
Characterizing Programming Systems Allowing
Program Self-Reference?

John Case and Samuel E. Moelius III

Department of Computer & Information Sciences
University of Delaware

103 Smith Hall
Newark, DE 19716

{case,moelius}@cis.udel.edu

March 6, 2007

Abstract. The interest is in characterizing insightfully the power of
program self-reference in effective programming systems (epses), the
computability-theoretic analogs of programming languages. In an eps
in which the constructive form of Kleene’s Recursion Theorem (KRT)
holds, it is possible to construct, algorithmically, from an arbitrary al-
gorithmic task, a self-referential program that, in a sense, creates a self-
copy and then performs that task on the self-copy. In an eps in which the
not-necessarily-constructive form of Kleene’s Recursion Theorem (krt)
holds, such self-referential programs exist, but cannot, in general, be
found algorithmically.

In an earlier effort, Royer proved that there is no collection of recur-
sive denotational control structures whose implementability character-
izes the epses in which KRT holds. One main result herein, proven by a
finite injury priority argument, is that the epses in which krt holds are,
similarly, not characterized by the implementability of some collection
of recursive denotational control structures.

On the positive side, however, a characterization of such epses of a
rather different sort is shown herein. Though, perhaps not the insightful
characterization sought after, this surprising result reveals that a hidden
and inherent constructivity is always present in krt.

Know thyself.
– Greek proverb

Keywords: Computability Theory, Programming Language Semantics,
Self-Reference.

1 Introduction

The first author has, for some time, been interested in the difficult problem of
understanding and insightfully characterizing the power of program or machine
self-reference (synonym: program self-reflection).1 Initial mathematical attempts
? This is a slightly expanded version of a paper to appear in CiE’07. This paper

received support from NSF Grant CCR-0208616.
1 This paper does not address linguistic self-reference, e.g., in arithmetic [16].



on this subject [10, 11, 14] were based on conceptualizing the constructive form
of Kleene’s Recursion Theorem (KRT) (Property 2 below) in terms of an asso-
ciated non-denotational control structure [14] (synonym: connotational control
structure [14]). Beginning with the next subsection, we explain what we mean
by program self-reference and self-knowledge, what KRT has to do with these,
and how we model control structures. Then, we briefly highlight some relevant
results from the prior literature. Finally, we summarize and relevantly interpret
the main results of the present paper — which results are the recent progress on
the still difficult problem mentioned at the beginning of this paragraph.

1.1 Kleene’s Recursion Theorems

Let N be the set of natural numbers, {0, 1, 2, . . .}. Let 〈·, ·〉 : N × N → N be
any fixed, 1-1, onto, computable mapping [13]. The function 〈·, ·〉 enables us to
restrict our attention to one-argument partial functions and still handle, with
coding by 〈·, ·〉, multiple argument cases.

For all one-argument partial functions ψ and all p ∈ N, ψp
def= ψ(〈p, ·〉). A one-

argument partial computable function ψ is an effective programming system (eps)
def⇔ for every one-argument partial computable function α, there exists p, such
that ψp = α [12, 13, 9–11, 14].2 Informally, one can think of ψ as a programming
language (e.g., C++, Java, Haskell) and of p as a program within that language.
In this sense, ψp is the partial computable function coded by ψ-program p.
Thus, for all p, x ∈ N, ψ(〈p, x〉) is the (coded) output on input (coded by) x of
the program (coded by) p in that language.

For the remainder of the present subsection (1.1), let ψ be any fixed eps.
The following property (Property 1) is the not-necessarily-constructive form of
Kleene’s Recursion Theorem for the ψ-system.3

Property 1 (krt for eps ψ). (∀p)(∃e)(∀x)[ψe(x) = ψp(〈e, x〉)].

One way to interpret Property 1 is as follows. ψ-program p represents an arbi-
trary preassigned, algorithmic task to perform with a self-copy; e represents a
ψ-program that

1. creates a copy of itself, external to itself, and, then,
2. runs the preassigned task p on the pair consisting of this self-copy and e’s

input x.

The ‘e’ on the right-hand side of the equation in Property 1 is the self-copy
of the original ‘e’ on the left-hand side of this equation. Thus, in an important

2 In much of the literature on epses, e.g., [12, 7, 8], they are called numberings since,
in such systems, programs are conveniently named by numbers. In learning theory
contexts, e.g., [6, 18, 5], they are also referred to as hypothesis spaces.

3 Rogers [13] popularized a fixed-point variant of Property 1: for all computable
f : N → N, there exists e such that ψe = ψf(e). His variant should not be con-
fused with Property 1. Riccardi [10] explored their interconnections.

2



sense, e is a program that creates complete (low level) self-knowledge. The way in
which e uses this self-knowledge is according to how the preassigned task p says
to.4 Infinite regression is not needed since e projects its self-copy externally to
itself [4]. We say above that this self-knowledge is complete since it is e’s syntactic
code-script, wiring/flow diagram, etc. For higher level knowledge about, say, e’s
behavioral propensities, e.g., ψ-program e runs in polynomial time, p can run a
safe theorem prover on e perchance to prove such things about e, but e having
access to e itself is more basic and fundamental than e merely having access to
facts such as that it runs in polynomial time.

