
Numeric-Symbolic Exact Rational Linear System Solver∗

B. David Saunders, David Harlan Wood, and Bryan S. Youse
Dept. of Computer and Information Sciences, University of Delaware

Newark, Delaware, USA
saunders@udel.edu, wood@udel.edu, bryouse@udel.edu

ABSTRACT
An iterative refinement approach is taken to rational linear
system solving. Such methods produce, for each entry of the
solution vector, a rational approximation with denominator
a power of 2. From this the correct rational entry can be
reconstructed. Our iteration is a numeric-symbolic hybrid
in that it uses an approximate numeric solver at each step
together with a symbolic (exact arithmetic) residual com-
putation and symbolic rational reconstruction. The rational
solution may be checked symbolically (exactly). However,
there is some possibility of failure of convergence, usually
due to numeric ill-conditioning. Alternatively, the algorithm
may be used to obtain an extended precision floating point
approximation of any specified precision. In this case we
cannot guarantee the result by rational reconstruction and
an exact solution check, but the approach gives evidence
(not proof) that the probability of error is extremely small.
The chief contributions of the method and implementation
are (1) confirmed continuation, (2) improved rational recon-
struction, and (3) faster and more robust performance.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm Design and Anal-
ysis; I.1.4 [Symbolic and Algebraic Manipulation]: Ap-
plications

General Terms
Algorithms, Design, Performance

Keywords
iterative refinement, rational linear system, rational recon-
struction

∗Research supported by National Science Foundation
Grants CCF-0830130, CCF-108063

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0675-1/11/06 ...$10.00.

1. INTRODUCTION
We address the problem of solving Ax = b for a vector x ∈

Qn, given A ∈ Qm×n and b ∈ Qm. We will restrict ourselves
to square (m = n), nonsingular matrices with integer entries
of length d bits or fewer. This is the core problem. Also, in
this paper we are concerned with dense matrices, which is
to say, matrices that do not have so many zero entries that
more specialized sparse matrix techniques should be applied.
We do anticipate that the refined numeric-symbolic iterative
approach presented here will also apply effectively to sparse
systems.

We present a method which is a refinement of the numeric-
symbolic method of Wan[27, 26]. Earlier work of Geddes and
Zheng[10] showed the effectiveness of the numeric-symbolic
iteration, but used higher precision (thus higher cost) steps
in the residue computation. However, Wan’s method has
had only sporadic success as deployed in the field (in the
LinBox[22] library). Here we present a new confirmed con-
tinuation method which is quite robust and effective. In gen-
eral, numerical numerical iteration methods are intended to
extend the number of correct digits in the partial solution x′.
The confirmed continuation method verifies that these new
digits overlap the previous iteration’s partial solution. This
is our assurance of progress, rather than the less reliable
matrix condition number small norm of residual, |b − Ax′|,
which is used in prior methods [27, 26, 20, 12]. Evidence
from data suggests that the new version solves a larger class
of problems, is more robust, and provides the fastest solu-
tions for many dense linear systems.

Standard non-iterative methods such as Gaussian elim-
ination in its various forms suffer from extreme expression
swell when working in exact integer or rational number arith-
metic. In fact, the solution vector x itself is typically a larger
object than the inputs. When elimination is used, typically
O(n2) large intermediate values are typically created, with
concomitant large time and memory cost.

In view of such expression swell, it is remarkable that it-
erative methods provide for solution in n3+o(1) time and
n2+o(1) space when input entry lengths are constant. (The

factor no(1) absorbs any factors logarithmic in n.) There are
two contending approaches.

A classical approach for finding rational number solutions
to linear systems is Dixon’s modular method[6] which begins
by solving the system modulo a prime, p, and proceeds to a
p-adic approximation of the solution by Hensel lifting, and
finishes with reconstruction of the rational solution from p-
adic approximants of sufficient length.

The second approach is a numeric-symbolic combination
introduced by Wan in his thesis[27, 26]. Out focus is on
extending Wan’s method to to a larger class of problems
where the size of residuals is too pessimistic.

