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Abstract. Providing real-time, interactive immersive surgical training has been a
key research area in telemedicine. Earlier approaches havemainly adopted video-
taped training that can only show imagery from a fixed viewpoint. Recent advances
on commodity 3D imaging have enabled a new paradigm for immersive surgical
training by acquiring nearly complete 3D reconstructions of actual surgical pro-
cedures. However, unlike 2D videotaping that can easily stream data in real-time,
by far 3D imaging based solutions require pre-capturing andprocessing the data;
surgical trainings using the data have to be conducted offline after the acquisition.
In this paper, we present a new real-time immersive 3D surgical training system.
Our solution builds upon the recent multi-Kinect based surgical training system [1]
that can acquire and display high fidelity 3D surgical procedures using only a small
number of Microsoft Kinect sensors. We build on top of the system a client-server
model for real-time streaming. On the server front, we efficiently fuse multiple
Kinect data acquired from different viewpoints and compress and then stream the
data to the client. On the client front, we build an interactive space-time navigator
to allow remote users (e.g., trainees) to witness the surgical procedure in real-time
as if they were present in the room.
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Introduction

Providing effective immersive surgical training has become one of the key research topics
in telemedicine. Traditionally, surgeons require longer education and training than other
specialists. However, there are only a limited number of experts and both instructors and
trainees are over-constrained by time. IN addition, new surgical procedures are emerging
at a high rate with increasing complexity in protocols and devices. In traditional surgi-
cal training, videotaped instruction has long served as a workhorse. However, they are
marginally effective: videotapes only provide 2D imagery from a fixed viewpoint and the
trainee cannot freely navigate the procedure due to occlusions and lack of depth cues.

For the past decade, the success of 3D telepresence [2,3,4,5] has enabled state-of-
the-art remote medical procedures. At the core of these solutions are techniques to ac-
quire, reconstruct, and display the complete 3D geometry ofroom-sized surgical en-
vironments using 3D imaging technologies. Most existing approaches [3,6,7,8,9], e.g.,



from Fuchs’s group at UNC, Bajcsy’s group at UPenn, Kanade’sgroup at CMU, and
Gross’s group at ETH, have adopted a sea of cameras solution,where a large number of
cameras are positioned at different locations in the room. Computer vision techniques, in
particular stereo matching and multi-view reconstruction, then are used to recover the 3D
geometry from the imagery data. Despite their success on 3D acquisition, these solutions
are still not readily applicable to real operating rooms: itis literally impractical to mount
a sea of cameras within an Operation Room(OR) and robust 3D scene reconstruction is
still very challenging.

Advances in commodity 3D imaging have provided a promising alternative to the
”sea of cameras” solution. For example, the Microsoft Kinect sensor is able to acquire
reasonable quality 3D data along with video streams. Each Kinect sensor essentially uses
a RGB camera and an infrared projector and camera pair to capture color images and its
corresponding depth maps. Based on the Kinect technology, Guo et al. [1] have recently
presented a new immersive surgical training system. Instead of using a large number of
cameras, their solution used a small number (2∼ 4) of Microsoft Kinect sensors that are
uniformly controlled by a single workstation. Their range and imagery data are fused via
a companion computer vision algorithm for robustly recovering the 3D surgical scene.
Despite its effectiveness on acquiring the data, their solution can still only replay the data
offline. In contrast, an ideal remote surgical training should allow real-time navigation of
the surgery.

In this paper, we present a new real-time immersive 3D surgical training system.
Our solution builds upon Guo’s multi-Kinect surgical training system [1] and provides
real-time streaming capability. Specifically, we develop aclient-server model. On the
server front, we efficiently fuse multiple Kinect data acquired from different viewpoints
and compress and then stream the data to the client side. On the client front, we build
an interactive space-time navigator to allow remote users (e.g., trainees) to witness live
surgical procedure as if they are personally on the scene. Weaddress multiple techni-
cal challenges including color and range data compression,multi-tasking, data stream-
ing, and online data visualization. Preliminary experiments show that our new real-time
immersive training system is portable, effective, and reliable.

Figure 1. Our Online Surgical Training System.
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Figure 2. (a) Microsoft Kinect has a microphone array, an infrared projector, an infrared sensor and a VGA
camera. (b) Acquisition system consists of a set of three Microsoft Kinect cameras.

1. 3D Video Steaming System

Figure 1 shows the architect of our system. Our processing pipeline is composed of three
components: 1) the server calibrates a set of three Microsoft Kinect sensors and uses
them to acquire RGB-D images. 2) The communication framework efficiently packs the
data into the send buffer and streams it via communication protocols based on Windows
Socket API. 3) The client first unpacks the calibration information and RGB-D images
from the receive buffer and uses them to render and fuse the three views to a 3D point
cloud. Our system allows the user at the client side to witness the captured scene in
real-time.

1.1. Server and Client

Figure 2 shows our image acquisition system. It consists of the server and three Microsoft
Kinect sensors to capture the depth and color information ofthe scene. We build our
system by using the open source Nestk library [10] and synchronize the three cameras.
We first save the color information as 24 bit RGB image and the depth information as 16
bit image, and then compress both color and depth raw data forfast data transmission.

Similar to previous approaches [3,4,11,12,13], we first separately pre-calibrate the
intrinsic parameter for each Kinect. The Nestk library [10]supports stereo matching
and image warping between the color and the depth images so that each pixel on the
depth image corresponds to the pixel at the same location on the color image. As a
result, our calibration process only needs to find the intrinsic/extrinsic parameters for
the color camera. Specifically, we use each Kinects color camera to capture 30 images
of a rotating 10×7 checkerboard. Next, we use Zhang’s approach [14] to accurately
recover the intrinsic parameters. To estimate the extrinsic parameters of the color cameras
during capture, we position the checkerboard approximately at the center of the scene
and estimate the relative positions of the cameras with respect to the top-left corner of
the checkerboard. The centroid of the scene is then used as the origin of the 3D world.