Self-knowledgeable programs have long been known to be an elegant theo-
retical tool in computability theory. Such programs can, when relevant, provide
succinct solutions to problems “that would otherwise require extensive, complex
treatment” [13] (see also [15]). Self-knowledge can also serve as a useful game-
theoretic aid to strategy [4], e.g., in the game played between a robot and its
environment [1, 3].

Of course, Property 1 asserts that, given p, there merely exists an e satisfying
the equation in Property 1 for p. It is another problem to find such an e algo-
rithmically from p. Here, then, is Property 2, the constructive form of Kleene’s
Recursion Theorem for the ψ-system, which makes this stronger assertion.

Property 2 (KRT for eps ψ). There exists computable r : N → N such that
(∀p, x)

[
ψr(p)(x) = ψp

(
〈r(p), x〉

)]
.

In Property 2, r(p) plays the role of e in Property 1. Since r is computable, r(p)
can be found algorithmically from p.

1.2 Control Structures

From a programming languages standpoint, the r in Property 2 represents an in-
stance (or implementation) of a control structure [10, 11, 14, 8, 5]. In the context
of epses, an instance of a control structure provides a means of forming a com-
posite program from given constituent programs and/or data. For comparison,
an instance in an eps ψ of the control structure if-then-else is (by definition [10,
11]) a computable function f : N → N such that, for all a, b, c, and x,

ψf(〈a,b,c〉)(x) =

ψb(x), if ψa(x) converges5 and ψa(x) > 0;
ψc(x), if ψa(x) converges and ψa(x) = 0;
divergent, otherwise.

(1)

An instance such as f above of if-then-else combines three ψ-programs, a, b,
and c (and no data) to form a fourth (composite) ψ-program f(〈a, b, c〉).
4 We care, of course, that krt provides not only self-knowledgeable programs, but

also, self-knowledgeable programs that can use that knowledge in any preassigned
algorithmic way. Usable, as opposed to empty, self-knowledge is what we care about.

5 For all one-argument partial functions ψ and x ∈ N, ψ(x) converges iff there exists
y ∈ N such that ψ(x) = y; ψ(x) diverges iff there is no y ∈ N such that ψ(x) = y.
If ψ is partial computable, and x is such that ψ(x) diverges, then one can imagine
that a program associated with ψ goes into an infinite loop on input x.

3



if-then-else is an example of a nonrecursive denotational control structure
(synonym: nonrecursive extensional control structure). A nonrecursive denota-
tional control structure is one for which the I/O behavior of a composite program
may depend only upon the I/O behavior of the constituent programs and upon
the data (see (a) of Definition 1 below). So, for example, the I/O behavior of
such a composite program cannot depend upon the number of symbols in, or
the run-time complexity of, a constituent program.

A recursive denotational control structure (synonym: recursive extensional
control structure) is like a nonrecursive denotational control structure where the
I/O behavior of a composite program may depend, additionally, upon the I/O
behavior of the composite program itself (see (b) of Definition 1 below). Consider
the following example, chosen for illustrative purposes. Let an effective instance
in an eps ψ of recursive unbounded minimization be a computable function
f : N → N such that, for all a, b, and x,

ψf(〈a,b〉)(x) =

ψb(x), if ψa(x) converges and ψa(x) > 0;
ψf(〈a,b〉)(x+ 1), if ψa(x) converges and ψa(x) = 0;
divergent, otherwise.

(2)

Note the use of ψf(〈a,b〉) in the second if-clause in (2). This use of ψf(〈a,b〉) is what
makes recursive unbounded minimization a recursive denotational control
structure.

For many recursive denotational control structures, there is wiggle room in
how they may be implemented. For recursive unbounded minimization,
this wiggle room manifests itself in the extreme diversity of the functions f that
satisfy (2). For example, suppose that f1 : N → N is computable and that, for
all a, b, and x,

ψf1(〈a,b〉)(x) =


ψb(z), where z is least such that z ≥ x,

(∀y ∈ {x, ..., z})[ψa(y) converges],
(∀y ∈ {x, ..., z − 1})[ψa(y) = 0],
and ψa(z) > 0, if such a z exists;

divergent, otherwise.

(3)

Then, f = f1 is a solution of (2).
Next, suppose that a0 is a ψ-program such that, for all x, ψa0(x) con-

verges and ψa0(x) = 0. Note that when a = a0 in (2), (2) merely insists that
ψf(〈a,b〉)(0) = ψf(〈a,b〉)(1) = ..., for any b. Thus, if f2 : N → N is computable and,
for all a, b, and x,

ψf2(〈a,b〉)(x) =
{

5, if a = a0;
ψf1(〈a,b〉)(x), otherwise; (4)

then, f = f2 is also a solution of (2). (In (4), the number 5 was chosen arbitrar-
ily.)6

6 Readers familiar with denotational semantics may recognize that f1 provides a min-
imal fixed-point solution of (2); whereas, f2 provides a non-minimal fixed-point
solution of (2) [14, 17].

4



Of course, a composite program produced by a recursive denotational control
structure may choose to ignore its own behavior. In this sense, recursive denota-
tional control structures are a generalization of nonrecursive denotational control
structures.

KRT, when viewed as a control structure, is not denotational in any sense.7

So, a problem that the first author posed to Royer was to find a collection of
denotational control structures whose implementability characterizes the epses
in which KRT holds. The thinking was that denotational control structures are
easier to understand , and such a collection would be a decomposition of KRT
into more easily understood components. Royer proved that no such characteri-
zation exists, even if one allows the collection to contain recursive denotational
control structures [14].