Historically, the idea of solving exact linear systems to
arbitrarily high accuracy by numerical iterative refinement
(earlier referred to as binary-cascade iterative-refinement pro-
cess, BCIR) is attributed to H. Wozniakowski by Wilkin-
son[28]. Wozniakowski is also acknowledged in a 1981 pa-
per by Kielbasinski[12]. This 1981 paper emphasized “using
the lowest sufficient precision in the computation of residual
vectors.” The required precision was allowed to vary at each
iterative step. The case when doubling the working preci-
sion suffices to compute sufficiently accurate residuals was
also treated soon after in [20]. An important limitation of
these early papers was the assumption that the condition
number of the matrix A is known. In practice, the system’s
condition number is rarely known and estimators can fail
drastically.

Wan introduced two innovations into iterative refinement.
The first innovation is that knowledge of condition num-
bers is not required. Instead, the accuracy of intermediate
approximation vectors is estimated by the computed residu-
als, |b−Ax′|. Wan’s second innovation was to compute these
residuals exactly, rather than in variable precision or double
precision as in the two earlier papers. Accurate residuals
are essential, of course, for the correctness of subsequent it-
erative steps. However, residuals, even exact residuals, do
not always correctly assess the accuracy of approximate so-
lutions.

Thus, Wan’s approach is basically to iterate with a se-
ries of approximate numerical solutions, each contributing
its possibly differing number of correct bits, and to do ex-
act computation of the current residual (via truncation and
scaling) at each iteration in preparation for the next. The
exactly computed residual is used to estimate the number of
reliable bits in the current numeric approximation, and to
provide the required accuracy of the residual that is to be
input into the next iterative step. The final step in Wan’s
method, just as in Dixon’s method, is that rational construc-
tion of the solution is undertaken only after a sufficiently
accurate (dyadic, in this case) rational approximation is ob-
tained.

One may say that, as input to the rational reconstruc-
tion, Dixon’s method produces a Laurent series in powers
of the prime p and numeric-symbolic iteration produces a
Laurent series in powers of 1/2. A bound is computed for
the maximum length of the series necessary to assure ratio-
nal reconstruction. Both of these methods have the same
asymptotic complexity.

Reconstruction earlier in the process can be tried and will
succeed if the rational numbers in the solution have smaller
representations than the a priori bound. This is not done in
the current implementation of Wan’s method. Steffy studies
this case in [21]. We offer a variant of rational reconstruc-
tion which recognizes potential early termination. But we
distinguish these speculative results from the results that are
guaranteed from known properties of the output and length
of the Laurent series. Speculative results are be checked to
see if they satisfy the original linear system.

One advantage of numeric-symbolic iteration is that it ob-
tains the most significant digits first. One can stop short of
the full rational reconstruction and instead take as the out-

put the floating point values at any desired precision. A
disadvantage of numeric-symbolic iteration is that it does
require the numeric solver to obtain at least a few bits of
accuracy at each iteration to be able to continue. Thus it is
subject to failure due to ill-conditioning.

Wan’s method has been implemented in LinBox[22, 7].
Some uses of linear system solving, for instance in Smith
Normal Form computation, proceed by trying Wan’s method
and, if it fails, resorting to Dixon’s. Unfortunately, past
experience is that the numeric-symbolic iteration fails more
often than not in this context. The confirmed continuation
algorithm variant reported here is designed to significantly
increase the success rate.

In section 2, we discuss Dixon’s and Wan’s iterations in
more detail. Then in section 3 we describe our confirmed
continuation method. In section 4 the rational reconstruc-
tion phase is discussed in detail. Finally our experiments
are reported in section 5.

