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Abstract. Recent coded aperture imaging systems have shown great
success in scene reconstruction, extended depth-of-field and light field
imaging. By far nearly all solutions are built on top of commodity cam-
eras equipped with a single spherical lens. In this paper, we explore
coded aperture solutions on a special non-centric lens called the crossed-
slit (XSlit) lens. An XSlit lens uses a relay of two orthogonal cylindrical
lenses, each coupled with a slit-shaped aperture. Through ray geometry
analysis, we first show that the XSlit lens produces a different and po-
tentially advantageous depth-of-field than the regular spherical lens. We
then present a coded aperture strategy that individually encodes each
slit aperture, one with broadband code and the other with high depth
discrepancy code, for scene recovery. Synthetic and real experiments vali-
date our theory and demonstrate the advantages of XSlit coded aperture
solutions over the spherical lens ones.

1 Introduction

Recent advances in computational imaging and photography have enabled many
new solutions to tackle traditionally challenging computer vision problems. A
notable class of solutions is coded computational photography: by strategically
blocking light over time [11], space [5,14], and wavelength [1], etc. These solutions
can facilitate scene reconstruction as well as preserve image quality. For example,
coded aperture, which is initially developed in astronomy or X-ray imaging,
has been extended onto commodity cameras. The coded pattern correlates the
frequency characteristics of defocus blurs with scene depth to enable reliable
deconvolution and depth estimation.

By far nearly all coded aperture systems are built on top of commodity cam-
eras equipped with a spherical thin lens and circular aperture. Spherical lenses
can effectively emulate pinhole projection when the aperture is small. This model
also facilitates easy analysis of the depth-of-field in terms of aperture size and
object distance. To implement coded aperture, it is common practice to replace
the circular aperture with the desired coded patterns. Earlier approaches insert
printed masks [5,14,21] between the lens and the sensor whereas more recent
solutions replace the mask with programmable Liquid Crystal on Silicon (LCoS)
to enable dynamic aperture encoding [7]. Tremendous efforts have been focused
on developing reliable coding schemes and deconvolution algorithms. In contrast,
very little research has been conducted from the perspective of the lens.
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In this paper, we explore coded aperture imaging on a special non-centric lens
called the crossed-slit (XSlit) lens. Geometrically, an XSlit lens aims to collect
rays that simultaneously pass through two oblique slits in 3D space. Its imaging
model is non-centric and the acquired images are multi-perspective [18]. Com-
prehensive studies have been focused on studying XSlit imaging property [23],
geometry [9,10], and its applications in image-based rendering [12,19]. The theo-
retical foundations have recently led to the constructing real anamorphic or XSlit
lenses. Yuan et al.[20] developed an XSlit anamorphot and derived the first-order
monochromatic aberration. Ye et al.[15] constructed a portable version of the
anamorphot by using a relay of two orthogonal cylindrical lenses, each coupled
with a (rectangular) slit-shaped aperture. They have further demonstrated using
the XSlit lens in Manhattan scene recovery [15] and stereo matching [16].

This paper makes the first attempt to implement coded aperture on an XSlit
lens. Clearly, the first question is whether XSlit coded aperture would bring any
benefits to the regular spherical lens based solutions. We hence first conduct a
ray geometry analysis to study the depth-of-field (DoF) in the XSlit lens. We
show that, with the same light throughput, the XSlit lens can produce a different
and potentially advantageous DoF than the spherical lens. Specifically, for each
XSlit lens, we introduce its throughput equivalent spherical lens (TESL) with
a square aperture. We show that the XSlit blur kernels are 2D rectangularly-
shaped where the shape is depth-dependent. However, compared with its TESL’s
square kernels, they are generally smaller in one dimension and remain the same
in the other.

Based on our analysis, we further present a strategy to separately encode each
slit aperture for scene reconstruction. Developing coded patterns is a dilemma:
an ideal pattern will have to have two conflicting properties, i.e., reliable decon-
volution vs. high depth discrepancy. The former requires the aperture pattern to
be broadband to ensure robust deconvolution whereas the latter requires the code
to contain many zero crossings in the frequency domain to distinguish different
depth layers. Our strategy is to encode the smaller dimension to the TESL’s using
broadband codes and the other using high depth discrepancy codes. Synthetic
and real experiments demonstrate that our XSlit coded aperture outperforms
its TESL’s in reliability and accuracy.