1.3 Summary of Results

krt is the focus in the present paper as it ostensibly involves pure self-reference
without the required constructivity of KRT. So, a question we had is whether
Royer’s negative result mentioned above still holds if one replaces KRT by
krt, i.e., whether there exists a collection of (possibly) recursive denotational
control structures whose implementability characterizes the epses in which krt
holds. One of our main results, Corollary 1 in Section 3, says that no such
characterization exists. The proof is by a finite injury priority argument.8

In Section 3, we also consider a relatively constructive variant of krt. Suppose
ξ is an eps and that ψ is partial computable, but not-necessarily an eps. We
say that ξ-KRT holds in ψ

def⇔ there exists computable r : N → N such that
(∀p, x)

[
ψr(p)(x) = ξp

(
〈r(p), x〉

)]
. Here, r(p) is a self-knowledgeable ψ-program,

where the preassigned task for r(p) to employ on its self-copy is ξ-program p.
Theorem 2, our other main result, says: ψ is an eps in which krt holds ⇔

(∃ eps ξ)[ξ-KRT holds in ψ]. This implies that, if, for some eps ξ, ξ-KRT holds
in merely partial computable ψ, then both ψ is an eps and krt holds in ψ. It
also surprisingly implies that, if krt holds in an eps ψ, then it holds with some
degree of constructivity — constructivity with respect to some eps ξ.

Section 2 just below provides notation and preliminaries.
Complete proofs of all theorems can be found in the appendix.

2 Notation and Preliminaries

Computability-theoretic concepts not explained below are treated in [13]. N de-
notes the set of natural numbers. 2N and 2N + 1 denote the sets of even and
odd natural numbers, respectively. Lowercase Roman letters, with or without
decorations, range over elements of N unless stated otherwise.

7 Such control structures are called connotational [14].
8 Rogers [13] explains priority arguments.

5



The pairing function 〈·, ·〉 was introduced in Section 1. For all x, 〈x〉 def= x.
For all x1, ..., xn, where n > 2, 〈x1, ..., xn〉

def=
〈
x1, 〈x2, ..., xn〉

〉
.

P denotes the collection of all one-argument partial functions. α, ξ, Ξ, σ, ψ,
and Ψ , with or without decorations, range over elements of P. We use Church’s
lambda-notation [13] to name partial functions, including total functions and
predicates, as is standard in many programming languages. For example, λx (x+
1) denotes the one-argument (total) function that maps a natural number to its
successor.

For all α and x, α(x)↓ denotes that α(x) converges; α(x)↑ denotes that
α(x) diverges. We use ↑ in expressions to indicate divergence. For example,
λx ↑ denotes the everywhere divergent partial computable function. For all α,
dom(α) def= {x : α(x)↓} and rng(α) def= {y : (∃x)[α(x) = y]}. We identify a partial
function with its graph, e.g., we identify α with the set {(x, y) : α(x) = y}. As
noted in the introduction, for all ψ and p, ψp

def= ψp(〈p, ·〉).
F0, F1, ... denotes a fixed, canonical enumeration of all one-argument finite

functions [13, 9].
ϕ denotes a fixed, acceptable eps.9 Φ denotes a fixed Blum complexity mea-

sure for ϕ [2].10 For all p and t, ϕtp and W t
p are as follows.

ϕtp
def= {(x, y) : x ≤ t ∧ Φp(x) ≤ t ∧ ϕp(x) = y}. (5)

W t
p

def= dom(ϕtp). (6)

Γ and Θ, with or without decorations, range over mappings of type Nm ×
Pn → P, where m+ n > 0.

For all Γ : Nm × Pn → P, where m + n > 0, Γ is a computable operator11

def⇔ there exists p such that, for all x1, ..., xm, α1, ..., αn, y, and z,

Γ (x1, ..., xm, α1, ..., αn)(y) = z
⇔

(∃i1, ..., in, t)
[
(∀j ∈ {1, ..., n})[Fij ⊆ αj ]
∧ 〈x1, ..., xm, i1, ..., in, y, z〉 ∈W t

p

]
.

(7)

Intuitively, Γ is a computable operator iff there exists an algorithm for listing
the graph of the partial function Γ (x1, ..., xm, α1, ..., αn) from x1, ..., xm and the
graphs of the partial functions α1, ..., αn — independently of the enumeration
order chosen for each of α1, ..., αn. C ranges over collections of computable oper-
ators. For all computable operators Γ : Nm×Pn → P, where m+n > 0, and for

9 An eps ψ is acceptable
def⇔ (∀ epses ξ)(∃ computable t : N → N)(∀p)[ψt(p) = ξp] [12,

13, 9–11, 14]. Thus, the acceptable epses are exactly those epses into which every eps
can be compiled. Any eps corresponding to a real-world, general purpose program-
ming language (e.g., C++, Java, Haskell) is acceptable.

10 For any partial computable function, e.g., an eps, many such measures exist.
11 Rogers [13] calls the computable operators, recursive operators. We have chosen to

use the former term so that we may reserve the term recursive for something that
refers to itself .

