained by looking at what the threads
in each warp are doing. There is only one warp through-
out the whole problem where threads have to take differ-
ent branches, which is the warp that contains the threads
on the boundary between the two sections of the decision
mask. All the other warps only execute the if- or the else-
branch/kernel. For the first iteration, 0% else-branch exe-
cutions, the branch-version executes only the if branch but
only with with 67% occupancy because the device has no
way to know if all or how many threads in all blocks run-
ning in a multiprocessor take the if-branch. For that reason
the device has to subscribe resources assuming that all blocks
might take the else branch and therefore the maximum possi-
ble occupancy is the one for the worst case. The split version
drops out of the else-kernel immediately when there are only
if-kernel executions and therefore in this case each multipro-
cessor is running at 100% occupancy. For the last iteration,
both versions execute only the else part with 67% occupancy.
Only at this point the overhead of additional kernel invoca-
tions and the additional loads needed by the two kernels of
the split version might lead to a lower performance than the
branched version. For this decision mask layout, the unfa-
vorable scenarios only account for roughly 5% of all cases.

148

1 kerne l (ptr1 , ptr2 , ptr3 , ptr4 , p t r _ r e s u l t) {
. . .

3 f or i =0 to N
x += ptr1 [i] ∗ ptr2 [i] ;

5 y += ptr3 [i] / ptr4 [i] ;
end

7 . . .
}

kerne l (ptr1 , ptr2 , ptr3 , ptr4 , p t r _ r e s u l t) {
2 . . .

f or i =0 to N
4 x += ptr1 [i] ∗ ptr2 [i] ;

end
6 f or i =0 to N

y += ptr3 [i] / ptr4 [i] ;
8 end

. . .
10 }

Figure 1: left: Pseudo code for a kernel that qualifies for loop splitting. right: The same code after loop splitting.

branchedkenrnel () {
2 load d ec i s ion mask

load input data used by both branches
4 i f d ec is ion mask [t i d] == 0

load input data f or i f branch
6 perform c a l c u l a t i o n s using 6 r e g i s t e r s

else i f d ec is ion mask [t i d] == 1
8 load input data f or else branch

perform c a l c u l a t i o n s using 13 r e g i s t e r
10 end i f

}

1 i f k e r n e l () {
load d ec i s ion mask

3 i f d ec is ion mask [t i d] == 0
load a l l input data

5 perform c a l c u l a t i o n s using 6 r e g i s t e r s
end i f

7 }

9 e l s e k e r n e l () {
load d ec i s ion mask

11 i f d ec is ion mask [t i d] == 1
load a l l input data

13 perform c a l c u l a t i o n s using 13 r e g i s t e r
end i f

15 }

Figure 2: Pseudo codes for the single kernel version (left) and the split/two-kernel version (right).

Figure 3: left: Linear decision mask. Starting at the first iteration from no else-branch executions for any data element to
only else-branch executions for the last iteration. right: Symbolic representation of the random decision mask.

5800

5850

5900

5950

6000

6050

6100

6150

6200

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

m
s
e
c

split version

branch version

Figure 4: Runtime in msec vs. the probability of else-
branches being taken with the sectional decision mask.

Even that a distribution of the if - else condition that we
defined with this decision mask is not the most common for
algorithms that are written for CUDA we still got a good
speedup for more than 95% of the tested distributions. It
should be mentioned that in a case where the programmer
knows that the problem will branch with such conditions
there are better ways to improve the performance, for ex-
ample, using two kernels with reduced input sets, so that
not every single data element has to be checked about which
branch has to be executed and hence only one kernel works
on each section. The next section will discuss a more realistic
decision mask with a random distribution.

3.2 Layout 2: random decision mask
Generally the condition that defines which branch is taken

has a more randomized distribution compared to what is dis-

cussed in the previous section. We generate a random deci-
sion mask that is randomly initialized in every iteration with
increasing probabilities of executing the else branch. The
probability starts from 0% else-branch executions to 100%
else-branch executions. As can be seen Figure 5, the results
for the extreme cases of 0% else-branch executions and 100%
else branch executions are the same as in the previous ex-
periment. But as soon as the we step away from those ex-
treme cases we see a drastic drop in performance. The rea-
son for the drop is the serialization of branch statement in the
SIMT architecture of CUDA. Where as soon as one thread in
a warp has to step through the other branch, all threads in
the warp will execute all the instructions for both branches.
In the case of the sectional decision mask, only one warp in
the entire system had to do that, the warp that handles the
data segment where the decision mask switched from if to
else. With this random decision mask we have an entirely
different picture. For a data set of 2

22 (4 million) elements
we have 2

22/32 = 131072 warps, only 1% of the data (41944
elements) has to be handled by the else-branch and in the
worst case every element is placed in a different warp, 32%
of the warps have to step through the instructions of both
branches. This happens at both ends of the 0% to 100% run
of the benchmark which explains the drastic drop in perfor-
mance for the first few iterations.