2. BACKGROUND
Here is a unified skeleton of Dixon’s p-adic method and

the numeric (dyadic) iteration for rational linear system so-
lution. To unify the notation note that a rational number
x may be written as a Laurent series x =

∑inf
i=k xip

i, where
either p is a prime (p-adic expansion) or p = 1/2 (dyadic
expansion). It will be convenient to think of the dyadic ex-
pansion in e bit chunks, in other words, use p = 2−e. We
specify that each xi is integer and 0 ≤ xi < p in the p-adic
case, 0 ≤ xi < 1/p in the dyadic case. In either case let

x mod pl denote
∑l−1

i=k xip
i. This will allow us to use the

same modular language when discussing p-adic or dyadic
expansions.

The skeleton of iterative refinement schemes to compute
a solution x to Ax = b is then the following.

1. Compute B such that B = A−1 mod p. That is, A ∗
B = I mod p. The needed functionality of the object
is, that for various vectors r, it can be used to ac-
curately compute A−1r mod p in n2 arithmetic steps.
For instance, B could be represented by an LU decom-
position of A.

2. By Cramer’s rule the solution vector can be repre-
sented by quotients of n×n minors of (A, b). Compute
a bound H (for instance the Hadamard bound) for
these determinants. Let k = d logq(H)e, where q = p
if doing p-adic expansion and q = 1/p if doing dyadic
expansion. 2k terms of expansion are needed, in the
worst case, to reconstruct the rational numbers in the
solution vector.

3. Let r0 = b, y0 = 0. For i in 0..2k do the following:

(a) yi = A−1ri mod p.

(b) ri+1 = (ri−Ayi)/p. Do this computation modulo
p2 at least. Since ri − Ayi = 0 mod p, after the
division, ri+1 is the correct residual modulo p.

(c) y = y + yip
i.

Each of these steps corrects for the preceding residual
by computing y to one more p-adic digit of accuracy.
In other words y = A−1b mod p2k.

4. Apply rational reconstruction to y, p2k to obtain x, the
vector of rational numbers solution.

When p is a prime, this is Dixon’s method. When p =
(1/2)30 this is essentially Wan’s numeric-symbolic iterative
scheme. The method succeeds so long as this is possible at
each iteration. Thus there is the possibility of failure due to
insufficient numeric accuracy in the iteration not present in
Dixon’s method. On the other hand, it is possible to exploit
whatever amount of accuracy is achieved at each step, which
could be more or fewer than 30 bits. In other words, there
is no need to use the same power of 1/2 at each iteration.
Wan’s iteration (and others) adjust the number of bits used
at each iteration to the accuracy of the solver.

The trick to this is to know the accuracy of the solver. The
condition number and/or the norm of the residual (absolute
and/or relative) have been used as guidance here. The resid-
ual norm idea is basically that in step 3b if ri+1 = ri −Ari
is smaller by e bits than ri, then also the first e bits of yi are
likely to be accurate. As is well known, this is not always
the case.

The first contribution of our approach is to replace the
use of the residual norm with an overlap confirmed con-
tinuation principle. Suppose it is believed that e bits are
accurate. The residual norm based iteration would define
yi as w mod 2−e. Thus w = yi + 2−eq, (q ≤ 1) and q is dis-
carded1. Instead, we choose the exponent e′ of 1/2 used at
each iteration slightly conservatively. Let e′ = e− 1 and use

the decomposition w = yi + 2−e′q. We take a little less in
yi so as to be able to make use of q. Since we believe the
numeric solver gave us e bits of accuracy, the first bit in each
entry of q is presumably accurate. Thus yi+1 should agree
with q in the leading bits. When this happens we say we
have a confirmed continuation. When it fails, we recognize
that w was not accurate to e bits, and make an adjustment
as described in the next section.

Confirmed continuation is a heuristic, since when it suc-
ceeds we do not know with certainty that the solution is
accurate. It will succeed very well when the numeric solver
is unbiased and the intuition is that it will still do very well
when there is bias. Let A ∈ Zn×n and let B be a representa-
tion of A−1. Suppose B is unbiased, which means that, for
any b ∈ Zn, s ∈ Z, if y = Bb mod 2s and y 6= A−1b mod s
then the direction of B(b − Ay) is uniformly random. Ob-
serve that if B is unbiased then the probability is 1/2n of
a false one bit continuation confirmation. This is just the
observation that there are 2n patterns of n bits. This is
a rather weak justification for our confirmed continuation
heuristic since solvers are rarely if ever unbiased. However,
in practice the heuristic is proving to be effective, allowing
continuation in some cases in which the residual norm is
discouragingly large.