6



all t, Γ t : Nm×Pn → P is the computable operator such that, for all x1, ..., xm,
α1, ..., αn, y, and z,

Γ t(x1, ..., xm, α1, ..., αn)(y) = z
⇔

(∃i1, ..., in)
[
(∀j ∈ {1, ..., n})[Fij ⊆ αj ]
∧ 〈x1, ..., xm, i1, ..., in, y, z〉 ∈W t

p

]
,

(8)

where p is any fixed ϕ-program as in (7) above for Γ . Clearly, for all computable
operators Γ : Nm×Pn → P, where m+n > 0, there exists an algorithm for find-
ing j from t, x1, ..., xm, and i1, ..., in, such that Fj = Γ t(x1, ..., xm, Fi1 , ..., Fin).

Definition 1. For all epses ψ, and all f : N → N, (a) and (b) below.

(a) For all computable operators Γ : Nm × Pn → P, where m + n > 0, f is
an effective instance in ψ of the nonrecursive denotational control structure
determined by Γ ⇔ f is computable and, for all x1, ..., xm+n,

ψf(〈x1,...,xm+n〉) = Γ (x1, ..., xm, ψxm+1 , ..., ψxm+n
). (9)

(b) For all computable operators Θ : Nm × Pn+1 → P, where m + n > 0, f
is an effective instance in ψ of the recursive denotational control structure
determined by Θ ⇔ f is computable and, for all x1, ..., xm+n,

ψf(〈x1,...,xm+n〉) = Θ(x1, ..., xm, ψxm+1 , ..., ψxm+n
, ψf(〈x1,...,xm+n〉)). (10)

3 Results

Royer [14] proved that there is no collection of recursive denotational control
structures whose implementability characterizes the epses in which KRT holds.
Corollary 1, below, proves the analogous result for krt. Thus, even the pure self-
reference embodied by krt cannot be decomposed into recursive denotational
control structures.12 Our proof is by a finite injury priority argument.

Definition 2. For all computable operators Θ : Nm×Pn+1 → P, wherem+n >
0, Θ is recursively denotationally omnipresent ⇔ for all epses ψ, there exists an
effective instance in ψ of the recursive denotational control structure determined
by Θ.

12 N.B. Our result does not subsume Royer’s.

7



Theorem 1. Suppose that computable operator Θ : Nm × Pn+1 → P, where
m+ n > 0, is not recursively denotationally omnipresent. Then, there exists an
eps ψ such that (a) and (b) below.

(a) krt holds in ψ.
(b) There is no effective instance in ψ of the recursive denotational control struc-

ture determined by Θ.

Proof. See the appendix.

Corollary 1. There is no collection of computable operators C such that (a)
and (b) below.

(a) For each Θ ∈ C, Θ has type Nm × Pn+1 → P, for some m and n, where
m+ n > 0.13

(b) For all epses ψ, krt holds in ψ ⇔ (∀Θ ∈ C)[there exists an effective instance
in ψ of the recursive denotational control structure determined by Θ].

Proof. See the appendix.

Theorem 2, below, is our other main result. It reveals that a hidden and inherent
constructivity is always present in krt.

Definition 3. For all epses ξ and partial computable ψ, ξ-KRT holds in ψ ⇔
(∃ computable r : N → N)(∀p, x)

[
ψr(p)(x) = ξp

(
〈r(p), x〉

)]
.

Theorem 2. For all partial computable ψ, ψ is an eps in which krt holds ⇔
(∃ eps ξ)[ξ-KRT holds in ψ].

Proof. See the appendix.

References

1. C. Adami. What do robots dream of? Science, 314:1093–1094, 2006.
2. M. Blum. A machine independent theory of the complexity of recursive functions.

Journal of the ACM, 14:322–336, 1967.
3. J. Bongard, V. Zykov, and H. Lipson. Resilient machines through continuous self-

modeling. Science, 314:1118–1121, 2006.
4. J. Case. Infinitary self-reference in learning theory. Journal of Experimental and

Theoretical Artificial Intelligence, 6:3–16, 1994.
5. J. Case, S. Jain, and M. Suraj. Control structures in hypothesis spaces: The

influence on learning. Theoretical Computer Science, 270(1-2):287–308, 2002.
6. R. Freivalds, E. Kinber, and R. Wiehagen. Inductive inference and computable

one-one numberings. Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 28:463–479, 1982.

7. S. Goncharov and A. Sorbi. Generalized computable numberings and non-trivial
Rogers semilattices. Algebra and Logic, 36:359–369, 1997.

13 (a) ensures that each Θ ∈ C determines a recursive denotational control structure
(see (b) of Definition 1).

8



8. S. Jain and J. Nessel. Some independence results for control structures in complete
numberings. Journal of Symbolic Logic, 66(1):357–382, 2001.

9. M. Machtey and P. Young. An Introduction to the General Theory of Algorithms.
North Holland, New York, 1978.

10. G. Riccardi. The Independence of Control Structures in Abstract Programming
Systems. PhD thesis, SUNY Buffalo, 1980.

11. G. Riccardi. The independence of control structures in abstract programming
systems. Journal of Computer and System Sciences, 22:107–143, 1981.

12. H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic
Logic, 23:331–341, 1958.

13. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw
Hill, New York, 1967. Reprinted, MIT Press, 1987.

14. J. Royer. A Connotational Theory of Program Structure. Lecture Notes in Com-
puter Science 273. Springer-Verlag, 1987.