Figure 3. Our buffer design.

1.2. Communication Framework

Our communication framework consists of two parts: the sending and receiving pro-
cesses. They are designed as separate threads on Server and Client so that they do not
interfere with the capturing and rendering threads.

As shown in Figure 3, the sending process first packs the calibration information
and the captured RGB-D images into the send buffer. Specifically, we divide our send
buffer into different slots with a special symbol indicating the start of each slot. At the
beginning of each slot, we use 64 bits to record the size of this slot for later unpacking.
We place the calibration information for three Kinect sensors at the first slot because
the location and orientation of Kinects are fixed during capturing. Next, we extract the
image’s metadata from the first frame of images and pack them into the second slots.
Note that we only send the 1st and 2nd slots once for compression. After the calibration
and image information have been sent, we consecutively packeach frame of three views
into the following slots with each slot containing three color and depth images in different
blocks. We use the first 2 bits to record the view number to distinguish images from
different views. We also use the next bit to indicate if the image is color information or
depth information. We assign the rest of the block to save theimage data.

The receiving process receives and unpacks the data using the receive buffer. To effi-
ciently unpack the received data, we design our receive buffer with a two-layer structure:
the front buffer is used to rearrange the received packages and the back buffer is used to
unpack the rearranged data for further rendering.

Note that the Socket API does not guarantee that each received data is a complete
slot. Therefore we first put the received data in the front buffer and check if the size of
the current data in the front buffer is larger than the size indicated at the beginning of the
buffer. If so, we move the data into the back buffer. Otherwise, we wait for the new data
to come in.

The back buffer contains complete slots transferred from front buffer. Each time the
back buffer receives a new slot, the client sends 1 bit acknowledgement signal informing
server the arrival of new slot with given size. The server does not send next slot until it
receive the acknowledgement signal. This mechanism maintains the clients buffer from
being flushed by the server’s messages.



2. 3D Scene Reconstruction

We reconstruct the 3D scene using the approach proposed by Guo et al. [1]. Here we
briefly reiterate their method.

Data Fusion. The two-pass rendering approach first recovers a point cloudfor each
viewpoint, and then fuses the results to generate a global 3Drepresentation of the scene.
Given a depth-RGB image pair, we first trace a ray for each pixel in the image and utilize
the depth data to find the corresponding 3D coordinates in world space. Next, we uses the
camera calibration parameters to transform the point cloudof each Kinect camera from
local coordinates into a global coordinate system. Then we fuse multiple point clouds
into one global representation. Notice that Kinect is designed as a stand-alone solution
that delivers quite robust depth maps, while simultaneously running multiple sensors
may lead to deteriorated results.

3D Rendering. With the generated point cloud, we begin to render a 3D stereoscopic
view of the scene. Traditional 3D rendering generates a single perspective view by syn-
thesizing a pinhole camera image in the scene. We extend thisapproach by simultane-
ously setting two cameras in the scene with a user specified baseline so that two cameras
capture two views of the point cloud and render them as a red-cyan anaglyph. We also
utilized the NVIDIA 3D API to render two regular color imagesand synchronize with
the NVIDIA 3D glasses to deliver a better user experience.

3. Results and Discussions

We use a PC with a 3.2GHz i7-3930k processor to communicate with the Kinect sensors
through USB 2.0 interfaces. Our 3D reconstruction client runs on a 3.5GHz i7-2700K
machine equipped with an NVIDIA GeForce GTX 480 graphic card. Our server and
client are interconnected in a Fast Ethernet local area network at 100 MB/s.

The basic transmission rate is determined by the clients rendering speed and desired
frame per second (fps). For our system, the rendering speed is around 15 fps while our
transmission rate is above 20 fps. Specifically, the color image size is less than 100 KB
and depth image size is less than 120 KB after compression. During the experiment,
our network transmission rate is 14 MB/s, which indicates that the server transmits 21
frames in one second to the client (14MB / ((100KB + 120KB)×3)≈ 21fps). The results
demonstrate that our system can effectively capture and reconstruct 3D video in real-
time.

Figure 4 shows our 3D view tests which capture a subject playing chess. Figure 5
shows the 3D stereoscopic view using red-cyan anaglyph. Theresults show that our
system is capable of delivering live 3D data to a remote site in real time. We are currently
coordinating with the VEST Center at the Christiana Care Health Service in Delaware to
record and stream live surgical training to the University of Delaware.

4. Conclusions and Future work

We have developed a novel real time immersive surgery training system by coupling the
emerging 3D imaging with advanced computer vision and graphics techniques. Specifi-



Figure 4. We use our system to acquire a subject playing chess. The figure shows the 2D rendering of the
streamed data.

Figure 5. The same scene as Fig. 4 but we render the streamed data using 3D rendering.

cally, our system is based on a client-server model for real-time streaming. On the server
front, we efficiently fuse multiple Kinect data acquired from different viewpoints and
compress the data to stream to the client. On the client front, we build an interactive
space-time navigator to allow remote users to witness the surgical procedure in real-time.
We have validated our system by several preliminary tests ofsurgical training. In the
future, we will explore possible integration with advancedimage processing techniques
filters in our system to achieve better 3D reconstruction results. We will also investigate
how to support a large of number of clients at the same time as well as to provide 2D
alternatives of our 3D data when the client does not have a 3D display. Finally, we plan
to work closely with surgeons and residents to evaluate and improve the design of our
system.
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