In the next section our confirmed continuation method is
described in more detail including the exploitation of tech-
niques to discover the solution sooner when the actual nu-
merators and denominator are smaller than the a priori
bounds. This is variously called output sensitivity or early
termination [5, 18]. Output sensitivity has been used pri-
marily with Dixon’s algorithm. The only study of it we know
for numeric-symbolic iteration is [21].

1It is a central idea of Wan’s approach to do this truncation
so that the next residual may be computed exactly.

3. CONFIRMED CONTINUATION AND OUT-
PUT SENSITIVITY

Our variant on iterative refinement uses the same basic
structure as previous implementations. That is, the system
is solved numerically in a loop, with the solution at each
iteration contributing some bits to the dyadic numerators
and common denominator. Specifically, we call the solution
in a step of the iteration x̂, and divide it into two parts. x̂int

contains the higher order bits and is incorporated into the
dyadic estimate. x̂frac contains the lower order bits and is
unused in Wan’s algorithm. The residual vector obtained
by applying A to x̂int provides the right-hand side for the
next iteration. The loop ends when it is determined the
dyadic approximants contain enough information to recon-
struct the true rational solution. This determination is made
by checking against a pre-computed bound on the size of the
rationals.

Algorithm 1 Overlap: Confirmed continuation iterative
refinement to solve Ax = b

Input: A ∈ Zn×n, b ∈ Zn, k. Output: x ∈ Zn, 0 < q ∈ Z
such that Ax = qb.
Compute A−1. {Numeric LU decomposition}
N1..n ← 0. {dyadic numerators}
D ← 1. {common denominator}
loopbound ← 2×

∏n
i=1 ‖Ai‖ × bmax.

r ← b. {Residue of intermediate solutions}
s← 52−bitlength(n× ‖A‖∞ × ‖b‖∞).
thresh ← 1

2k
. {Threshold for overlap confirmation}

x̂← A−1r.
while D < loopbound do
x̂int ← bx̂× 2s + 0.5c.
x̂frac ← x̂− x̂int.
r ← r × 2s −Ax̂int. {Update residual}
x̂← A−1r.
if ||x̂− x̂frac||∞ > thresh then

Shrink s, repeat iteration.
else
N1..n ← N1..n × 2s + x̂int. {Update dyadics}
D ← D × 2s.
if r = 0 then

Return: N,D as x, d.
end if

end if
end while
Return: x, d← Algorithm 3 (N,D).

To ensure the accuracy of the numeric solver’s solution
at each iteration, we verify there is overlap between the cur-
rent iteration’s numeric solution and the discarded fractional
portion of the previous solution. Overlap is demonstrated
in the conditional statement where prospective solution x̂
is checked against x̂frac, the leftover bits from the previous
iteration. The vectors are subtracted and the maximal abso-
lute value in the difference set is checked against a threshold
1
2k

to ensure k overlapping bits. In practice, we find one
bit of overlap (i.e. k = 1) suffices to confirm continuation
except for very small n.

Once this verification step is successful, we are able to ex-
plore seeking more bits of accuracy from the numeric solver.
We treat the value s as an adjustable bit-shift length. Each
numeric solution x̂ is multiplied by 2s in order to split into

x̂int and x̂frac. That is, it is bit-shifted left by s. Likewise
when we update the dyadic numerators N , we shift them
left by s, then add the new information to the now zeroed
lower s bits.