2 XSlit vs. Spherical Lenses in Depth-of-Field

We first compare depth-of-field produced by an XSlit lens vs. the traditional
spherical lens. We adopt the XSlit lens model in [15] that uses a relay of two
cylindrical lenses. For simplicity, we focus our analysis on Parallel Orthogonal
XSlit (POXSlit) lenses where the cylindrical axis of the second lens is orthogonal
to the first. The general case (when the two slits are not orthogonal) follows a
similar derivation and can be found in the supplementary material.

We start with explaining our notation and lens/aperture settings. We assume
the two orthogonal cylindrical lenses lie at z = l1 and z = l2 (l1 > l2) with focal
lengths f1 and f2, respectively. Further, we assume the cylindrical axis of first
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lens is horizontal and the one of the second is vertical, as shown in Fig. 1. The
simplest apertures are rectangular-shaped apertures of width w1 and w2 on the
two lenses respectively. Same as the spherical lens, we can define the f -number
of the lenses as Ni = fi/wi, i = 1, 2.

2.1 Cylindrical Lens Transform
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Fig. 1. (a)Ray transformation through a single cylindrical lens; (b) Ray transformation
through an XSlit lens

To conduct a DoF analysis, we first study how rays are transformed through
the XSlit lens. We start with a single cylindrical lens transform and then con-
catenate the transforms of two lenses. In the language of ray geometry[17], we
set out to derive the cylindrical lens operator (CLO), analogous to the spherical
lens operator [8,3].

To parameterize rays, we adopt the two-plane parametrization [6]. Each ray
is parameterized by its intersections with two parallel planes Πuv and Πst. We
place the cylindrical lens on Πuv. Given an incident ray ri = [si, ti, ui, vi]

�

emitted from the scene towards the lens, the CLO maps ri to an exit ray ro =
[so, to, uo, vo]

�, leaving the lens towards the sensor. When the cylindrical lens
is horizontal, it leaves the u component of the ray unaltered and focuses only
the v component; when the lens is vertical, it only focuses the u component. By
applying the thin-lens law and similitude relationship, we have the horizontal
and vertical CLO as

[uo, vo, so, to]
� = C(f)[ui, vi, si, ti]

�

horizontal: Ch(f) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 −1/f 0 1

⎞
⎟⎟⎠ ; vertical: Cv(f) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0

−1/f 0 1 0
0 0 0 1

⎞
⎟⎟⎠

(1)

where f is the focal length of the cylindrical lens.
Next we study the concatenation of two cylindrical lenses and derive the XSlit

lens operator (XSLO). Specifically, we can trace along an incident ray ri through
the horizontal lens, map it to rb incident the vertical lens, and compute the final
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exit ray ro reaching (incident to) the sensor. By simply applying the horizontal
CLO (Eqn. (1)), we have

[ub, vb, sb, tb]
� = Ch(f1)[ui, vi, si, ti]

� (2)

To reuse CLO on the second lens, we represent rb and ro under a new 2PP
u′v′s′t′, where Πu′v′ is the lens plane of the second lens. By applying the vertical
CLO, we have

[u′
o, v

′
o, s

′
o, t

′
o]

� = Cv(f2)[u
′
b, v

′
b, s

′
b, t

′
b]
� (3)

To concatenate the two ray transforms, we reparameterize [u′, v′, s′, t′]� to
[u, v, s, t]� using similitude transform as

[u, v, s, t]� = L(l)[u′, v′, s′, t′]�

L(l) =

⎛
⎜⎜⎝

1+l 0 −l 0
0 1+l 0 −l
l 0 1−l 0
0 l 0 1−l

⎞
⎟⎟⎠

(4)

where l = l1 − l2 is the separation between two cylindrical lenses. A similar 2PP
reparameterization has been used in previous work for correlating in-lens light
fields to out-of-lens ones [8].