15. J. Royer and J. Case. Subrecursive Programming Systems: Complexity and Suc-
cinctness. Research monograph in Progress in Theoretical Computer Science.
Birkhäuser Boston, 1994.

16. C. Smorynski. Fifty years of self-reference in arithmetic. Notre Dame Journal of
Formal Logic, 22(4):357–374, 1981.

17. G. Winskel. The Formal Semantics of Programming Languages: An Introduction.
Foundations of Computing Series. MIT Press, 1993.

18. T. Zeugmann and S. Lange. A guided tour across the boundaries of learning
recursive languages. In Klaus P. Jantke and Steffen Lange, editors, Algorithmic
Learning for Knowledge-Based Systems, volume 961 of Lecture Notes in Artificial
Intelligence, pages 190–258. Springer-Verlag, 1995.

9



Appendix

Definition 4 (Rogers [12, 13]). For all epses ξ and ψ, (a) and (b) below.

(a) ξ ≤R ψ (pronounced: ξ is Rogers reducible to ψ) def⇔

(∃ computable t : N → N)(∀p)[ψt(p) = ξp]. (11)

(b) ψ is acceptable def⇔
(∀ epses ξ)[ξ ≤R ψ]. (12)

Thus, ξ ≤R ψ whenever it is possible to compile ξ-programs into ψ-programs.
Furthermore, the acceptable epses are exactly those epses into which every eps
can be compiled.

The following lemma is used in later parts of the appendix.

Lemma 1. Suppose that ψ partial computable, and that ξ is an eps Further
suppose that A ⊆ N is such that, for all p, there exists a ∈ A such that

ψa = ξp(〈a, ·〉). (13)

Then, (a) and (b) below.

(a) For all partial computable α, there exists a ∈ A such that ψa = α.
(b) ψ is an eps in which krt holds.

Proof. Suppose the hypotheses. To see (a), let partial computable α be fixed,
and let p be such that, for all a and x,

ξp(〈a, x〉) = α(x). (14)

Let a ∈ A be as in (13) for p. Then, for all x,

ψa(x) = ξp(〈a, x〉) {by (13)}
= α(x) {by (14)}.

To see (b), note that (a) implies that ψ is an eps Next, let ψ-program b be fixed,
and let p be such that

ξp = ψb. (15)

Let a ∈ A be as in (13) for p. Then, for all x,

ψa(x) = ξp(〈a, x〉) {by (13)}
= ψb(〈a, x〉) {by (15)}.

(Lemma 1)

The following lemma is used in the proof of Theorem 1.

10



Lemma 2. Suppose that computable operator Θ : Nm × Pn+1 → P, where
m+n > 0, is fixed. Further suppose that ψ is partial computable, and that Ψ is
a Blum complexity measure for ψ. For a and t, let

ψta = {(x, y) : x ≤ t ∧ Ψa(x) ≤ t ∧ ψa(x) = y}. (16)

Then, for all g : N → N, (a) and (b) below are equivalent.

(a) For all x1, ..., xm+n,

ψg(〈x1,...,xm+n〉) = Θ(x1, ..., xm, ψxm+1 , ..., ψxm+n
, ψg(〈x1,...,xm+n〉)). (17)

(b) For all s, there exists t such that, for all 〈x1, ..., xm+n〉 < s, (i) and (ii) below.
(i) ψsg(〈x1,...,xm+n〉) ⊆ Θt(x1, ..., xm, ψ

t
xm+1

, ..., ψtxm+n
, ψtg(〈x1,...,xm+n〉)).

(ii) Θs(x1, ..., xm, ψ
s
xm+1

, ..., ψsxm+n
, ψsg(〈x1,...,xm+n〉)) ⊆ ψtg(〈x1,...,xm+n〉).

Proof. A straightforward argument using the monotonicity and continuity
properties of Θ [13, page 147]. (Lemma 2)

Theorem 1. Suppose that computable operator Θ : Nm × Pn+1 → P, where
m+ n > 0, is not recursively denotationally omnipresent. Then, there exists an
eps ψ such that (a) and (b) below.

(a) krt holds in ψ.
(b) There is no effective instance in ψ of the recursive denotational control struc-

ture determined by Θ.

Proof. Let Θ be as stated. Since Θ is not recursively denotationally omnipresent,
there exists an eps ξ such that there is no effective instance in ξ of the recursive
denotational control structure determined by Θ.

ψ is constructed via a finite injury priority argument. The requirements, in
order of decreasing priority, are: S,R0, R1, ..., where, for all q, Rq and S are as
follows.

Rq ⇔ (∃a)[ψa = ϕq(〈a, ·〉)].
S ⇔ (∀ computable g : N → N)(∃x1, ..., xm+n)

[ψg(〈x1,...,xm+n〉) 6= Θ(x1, ..., xm, ψxm+1 , ..., ψxm+n
, ψg(〈x1,...,xm+n〉))].

The satisfaction of Rq, for all q, ensures that ψ is an eps in which krt holds. The
satisfaction of S ensures that there is no effective instance in ψ of the recursive
denotational control structure determined by Θ.

Our strategy for satisfying S is as follows. We construct ψ so that:

– ξ ≤R ψ, and
– for all computable g : N → N, if g were a counterexample to S, then there

would exist partial computable τ such that
(
∀c ∈ rng(g)

)
[τ(c)↓ ∧ ξτ(c) = ψc].