The value of s is at our disposal and allows the algorithm
to adapt to changing accuracy from the numeric solver. Ide-
ally it will hug the true number of accurate bits in the in-
termediate results as closely as possible. As long as some
bits of accuracy are provided in each solve, the iteration
can continue. Within the bounds of a 52-bit mantissa of
a double-precision floating point number, we seek to max-
imize the shift length to minimize the number of iteration
steps. Program speed is the foremost improvement provided
by the confirmed continuation method as compared to the
residual-norm based iterative refinement.

Finding a good shift length s is a matter of starting at 1
and iteratively doubling until no overlap is evident or the
hard ceiling of 52 is reached. The absence of overlap is an
indication that we obtained fewer than s bits of numeric
accuracy, and we must back off. Required to do this is a
copy of the last successful x̂. From this we must repeat
the extraction of bits using a smaller s, recompute residual,
r, and finally solve against this adjusted right-hand side.
We use a binary search to determine the maximum value of
s that produces overlap, which sits between the failed shift
length and the last successful shift length. Algorithm 1 omits
these details for brevity, simply initializing s to a sensible
starting point.

If the step applying A to x̂int is done in double precision
and produces values that cannot fit into the mantissa of a
double floating point number, this operation computes an
inexact residual. The next iteration would then be solving
the wrong problem. This error is detected by neither the
norm-based approaches nor the overlap method, since both
approaches only guard against numerical inaccuracy of the
partial solutions themselves. If the numeric solver itself is
accurate, repeated divergence from the problem we intend
to solve will be undetected. The algorithm completes after
sufficiently many iterations, and reports dyadic estimates
that have no hope of being reconstructed into the correct
rational solution to the original problem.

To avoid this error, we employ big-integer arithmetic (us-
ing GMP) in the residual update, but only when necessary,
specifically when ‖A‖∞ × ‖x̂int‖∞ ≥ 252, which is a conser-
vative condition.

The matrix norm is computed beforehand, so it costs only
O(n) work per iteration to compute the vector norm. The
flexibility of this approach both prevents the aforementioned
divergent behavior and allows for the use of quicker, double
precision computation of the exact residual in many cases.
Our experience is that for borderline problems that require
some bignum residual computation, the need is rare amongst
iterations.

Sometimes the numerators and denominator of the final
rational solution are significantly smaller than the worst case
bound computed a priori. When this is the case, it is possi-
ble to obtain dyadic approximants of sufficient length to re-
construct the solution before the iterative refinement would
normally end. Our early termination strategy is designed
to improve running time for these cases. It is sketched in
Algorithm 2.

The core iterative refinement loop is still in place, but ev-
ery so often it is stopped to attempt a rational reconstruction

Algorithm 2 Ov-ET: Confirmed continuation iterative re-
finement w/ Early Termination to solve Ax = b

This is Algorithm 1, replacing the while loop (iterative
refinement) with:
bound ←

∏n
i=1 ‖Ai‖2. {Hadamard bound}

while bound < loopbound do
while D < bound do

while loop in Algorithm 1.
end while
bound ←

√
bound× loopbound.

i← random(1..n). {Select random element}
if Algorithm 3 (Ni, D) is success then

if x, d← Algorithm 3 (N,D) is success then
Return: x, d.

end if
end if

end while
Return: x, d← Algorithm 3 (N,D).

from the current dyadic approximation. Specifically it is ini-
tially stopped at the halfway point to the worst case bound,
that is, as soon as D is larger than the Hadamard bound for
det(A), which is the initial value of bound in Algorithm 2. A
single-element rational reconstruction is attempted using a
random element from the numerator vector N and denomi-
nator D. Success here provides encouragement for attempt-
ing a full vector reconstruction with all elements of N , which
is then performed. Success on the vector reconstruction pro-
vides a speculative or guaranteed solution, depending on the
reconstructed denominator and length of the dyadic approx-
imation. After a solution verification, we terminate here,
potentially saving many iterations.