Finally, by applying L−1(l) on Eqn. (2) and substituting rb into Eqn. (3), we
have the XSlit Lens Operator (XSLO): S(f1, f2, l) as

[uo, vo, so, to]
� = L(l)Cv(f2)L

−1(l)Ch(f1)[ui, vi, si, ti]
�

= S(f1, f2, l)[ui, vi, si, ti]
� (5)

For the more general case where the two cylindrical lenses are not orthog-
onal, we need to consider their angle and the derivation can be found in the
supplementary material.

2.2 Aperture Operator

Same as the spherical lens, a wide aperture can introduce defocus blurs and
reduce the DoF. We therefore analyze defocus blurs under the regular shaped
slit apertures with width w1 and w2. We introduce the two aperture operators:A1

for the horizontal lens and A2 for the vertical lens. Notice they are parameterized
in v and u′ on their lens planes respectively.

A1(v) =

{
1 |v| ≤ w1/2

0 else
and A2(u

′) =

{
1 |u′| ≤ w2/2

0 else
(6)

Since only rays that passing through both apertures can reach the sensor,
we can derive the closed-form point spread function (PSF) in the XSlit lens as
follows. Consider a scene point Ṗ at depth z, we map all rays originating from Ṗ
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to pixels. Without loss of generosity, we assume Ṗ is on the z-axis. The incident
rays ri originated from Ṗ can be written as:

ri = [ui, vi, (
z − l1 + 1

z − l1
)ui, (

z − l1 + 1

z − l1
)vi]

� (7)

By applying XSLO on ri, we compute the exit ray ro as

ro = [
ξ

f2z − l1f2
ui, vi,

ξ − z + l2 + f2
f2z − l1f2

ui, (
z − l1 + 1

z − l1
)vi]

� (8)

where ξ = l1z − l2z − l1l2 + l22 − l1f2 + f2z.
The incident rays are constrained by the two apertures (Eqn. (6)):

|ui| ≤ w2(z − l1)

2(z − l2)
, |vi| ≤ w1/2 (9)

Substituting Eqn. (8) into Eqn. (9), we can map the aperture constraint onto
ro:

|uo| ≤ w2ξ

2(f2z − f2l2)
, |vo| ≤ w1/2 (10)

Since the sensor is the xy-plane at z = 0, we can directly obtain the PSF from
ro by mapping Eqn. (10) onto the xy-plane:

PSF(x, y) =

{
1 |x| ≤ w2

2
( z
z−l2

− l2
f2
) and |y| ≤ w1

2
( z
z−l1

− l1
f1
)

0 else
(11)

The XSlit PSF is non-isotropic and its shape is depth dependent as shown in
Fig. 2.

Fig. 2. Captured XSlit PSFs at different depths. We use an XSlit camera with focal
length 50mm & 50mm to capture a 32×24 dot-array projected on a slanted screen
(ranging from 15cm to 36cm w.r.t.the camera). The XSlit PSFs vary both in shape
and scale w.r.t.depth.

2.3 Throughput Equivalent Spherical Lens

One of the most interesting questions regarding the XSlit lens is: is it better
than the regular spherical thin lens? We therefore compare the XSlit PSF with
the spherical thin lens PSF. For fairness, we need to ensure that the two types
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Fig. 3. Light throughput analysis on the XSlit lens. (a) Measure the flux from a to a′

using solid angle dω. (b) Measuring the light enters the camera through the XSlit lens
using the effective aperture.

of lenses have the same light throughput. We thus further conduct a radiometry
analysis. Specifically, for every XSlit lens, we find its dual throughput equivalent
spherical lens (TESL).

Consider a thin pencil of light emanating from a small surface element a of an
object at depth z. Assume the radiance of a is B, the light energy (flux) radiated
per second from a to the another surface element a′ is given by the Lambert’s
law:

dΦ = B · a cosαdω (12)

where α is the angle between a’s normal and the line connecting a and a′; dω is
the solid angle subtended by a′ at a, as shown in Fig. 3(a).