11



Given that ψ has these properties, the existence of a counterexample to S would
imply the existence of an effective instance in ξ of the recursive denotational
control structure determined by Θ — a contradiction. Thus, ensuring the above
will guarantee that S is satisfied.

ψ is constructed in stages. For all a and t, ψta denotes ψa at the beginning of
stage t. For all a, ψ0

a = λx ↑. For all a, t, and x, ψt+1
a (x) = ψta(x) unless stated

otherwise.
In conjunction with ψ, a partial computable σ and a limit-computable d are

constructed. σ and d are used to help satisfy the S requirement. For all t, σt and
dt denote σ and d, respectively, at the beginning of stage t. For all a, σ0 and d0

are as follows.

σ0(a) =
{

(a− 1)÷ 2, if a ∈ 2N + 1;
↑, otherwise. (18)

d0(a) = 0. (19)

For all t and a, σt+1(a) = σt(a) unless stated otherwise. Similarly, for all t
and a, dt+1(a) = dt(a) unless stated otherwise. The following will be clear, by
construction.

(∀t)[dom(σt) ∩ 2N is finite]. (20)

λt, a [σt(a)↓] is a computable predicate. (21)

Let r be such that, for all t and q,

rt(q) =
{

2〈q, i〉, where i is least such that σt(2〈q, i〉)↑
and (∀p < q)[2〈q, i〉 > rt(p)]. (22)

r is used to help satisfy the R requirements. It can be shown, by a straight-
forward induction, that, if (20) holds as claimed, then, for all t, rt is total and
monotonically increasing. Furthermore, if (21) holds as claimed, then λt, q rt(q)
is computable. Clearly, by (22), if t, q, and i are such that rt(q) = 2〈q, i〉, then
σt(2〈q, i〉)↑. It follows that, for all t, dom(σt) ∩ rng(rt) = ∅.

For all q and t, it can be seen that Rq is injured in stage t whenever
rt+1(q) 6= rt(q). There are two ways that this can occur. The first is when
[(σt ◦rt)(q)↑ ∧ (σt+1 ◦rt)(q)↓], equivalently, (σ ◦rt)(q) becomes defined in stage
t + 1. The second is when, for some p < q, [rt(p) < rt(q) ∧ rt+1(p) ≥ rt(q)].
In this latter case, Rq is injured as a result of a cascading effect . Clearly, either
condition causes rt+1(q) 6= rt(q).

Let Ξ be a Blum complexity measure for ξ. For all p and t, let

ξtp = {(x, y) : x ≤ t ∧ Ξp(x) ≤ t ∧ ξp(x) = y}. (23)

Construct ψ, σ, and d by executing successive stages t = 0, 1, ... as follows.

12



Stage t = 〈a, i〉.
Case σt(a)↓. Let p = σt(a) and, for all x ≤ t + 1 such that
[ψta(x)↑ ∧ ξtp(x)↓], set ψt+1

a (x) = ξtp(x).
Case a ∈ rng(rt). Perform steps (1) and (2) below.
(1) Let s = dt(a) and determine whether conditions (a) and (b) below

are satisfied.
(a) ψta(s)↓.
(b) For all 〈x1, ..., xm+n〉 < s and b such that ψta(〈x1, ..., xm+n〉) = b,

(i) and (ii) below.
(i) ψsb ⊆ Θt(x1, ..., xm, ψ

t
xm+1

, ..., ψtxm+n
, ψtb).

(ii) Θs(x1, ..., xm, ψ
s
xm+1

, ..., ψsxm+n
, ψsb) ⊆ ψtb.

If conditions (a) and (b) are satisfied, then perform substeps (∗) and
(∗∗) below.
(∗) Let c = ψta(s). If [c > a ∧ σt(c)↑], then find any p such that

ψtc ⊆ ξp and set σt+1(c) = p.
(∗∗) Set dt+1(a) = s+ 1.

(2) Let q be be such that rt(q) = a and, for all x ≤ t + 1 such that
[ψta(x)↑ ∧ ϕtq(〈a, x〉)↓], set ψt+1

a (x) = ϕtq(〈a, x〉).

End of construction of ψ, σ, and d.

Claim 1. For all a, t, and x, if ψta(x)↓, then x ≤ t.
Proof of Claim. Clear by the construction of ψ. (Claim 1)

Claim 2. Let Ψ be such that, for all a and x,

Ψa(x) =

t, where t is least such that ψta(x)↓,
if such a t exists;

↑, otherwise.
(24)

Then, Ψ is a Blum complexity measure for ψ. Moreover, for all a and t,

ψta = {(x, y) : x ≤ t ∧ Ψa(x) ≤ t ∧ ψa(x) = y}. (25)

Proof of Claim. Follows from the construction of ψ and Claim 1. (Claim 2)

Claim 3. For all a ∈ dom(σ), ψa = ξσ(a).
Proof of Claim. Let a ∈ dom(σ) be fixed. Let t be least such that σt(a)↓, and
let p = σ(a). Note that, if t = 0, then (a ∈ 2N + 1 and) ψta = λx ↑ ⊆ ξp. On the
other hand, if t > 0, then, clearly, p was chosen so that ψta ⊆ ξp. Thus, in either
case, ψta ⊆ ξp. Next, note that, for infinitely many u ≥ t, ψu+1

a (x) is set equal to
ξup (x) for each x ≤ u+ 1 such that [ψua (x)↑ ∧ ξup (x)↓]. Furthermore, beginning
with stage t, this is the only way that pairs are inserted into the graph of ψa.
Clearly, then, in the limit, ψa = ξp. (Claim 3)

Claim 4. For all p, ψ2p+1 = ξp.
Proof of Claim. Immediate by Claim 3 and (18). (Claim 4)

13



Claim 5. For all t, a, and s, if [dt(a) = s ∧ dt+1(a) = s+ 1], then (a)-(c) below.