Upon failure to rationally reconstruct the solution on an
early attempt the bound is set to the bitwise half-way point
between itself and loopbound, the point at which iterative
refinement would end without early termination. The new
value of bound serves as the next checkpoint for an early
termination attempt. This is a binary search that keeps re-
porting “higher” after failed guesses. The strategy ensures
the number of attempts is logarithmic in the number of it-
erations required. Also reconstruction attempts are of in-
creasing density as the full iteration bound is approached,
which address the expectation that successful early termina-
tion becomes increasingly likely. We remark that van Hoeij
and Monagan [25] and Steffy [21] also use a logarithmic num-
ber of iterations but with increasing density of trials at the
low numbered iterations rather than at the end as we do. Ei-
ther approach ensures good asymptotic behaviour. Which is
better in practice is an open question. For good performance
in practice, One might use a more uniform spacing of recon-
struction trials with frequency such that reconstruction cost
does not exceed a specified fraction of overall cost.

4. DYADIC RATIONAL TO RATIONAL RE-
CONSTRUCTION

In an earlier section we made a point of the similarity
between numeric approximation and p-adic approximation.
When it comes to the rational reconstruction, both may be
expressed in terms of extended Euclidean algorithm remain-
der sequences. However there is a difference. In rational
reconstruction from a residue and modulus, the a remain-

der serves as numerator and the coefficient of the residue
as denominator of the approximated rational. The coeffi-
cient of the modulus is ignored. In contrast, for dyadic to
rational reconstruction we use the two coefficients for the
rational and the remainder serves to measure the error of
approximation as we explain next.

First consider a single entry of the solution vector. The
input to the reconstruction problem is a dyadic n/d (with
d a power of 2) together with a known bound B for the
denominator of the approximated rational a/b. Let us say
that a/b is well approximated by n/d if |a/b− n/d| < 1/2d.
By this definition, n/d can never well approximate the mid-
point between (n± 1)/d and n/d. But this midpoint has
larger denominator, and the rational reconstruction process
described below never finds a/b when b > d in any case. In
the system solving application, the rational reconstruction
would fail but the next iteration would compute a/b exactly
and terminate with residual 0.

Proposition 1. If two distinct fractions a/b and p/q are
well approximated by n/d then d < bq.

The proposition follows from the fact that 1 ≤ |pb − aq|
(nonzero integer) and the triangle inequality: 1/qb ≤ |p/q−
a/b| ≤ |p/q − n/d|+ |n/d− a/b| < 1/2d+ 1/2d = 1/d,

Proposition 2. If a/b is well approximated by n/d and d ≥
bB, then no other fraction with denominator bounded by B
is well approximated. Also n/d well approximates at most
one rational with denominator bound B when d ≥ B2.

Proposition 4 follows from the previous proposition since
bq ≤ bB, when p/q is a second well approximated fraction
with denominator bounded by B.

This allows for a guaranteed early termination (output sen-
sitive) strategy in the numeric-symbolic iteration. In the
Dixon method, early termination is a probabilistic matter
(the prime used is chosen at random). It cannot be so in
numeric-symbolic iteration, because there is no randomness
used.

Reconstruction of the sought fraction a/b is done with the
extended Euclidean algorithm remainder sequence of n, d.
Define this to be (ri, qi, pi) such that ri = qin − pid, with
q0 = p1 = 1 and qi = p0 = 0. We have altered the usual
treatment slightly so that pi and qi are positive (and strictly
increasing) for i > 1, while the remainders alternate in sign
and decrease in absolute value. Let Q be defined by Eu-
clidean division on the remainders: |ri−1| = Q|ri|+ r, with
0 ≤ r < |ri|. Then the recursion is ri+1 = Qri + ri−1,
pi+1 = Qpi +pi−1, and qi+1 = Qqi +qi−1. Also the determi-
nants piqi+1−pi+1qi are alternately 1 and -1. See e.g. [9] for
properties of remainder sequences and continued fractions.

Proposition 3. The coefficients p, q in a term (r, q, p) of
the remainder sequence define a rational p/q well approxi-
mated by n/d and denominator bounded by B if and only if
2|r| < q ≤ B.

This follows from r = qn − pd so that |r|/qd = |p/q −
n/d| < 1/2d (and q ≤ B by hypothesis).