By Eqn. (6), the area of effective aperture is z−l1
z−l2

w1w2. The project area of the

effective aperture as seen by a can be computed as z−l1
z−l2

w1w2 cosα. By mapping
the project area onto the unit sphere, we obtain the solid angle

ω =
z − l1
z − l2

w1w2 cos
3 α (13)

Substituting Eqn. (13) into Eqn. (12), we have the flux received at the effective
aperture

Φ = B · a cosαω = B · a w1w2

(z − l1)(z − l2)
cos4 α (14)

Eqn. (14) indicates the total amount of light entering the camera. We can
further map Φ to irradiance (flux per area) received at sensor. We have the
imaged area of a as a′ = l1l2a

(z−l1)(z−l2)
by using similar triangles. Dividing Φ by

a′, we have the irradiance received at sensor:

EXSlit =
Φ

a′
= B

w1w2

l1l2
cos4 α (15)

Since the lens-to-scene distance is much larger than the lens-to-sensor dis-
tance, we can approximate li/wi using fi/wi. Therefore, we rewrite Eqn. (15) in
terms of f -numbers

EXSlit = BN1N2 cos
4 α (16)
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Recall that, for a spherical lens with focal length fp and f -number Np, the
irradiance can be computed as:

Espherical = BN2
p cos4 α (17)

By Eqn. (16) and Eqn. (17), given a XSlit lens with f -numbers N1 and N2,
its TESL will have f -number Np =

√
N1N2.

2.4 Depth-of-Field Comparisons

Now that we have derived the TESL of an XSlit lens, we can compare their DoFs.
It is very important to note that, different from the spherical lens, if the two
cylindrical lenses in an XSlit lens have identical focus length, it is not practical
to focus the two lenses at the same depth (the only in-focus depth is z = l1+ l2,
which is too close to the front horizontal lens at z = l1). We therefore focus the
two lenses at two different depths. At the first glance, this focus setting may
appear highly undesirable as no 3D point can be clearly focused in the image.
A deeper analysis as follows, however, reveals that it has several advantages.

Recall that the front lens is horizontal thus producing vertical blurs and
the rear lens (closer to the sensor) is vertical resulting in horizontal blurs. By
Eqn. (11), the horizontal and vertical PSF scales are:

bv = (
z

z − l1
− l1

f1
)w1 and bh = (

z

z − l2
− l2

f2
)w2 (18)

We assume that the TESL coincides with the the front lens. Recall that the
spherical lens’ PSF is uniform. Therefore, the spherical PSF scale b is always
identical to the vertical scale of XSlit PSF (b = bv). Given the lens parameters
and focused depth, we can plot the curves of PSF scales vs. scene depth, as shown
in Fig. 4(b). The red curve corresponds to bv and the green one corresponds to
bh. Assume zfront refers to the depth that the front lens focuses at, zrear refers
to the one that the rear lens focuses at, and zinter between zfront and zrear refers
to the depth the two curves intersect.

At zfront, the TESL has zero PSF whereas the XSlit lens has only zero vertical
scale but appear defocused horizontally. This is a major disadvantage of the
XSlit, i.e., no point in the scene can be clearly focused either horizontally or
vertically when using the same focal length for each cylindrical lens.

Let us consider an important depth zinter where the two curves intersects.
Before zinter , the XSlit performs worse, i.e., it incurs more horizontal blur than
the TESL (bh > bv = b). Although this is undesirable, this range is much smaller
than the complete scene range in a typical scene. Therefore, under the same
setup, only a small range of depth exhibits worse PSF in XSlit than in the
pinhole lens while majority depths in XSlit will appear much clearly focused.

The key advantage of the XSlit is that after zinter the horizontal scale of the
XSlit PSF is always smaller than the spherical lens one (bh < bv = b). One
can explain this phenomena by either algebraic reasoning or geometry/optics
reasoning. Algebraically, since the two lenses focuses at different scene depth,
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Fig. 4. (a) XSlit camera prototype; (b) XSlit PSF scales vs. depth; (c) The power
Spectra of our selected coded apertures

bh and bv map to two different curves. The two curves will intersect somewhere
between zfront and zrear, after which bh will always be smaller than bv. From
the geometric optics perspective, we can also reason this phenomena. The rear
lens focuses farther away than the front lens. Since the two lenses have an iden-
tical focal length, after depth zrear, the rear lens will incur smaller defocus blur
because the relative depth of the corresponding point to its focal plane is larger
than to front one.