(a) For all 〈x1, ..., xm+n〉 ≤ s, ψta(〈x1, ..., xm+n〉)↓.
(b) For all 〈x1, ..., xm+n〉 < s and b such that ψta(〈x1, ..., xm+n〉) = b, (i) and (ii)

below.
(i) ψsb ⊆ Θt(x1, ..., xm, ψ

t
xm+1

, ..., ψtxm+n
, ψtb).

(ii) Θs(x1, ..., xm, ψ
s
xm+1

, ..., ψsxm+n
, ψsb) ⊆ ψtb.

(c) For all 〈x1, ..., xm+n〉 ≤ s and c such that [ψta(〈x1, ..., xm+n〉) = c ∧ c > a],
σt+1(c)↓.

Proof of Claim. (a) and (c) are each proven by a straightforward induction. (b)
is clear by the construction of ψ and d. (Claim 5)

Claim 6. For all a, there exists t such that, for all u > t, du(a) = dt(a).

Proof of Claim. By way of contradiction, let a be such that, for infinitely many
t, dt+1(a) = dt(a) + 1. Then, (a)-(c) below.

(a) ψa is total.
(b) For all x1, ..., xm+n,

ψψa(〈x1,...,xm+n〉) = Θ(x1, ..., xm, ψxm+1 , ..., ψxm+n
, ψψa(〈x1,...,xm+n〉)). (26)

(c) For all c ∈ rng(ψa) such that c > a, σ(c)↓.

(a) and (c) follow immediately from (a) and (c), respectively, of Claim 5. (b)
follows from Claim 2, (b) of Claim 5, and the right-to-left direction of Lemma 2.

Let p0, ..., pa be such that, for all c ∈ {0, ..., a},

ξpc
= ψc. (27)

Let τ be such that, for all c,

τ(c) =
{
pc, if c ≤ a;
σ(c), otherwise. (28)

Clearly, τ is partially computable. By (27) and Claim 3,(
∀c ∈ dom(τ)

)
[ξτ(c) = ψc]. (29)

Clearly, {0, ..., a} ⊆ dom(τ). Furthermore, by (c) above,

rng(ψa) ⊆ dom(τ). (30)

Let f : N → N be such that, for all x1, ..., xm+n,

f(〈x1, ..., xm+n〉) = (τ ◦ ψa)(〈x1, ..., xm, 2xm+1 + 1, ..., 2xm+n + 1〉). (31)

14



Clearly, f is computable. Furthermore, for all x1, ..., xm+n,

ξf(〈x1,...,xm+n〉)
= ξ(τ◦ψa)(〈x1,...,xm,2xm+1+1,...,2xm+n+1〉) {by (31)}
= ψψa(〈x1,...,xm,2xm+1+1,...,2xm+n+1〉) {by (29) and (30)}
= Θ(x1, ..., xm, ψ2xm+1+1, ..., ψ2xm+n+1,

ψψa(〈x1,...,xm,2xm+1+1,...,2xm+n+1〉)) {by (b) above}
= Θ(x1, ..., xm, ψ2xm+1+1, ..., ψ2xm+n+1,

ξ(τ◦ψa)(〈x1,...,xm,2xm+1+1,...,2xm+n+1〉)) {by (29) and (30)}
= Θ(x1, ..., xm, ψ2xm+1+1, ..., ψ2xm+n+1, ξf(〈x1,...,xm+n〉)) {by (31)}
= Θ(x1, ..., xm, ξxm+1 , ..., ξxm+n , ξf(〈x1,...,xm+n〉)) {by Claim 4}.

Thus, f is an effective instance in ξ of the recursive denotational control
structure determined by Θ — a contradiction. (Claim 6)

Claim 7. For all q, there exists t such that, for all u > t, ru(q) = rt(q).
Proof of Claim. By way of contradiction, let q be least such that, for infinitely
many t, rt+1(q) 6= rt(q). By the choice of q, there exists t such that, for all p < q
and u ≥ t, ru(p) = rt(p). By Claim 6, there exists u ≥ t such that, for all p < q
and v ≥ u, (dv ◦ rt)(p) = (du ◦ rt)(p). Clearly, for all p < q and v ≥ u,

(dv+1 ◦ rv)(p) = (dv+1 ◦ rt)(p) = (dv ◦ rt)(p) = (dv ◦ rv)(p). (32)

Let v ≥ u be such that rv+1(q) 6= rv(q). Clearly, by the construction of ψ and d,
there must exist a < rv(q) such that dv+1(a) 6= dv(a). Furthermore, there must
exist p such that rv(p) = a. Finally, since rv is monotonically increasing and
rv(p) = a < rv(q), it must be the case that p < q. To summarize: there exists
p < q and v ≥ u such that