Proposition 4. Given n, d,B, let (r, q, p) be the last term
such that q < B in the remainder sequence of n, d. This
term defines the best approximated B bounded fraction p/q
of any term in the remainder sequence.

When n/d well approximates a rational a/b and d < bB
then a/b = p/q, i.e. is defined by this term of the remainder
sequence.

This follows because |r| is decreasing and q increasing in
the remainder sequence. The claim that the rational will be
found in the remainder sequence follows from Theorem 4.4
in [26]. Half extended gcd computation computation ((r, q)
rather than (r, q, p)) lowers the cost, with p computed post
hoc only for the term of interest.

When this last term below the bound defines a well ap-
proximated rational p/q, i.e. 2|r| < q, we say we have a
“guaranteed” reconstruction. When that is not the case, it
is still possible that we have found the correct rational. As
mentioned in the previous section, sometimes by good luck
this leads to successful solutions even when the iteration has
not proceeded far enough to have a guaranteed well approx-
imated answer.

Thus we may offer the last approximant from the remain-
der sequence with denominator bounded by B. It is specu-
lative if d > bB and guaranteed to be the unique solution
otherwise. It is never necessary to go beyond d = B2. As
the experiments attest, trial reconstructions during the nu-
meric iteration process, can be effective at achieving early
termination. The vector reconstruction described next helps
keep the cost of these trials low.

To construct a solution in the form of a vector of numera-
tors x ∈ Zn and common denominator q from a vector of n ∈
Zn, and common (power of 2) denominator d, we can often
avoid reconstructing each entry separately with a remainder
sequence computation. We compute xi as xi = [niq/d]. In
other words, xi is the quotient in the division niq = xid+ r,
with −d/2 < r < d/2. The error of the approximation is
then xi/q − ni/d| = r/qd. If this error is bounded by 1/2d,
xi/q is well approximated by n/d. Thus we have a well ap-
proximated result if and only if 2r < q. When single division
fails to produce a well approximated xi/q, resort to a full
remainder sequence. This leads to the following algorithm.

The first loop discovers new factors of the common de-
nominator as it goes along. In practice one or two full re-
constructions are needed and the remainder are done by the
single division before the if statement. The backward prop-
agation of new factors is delayed to the second loop, to avoid
a quadratic number of multiplications. In the worst case this
algorithm amounts to n gcd computations. In the best case
it is one gcd and n−1 checked divisions with remainder. Ex-
perimentally we have encountered essentially the best case,
with a very few full gcd computations.

A rational reconstruction algorithm presented in another
paper of this proceedings achieves a better asymptotic com-
plexity than that of n independent scalar rational recon-
structions [2]. That concerns reconstruction from residues
and modulus and may be adaptable to the dyadic to rational
setting.

To our knowledge, prior algorithms do not assume n/d
well approximates (to accuracy 1/2d) and so do not exploit
the guarantee of uniqueness as we do, particularly when us-
ing the early termination strategy. However, Cabay [4] gave
a guarantee of early termination based on a sufficiently long

Algorithm 3 Vector DyadicToRational

Input: N ∈ Zn, D ∈ Z. Output: x ∈ Zn, 0 < d ∈ Z, flag,
such that flag is “fail” or N/D well approximates x/d and
flag is “speculative” or “guaranteed”.
d← 1.
for i from 1 to n do
xi ← [Niq/d].
if xi fails the well approximation test then
xi, di, flag = ScalarDyadicToRational(Ni, D).
if flag = “fail”, return “fail”.
Compute the factorizations d = aig, di = big, where
g = gcd(d, di). The new common denominator is
d← aidi, so set xi ← xi×ai. Prior numerators must
be multiplied by bi. Enqueue bi for that later.

end if
end for
B ← 1.
for i from n down to 1 do
xi ← xi ×B;
if bi 6= 1 then
B ← B × bi.

end if
end for
return x, d, flag. [If any scalar reconstruction was specula-
tive, flag = “speculative”, otherwise flag = “guaranteed”.]