3 XSlit Coded Aperture Imaging

The analysis above indicates that the XSlit lens have a different and potentially
advantageous DoF than its TESL. In this section, we exploit the special property
of XSlit DoF and implement a coded aperture system for scene recovery.

Depth recovering using coded aperture has been thoroughly explored on spher-
ical lenses in the past decade [5,14,7,22,13]. The basis idea is to analyze the
coded pattern and defocused images to recover scene depth and produce an all-
focus image. However, designing the code is a dilemma. To discriminate depth,
the aperture pattern should have zero-crossings in the frequency domain to pur-
posely introduce variations among blurry images in terms of depths [5]. However,
to ensure robust deconvolution, the aperture pattern should be broadband, i.e.,
its frequency profile should have few zero-crossings [14].

When only a single coded aperture is used on the spherical lens, one can po-
tentially combine the two types of codes through multiplexing, e.g., horizontally
using the broadband and vertically using the high depth discrepancy ones. Recall
that the DoF analysis shows that compared with its TESL, the XSlit lens (under
the focus configuration as discussed in Section 2.4) exhibits less horizontal blurs
and approximately the same vertical blurs under the same light throughput. Our
strategy hence is to encode the first cylindrical lens (the horizontal one) using the
high discrepancy kernel and the vertical lens with a broadband one. We choose
this strategy to remain the same depth discrepancy as its TESL (since they have
identical vertical blur scale) whereas the other dimension is less blurred to pro-
vide more robust deconvolution. If we switch the coding scheme (i.e., the first with
broadband pattern and the second with high depth discrepancy one), although
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the all-focus image can be more easily restored, the depth discriminative ability is
compromised.

3.1 Code Selection

Next we discuss how to choose the appropriate coded pattern for each cylindrical
lens. Assume the vertical pattern is Kv(x) and the horizontal pattern is Kh(y),
the overall blur kernel is therefore K(x, y) = Kv(x) · Kv(y) where x and y are
further constrained by the close-form PSF (Eqn. (11)). For each 1D pattern, we
choose from a series of randomly sampled 13-bit codes. Since the vertical code
Kv is required to be broadband, we select the one with the maximum min-value
in the frequency domain.

Then we fix Kv and find the optimal Kh. Assume the blur kernel at depth
i is Ki = Ki

v · Ki
h. To have better depth discrepancy, we want to maximize

the distance between blurry image distributions caused by kernels at different
depths, i.e., Ki and Kj (i �= j). We use the commonly used Kullback-Leibler
(KL) divergence to measure the distance between two blurry image distributions

D(P i(y), P j(y)) =

∫

y

P i(y)(logP i(y)− logP j(y))dy (19)

where P i and P j are the blurry image distribution for Ki and Kj respectively
and we use the hyper-Laplacian distribution of natural images for computing
them [5,4].

Finally, we use “1010010011111” as the vertical code and “110011110011” as
the horizontal code in our implementation. The power spectra of the selected
codes are plotted in Fig. 4(c).

3.2 Depth Estimation

To estimate depth, we first precompute the corresponding point spread function
(PSF) for each layer using the coded pattern and the closed-form PSF derived
in Section 2. Once we acquire the image, we check which PSF yields to the
optimal results. Specifically, we conduct deconvolution using PSFs of different
depth layers: when the scale is larger than the actual one, the result will exhibit
strong ringing artifacts; when the scale is smaller than the actual one, the image
would appear less sharp but still without ringing. We use Gabor filter to detect
ringing in the deconvolved image, i.e., greater responses correspond to more
severe ringing. A Gabor filter is a Gaussian kernel function modulated by a
sinusoidal plane wave and can be written as