(dv+1 ◦ rv)(p) 6= (dv ◦ rv)(p). (33)

But this contradicts (32). (Claim 7)

Claim 8. For all q, there exists a ∈ rng(r) such that ψa = ϕq(〈a, ·〉), i.e., Rq is
satisfied.
Proof of Claim. Let q be fixed. By Claim 7, there exists a = r(q). Note that,
for infinitely many t, ψt+1

a (x) is set equal to ϕtq(〈a, x〉) for each x ≤ t + 1 such
that [ψta(x)↑ ∧ ϕtq(〈a, x〉)↓]. Furthermore, this is the only way that pairs are
inserted into the graph of ψa. Clearly, then, in the limit, ψa = ϕq(〈a, ·〉).

(Claim 8)

Claim 9.

(a) For all partial computable α, there exists a ∈ rng(r) such that ψa = α.
(b) ψ is an eps in which krt holds.

Proof of Claim. Immediate by Claim 8 and Lemma 1. (Claim 9)

15



Claim 10. There is no effective instance in ψ of the recursive denotational control
structure determined by Θ, i.e., S is satisfied.

Proof of Claim. Suppose, by way of contradiction, otherwise. Let g : N → N be an
effective instance in ψ of the recursive denotational control structure determined
by Θ, i.e., for all x1, ..., xm+n,

ψg(〈x1,...,xm+n〉) = Θ(x1, ..., xm, ψxm+1 , ..., ψxm+n , ψg(〈x1,...,xm+n〉)). (34)

By (a) of Claim 9, there exists a ∈ rng(r) such that ψa = g. Since ψa is total,
for all s, there exists t such that ψta(s)↓. Furthermore, by Claim 2 and the
left-to-right direction of Lemma 2, for all s, there exists t such that, for all
〈x1, ..., xm+n〉 < s, (i) and (ii) below.

(i) ψsψa(〈x1,...,xm+n〉) ⊆ Θt(x1, ..., xm, ψ
t
xm+1

, ..., ψtxm+n
, ψtψa(〈x1,...,xm+n〉)).

(ii) Θs(x1, ..., xm, ψ
s
xm+1

, ..., ψsxm+n
, ψsψa(〈x1,...,xm+n〉)) ⊆ ψtψa(〈x1,...,xm+n〉).

Thus, it must be the case that, for infinitely many t, dt+1(a) 6= dt(a). But this
contradicts Claim 6. (Claim 10)

(Theorem 1)

Corollary 1. There is no collection of computable operators C such that (a)
and (b) below.

(a) For each Θ ∈ C, Θ has type Nm × Pn+1 → P, for some m and n, where
m+ n > 0.14

(b) For all epses ψ, krt holds in ψ iff there exists an effective instance in ψ of the
recursive denotational control structure determined by Θ, for each Θ ∈ C.

Proof of Corollary. Suppose, by way of contradiction, that such an C exists.
Consider the following cases.

Case (∀Θ ∈ C)[Θ is recursively denotationally omnipresent]. Clearly, this
would imply that krt holds in every eps — a contradiction.
Case (∃Θ ∈ C)[Θ is not recursively denotationally omnipresent]. Let Θ be
a computable operator asserted to exist by the case. Let ψ be an eps as in
Theorem 1 for Θ. Then, krt holds in ψ but there is no effective instance
in ψ of the recursive denotational control structure determined by Θ — a
contradiction.

(Corollary 1)

14 (a) ensures that each Θ ∈ C determines a recursive denotational control structure
(see (b) of Definition 1).

16



Theorem 2. For all partial computable ψ, ψ is an eps in which krt
holds ⇔ (∃ eps ξ)[ξ-KRT holds in ψ].

Proof.

(⇐) Immediate by (b) of Lemma 1.

(⇒) Let ψ be as stated. Let ξ be such that, for all a, b, x1, and x2,

ξ〈a,b〉(〈x1, x2〉) =
{
ψa(x2), if x1 = a;
ψb(〈x1, x2〉), otherwise. (35)

Claim 1. ξ is an eps

Proof of Claim. Clearly, ξ is partial computable. To complete the proof of the
claim, it suffices to show that, for all b, there exists a such that ξ〈a,b〉 = ψb. Let
ψ-program b be fixed. By krt in ψ, there exists a such that, for all x,

ψa(x) = ψb(〈a, x〉). (36)

For all x1 and x2, consider the following cases.

Case x1 = a. Then,

ξ〈a,b〉(〈a, x2〉) = ψa(x2) {by (35)}
= ψb(〈a, x2〉) {by (36)}.

Case x1 6= a. Then, by (35), ξ〈a,b〉(〈x1, x2〉) = ψb(〈x1, x2〉).

(Claim 1)

Claim 2. ξ-KRT holds in ψ.
Proof of Claim. Let r : N → N be such that, for all a and b, r(〈a, b〉) = a. Clearly,
r is computable. Furthermore, for all a, b, and x,

ψr(〈a,b〉)(x) = ψa(x) {by the choice of r}
= ξ〈a,b〉(〈a, x〉) {by (35)}
= ξ〈a,b〉

(〈
r(〈a, b〉), x

〉)
{by the choice of r}.

(Claim 2)

(Theorem 2)

17