For the branched-version of the benchmark the performance
decreases more the farther we step away from the starting
point till we reach the worst case scenarios between 8% and
16% . In this area we have the highest probability that ev-
ery warp at least contains one thread that executes the else-

149

5500

5750

6000

6250

6500

6750

7000

7250

7500

7750

0.
0%

1.
0%

2.
0%

3.
0%

4.
0%

5.
0%

6.
0%

7.
0%

8.
0%

9.
0%

10
.0

%

11
.0

%

12
.0

%

13
.0

%

14
.0

%

15
.0

%

16
.0

%

17
.0

%

18
.0

%

19
.0

%

20
.0

%

m
s
e
c

branch version

split version

5500

5750

6000

6250

6500

6750

7000

7250

7500

7750

10
0.

0%

99
.0

%

98
.0

%

97
.0

%

96
.0

%

95
.0

%

94
.0

%

93
.0

%

92
.0

%

91
.0

%

90
.0

%

89
.0

%

88
.0

%

87
.0

%

86
.0

%

85
.0

%

84
.0

%

83
.0

%

82
.0

%

81
.0

%

80
.0

%

m
s
e
c

branch version

split version

Figure 5: Runtime in msec vs. the probability of the else-
branch being taken with a random decision mask. The
worst scenario for the branched version is in the area be-
tween 8% and 16%, where at least on thread per warp exe-
cutes the else branch. In 98% of the cases, the split version
outperforms the branch version by 6% to 13.5%.

branch. This forces every single thread to step through the
instructions of both branches.

The split version on the other hand performs with a very
similar overall pattern except that the initial drop in perfor-
mance is much smaller than that of the branched version and
that throughout the runs, the performance of the split version
does not change as much as for the branch version. The per-
formance for the split version especially for the worst case
scenarios is 14% better than that for the branch-version.

Two factors can explain the better performance of the split
version: the reduction of the serialization of branch state-
ments and the lowering of the resource usage per thread. In
the branched version the usage of 13 registers and the size
of 256 threads per block limit the occupancy of the multipro-
cessors to 67%. In the split version the else-kernel still uses
13 registers and runs at 67% occupancy but the if-kernel uses
just 6 registers which allows this kernel to fully utilize all the
devices computational power by running at 100% occupancy.

Clearly, there are so many other layouts that we cannot dis-
cuss all of them in this paper. However, the performance gain
analysis and the determination of whether or not to apply
control structure splitting are the same. For most cases, the
control structure splitting optimization will improve perfor-
mance. Furthermore, branches in a program are frequently
inter-dependent. That knowledge can be leveraged to fur-
ther enhance performance.

3.3 In Lattice Boltzmann Method
We applied our control-structure splitting optimizations

on a function of a complex parallel algorithm, the Lattice
Boltzmann Method (LBM)[4][3]. To separate the performance
improvement of our optimizations from other optimizations,
we use a baseline implementation of LBM that has been al-

ready optimized for CUDA using common optimization tech-
niques. One of the most computational intensive kernels of
our LBM algorithm is the one that makes each thread work
on a fluid node but perform different operations for each
neighboring node according to its type: fluid or fluid wrap-
around boundary nodes. The branch that handles the parti-
cles streaming inside the lattice uses slightly more hardware
resources than the branch that handles the streams to the
wraparound buffers. By splitting the loop and the branches
of this kernel, the number of used registers is reduced, which
allows the split kernels to run at 100% occupancy. This leads
to a significant gain in performance and a more than 60% re-
duction of the execution time, Figure 6.

Figure 6: Runtime of LBM on a 256 ∗ 256 problem layout

4. CONCLUSION
Optimizing GPU programs to achieve the highest possible

occupancy is one of the major tasks for any GPGPU program-
mer. In this paper we propose loop-splitting and branch-
splitting transformation that increase the occupancy loops
and branches in a problem. The transformations might seem
counter productive on most architectures other than a GPU,
but on GPU where occupancy is a major factor for perfor-
mance, they can have a positive impact on the overall perfor-
mance. Furthermore, branches are generally a performance
bottleneck in any SIMD or SIMT architecture because in many
cases there is no way to prevent the execution of both branches
within a warp which is a major hurdle for the performance
on GPU program. In those cases branch splitting is a promis-
ing transformation to increase the occupancy. We demon-
strate our control-structure splitting transformation in a syn-
thetic benchmark and a complex parallel algorithm, the LBM
algorithm. The experiment results show that our transforma-
tions add negligible overhead but in most cases can signifi-
cantly improve the performance of a GPGPU application.

Acknowledgment: This project is supported by NSF grant
CNS0719909.

5. REFERENCES
[1] C. NVIDIA. Compute Unified Device Architecture

Programming Guide. NVIDIA: Santa Clara, CA, 2007.
[2] S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk,

and W. Wen-mei. Optimization principles and
application performance evaluation of a multithreaded
GPU using CUDA. Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel
programming, pages 73–82, 2008.

[3] S. Succi. The Lattice Boltzmann Equation for Fluid
Dynamics and Beyond. 2001.

[4] Y. Zhao. Lattice Boltzmann based PDE solver on the
GPU. The Visual Computer, 24(5):323–333, 2008.

150