Gλ,θ(x, y) = exp(−x′2 + γy′2

2σ2
) cos(2π

x′

λ
) (20)

x′ = x cos θ − y sin θ, y′ = x sin θ − y cos θ

where λ is the wavelength (reciprocal of the spatial frequency), θ is the orienta-
tion of the filter, γ is aspect ratio, and σ is the standard deviation of Gaussian.
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We use Gabor filters with θ = 0◦ and 90◦ for ringing detection. We define the
response of a Gabor filter Gθ as

Rθ(x, y) =

∫∫
I(x, y)Gθ(x − u, y − v)dudv (21)

We sum up the horizontal and vertical Gabor responses on each deconvolved
image and thus the one with smallest value corresponds to the optimal depth.
We discretize the scene to N depth layers and reuse the graph-cut algorithm [2]
for assigned depth labels. We use the Gabor response as the penalty term for
building the graph. Therefore, the energy function E of assigning a depth label
di to a pixel p is formulated as

E(di) = α ·
∑
p∈P

Ed(p, di(p)) +
∑

p1,p2∈N

Es(p1(di), p2(dj)) (22)

where P represents all pixels in the image; N represents the pixel neighborhood;
Ed(p, di(p)) is the Gabor response as the data term; Es is the smooth term; and
the non-negative coefficient α balances the data term and the smooth term.

To recover all-focus image, since our blur kernel only compromises 1D scene
information, we simply reuse the modified Wienner deconvolution using nat-
ural image priors [21] which is much faster than the Iteratively Reweighted
Least Squares (IRLS) deconvolution [5] that can handle kernels with many zero-
crossings.

4 Experiments

We validate our DoF analysis and coded aperture imaging model on real XSlit
lenses as shown in Fig. 4(a). We follow the same design as [15] to construct the
XSlit lens using a relay of two cylindrical lenses with focal length 50mm. We use
a 50mm spherical lens as its TESL. We use the camera body of Canon 60D. For
all experiments, we use ISO 100 and shutter speed 1/100s.

(a) (b)

Fig. 5. Light throughput comparison between the XSlit lens and its TESL. (a) Exper-
imental setup; (b) The irradiance vs. f -number curve for the three lenses.
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Throughput. Given a specific f -number, e.g., f/10 (i.e., with both slit aperture
widths 5mm), we can compute the aperture size of its TESL by dividing the f -
number with the focal length (in this case, a square aperture of 5mm×5mm).
We further construct the second XSlit lens where the two cylindrical lenses have
different focal lengths (the first of 100mm and the second of 50mm). By the
definition of f -number in Section 2, for the second XSlit lens to have the same
throughput as the first and its TESL, we need to double the aperture width of
the 100mm lens (e.g., in this example 10mm). In our experiments, we compare
the throughput of all three lenses with f/5, f/8, f/10, f/16 and f/20.

We use all three lenses to capture a uniform white diffuse surface under the
same lighting condition, as shown in Fig. 5(a). We use the averaged intensity
value of the linearly tone-mapped raw image from the camera as irradiance
measure. Fig. 5(b) plots irradiance vs. f -number curves of all three lenses. Our
results are consistent with the throughput analysis: as far as the XSlit lenses
and the TESL have the same f -number, they have equivalent light throughput.

Notice though that when the aperture size gets too big (e.g., f/5), the XSlit
lenses exhibit strong vignetting.

Depth-of-Field. Next we valid our DoF analysis of the XSlit lens vs. its TESL.
We construct a scene that consists of three objects lying at depth 38cm, 50cm
and 63cm w.r.t.the camera. For the XSlit lens, the front lens focuses at 40cm and
the rear lens at 45cm whereas its TESL focuses at 40cm. The image captured
by the XSlit and its TESL are shown in Fig. 6(a) and (b) respectively. Our
analysis predicts that the PSF of the XSlit should be narrow in the horizontal
direction than the TESL for objects lying far away. Notice that layer 2 and layer
3 have depth greater than zinter and in the acquired images, they appear less
horizontally blurred in the XSlit image than the TESL one, which is consistent
with our prediction. Furthermore, the vertical blur scales are approximately the
same in both the XSlit and its TESL. The XSlit hence improves the depth-of-
field for objects at depth greater than zinter, e.g., the texts in layer 3 appear
clearer in the XSlit image than in its TESL’s.

(a) (b) (c) (d)
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Coded Aperture Imaging. Next, we demonstrate coded aperture imaging
on the XSlit lens for scene reconstruction. Same as existing solutions, we first
conduct experiments on synthetic data to compare the performance of XSlit
coded aperture vs. its TESL’s. We construct a simple scene with three depth
layers at 20cm, 40cm and 80cm. The XSlit lens focuses at 16cm and 24cm. The
TESL’s focal plane coincides with the front focal plane of the XSlit. For the
TESL, we use the optimal coded pattern presented [5] which is expected to
have high depth discrepancy. For our XSlit lens, we use the codes described in
Section 3.1.

Fig. 7 shows the recovered depth map and all-focus image using the two
lenses. For image deconvolution, we apply IRLS (first column) and Wiener filters
(the other two columns). Coded aperture result on the TESL using the optimal
code [5] produces a high quality depth map although the recovered all-focus
image exhibits ring artifacts near occlusion boundaries due to zero-crossings in
the frequency domain, as discussed in Section 3.1. Our XSlit coded aperture
solution is able to reduce the ringing artifacts thanks to smaller horizontal PSFs
and special coding schemes and its recovered depth map is comparable to the
TESL’s.

Finally, we use our XSlit lens to acquire real scenes. We printed the coded
pattern on clear masks and insert them on the aperture plane of each cylindrical
lens. The scene consists of three cards at depth 50cm, 80cm, and 100cm respec-
tively. The front lens is focused at 30cm and the rear lens at 60cm. We use the
same code as in the synthetic case and apply graph-cut based depth estimation.
In particular, we discretize depth to 10 labels ranging from 30cm to 120cm. We
segment the captured defocus blurred image into 10×10 patches, compute the
Gabor response for each depth layer, and find the optimal depth labeling. Our
XSlit coded aperture imaging is able to recover satisfactory depth maps and
all-focus images as shown in Fig. 8. The blocky effect in our depth output is
partially due to the large window sizes.

5 Discussions and Future Work

We have presented an XSlit depth-of-field (DoF) analysis and an XSlit-based
coded aperture imaging solution. Despite being highly theoretical, we have show-
cased that an XSlit lens is potentially advantageous than its throughput equiv-
alent spherical lens: when the two types of lenses have a similar throughput, the
XSlit lens will exhibit better DoF and hence can benefit coded aperture imaging.
A major limitation of our approach though is the challenges in constructing high
quality XSlit lenses. While the techniques for fabricating lenses that effectively
emulate spherical thin lenses have matured in the past century, relatively lit-
tle work has focused on designing high quality cylindrical lenses and let alone
XSlit lenses. In fact, our self-constructed XSlit exhibits high distortions, poor
anti-reflection, and strong vignetting. It is our important future work to work
with optical engineers to fabricate a larger scale XSlit lens for experimenting our
coded aperture scheme.
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Fig. 7. Coded aperture result on a synthetic scene. We compare our XSlit coded aper-
ture and its TESL with two different coded patterns: on the left we use the coding
scheme in [5] and on the right we use the coding scheme that is a combination of the
XSlit codes.

(a) (b) (c) (d)

Fig. 8. Coded aperture result on a real scene. (a) The captured defocused image using
the proposed XSlit coded aperture scheme; (b) Our recovered depth map; (c) Our
recovered all-focus image; (d) Close-up views in (a) and (c).

Another future direction we plan to explore is scene-dependent coded aperture
designs. A natural scene often contains patterns that exhibit strong directional
features, e.g., a scene can contain mostly horizontal features and few vertical
ones. We therefore can potentially encode the vertical and horizontal slit aper-
tures differently to simultaneously account for depth estimation and defocus
compensation. Finally, our analysis shows that XSlit defocus blurs different sig-
nificantly from the ones of spherical lenses: the PSFs vary both in size and shape
at different depths. In particular, the shape of the kernel can help validate depth
hypothesis in scene recovery. In the future, we plan to explore reliable solutions
to integrate this useful depth cue into scene recovery.
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