sequence of iterations resulting in the same reconstructed
rational. This was in the context of Chinese remaindering,
but should apply to Hensel lifting and numeric-symbolic it-
eration as well. Note that our guarantee comes from a single
reconstruction, not a series. Steffy exploits speculative re-
constructions as we do and gives a guaranteeing condition
based on the error of the approximation [21, lemma 2.6].
Note that our overlap heuristic provides evidence on the er-
ror that is independent of a condition number estimation. It
could be useful to accept reconstructions earlier in the iter-
ation using Steffy’s condition and our measure of the error.
We have not yet experimented with this.

5. EXPERIMENTS
For test matrices, we use the following 8 matrix families

Hn, Jn, Qn, Sn,mn,Mn, Rn, Zn described next.
Hn: The inverse of the n × n Hilbert matrix. This is a

famously ill-conditioned matrix. The condition number of
Hn

κ(Hn) = ‖Hn‖2
∥∥H−1

n

∥∥
2
≈ c 33.97n/

√
n

where c is a constant, is quoted in[1]. We find that our nu-
meric solvers – both the residual norm based and the overlap
confirmed continuation approach – can handle this matrix
only up to n = 11. On the other hand, Dixon’s p-adic itera-
tion can handle any size, provided p is chosen large enough to
insure the nonsingularity of Hn mod p. For instance, Dixon
does the n = 100 case in 12 seconds. This class is introduced
only to illustrate the potential for numeric solver failure due
to ill-condition.
Jn: This matrix is twice the n × n Jordan block for the

eigenvalue 1/2. We multiply by 2 to get an integer matrix.
It is a square matrix with 1’s on the diagonal, and 2’s on
the first subdiagonal. Numerical computations for matri-
ces with repeated eigenvalues are notoriously difficult. The
inverse matrix contains (−2)j on the j-th subdiagonal. For

Examples of numeric failure to converge
matrix Dixon Wan Overlap
J994 2.27 1.77 0.0850
J995 2.23 fail 0.0920
J1022 2.40 fail 0.100
J1023 2.38 fail fail
J2000 13.3 fail fail
Q500 2.07 fail 0.81
Q1000 15.0 fail 7.29
Q2000 121 fail 70.3
Q4000 1460 fail 633

Table 1: Dixon is p-adic iteration, Wan is numeric-
symbolic iteration using residual norm based con-
tinuation, Overlap is the confirmed continuation of
this paper. Times are in seconds.

n > 1023, the matrix J−1
n is not representable in double pre-

cision (infinity entries), and for smaller n it poses numerical
challenges.

Table 1 shows that the numeric-symbolic solvers are faster
than the p-adic lifting when they work, but they have diffi-
culties with Jn.

For reasons we do not completely understand, on another
machine the thresholds at which the solvers have conver-
gence problems are different than in Table 1. We suspect it
has to do with a different LAPACK version. On that ma-
chine, for n larger than 54, Wan’s residual norm based solver
is discouraged by the first residual and gives up.

For n larger than 1023, infinities (numbers not repre-
sentable in double precision) defeat all numeric solving. The
bottom left entry of J−1

n is 2n−1 which is not representable
when n ≥ 1024. However, the overlap solver fails at n =
1023. Although the inverse matrix itself is just barely rep-
resentable, some numbers which occur in the matrix-vector
products are not representable in this case.
Qn: Let Qn = DLD, where L is the n × n Lehmer ma-

trix[23, 14], with elements Li,j = min(i, j)/max(i, j), and
D is the diagonal matrix with Di,i = i. Thus Q is an
integral Brownian matrix[11] with Qi,j = min(i, j)2 (“Q”
is for quadratic). A closed form expression, det(Qn) =
2−n(2n)!/n! follows from[13].

Note that Lx = b iff x = Dy and Qy = Db (also De1 =
e1). Being an integer matrix, Q fits in our experimental
framework while rational L does not.

Table 1 includes Qn measurements concerning numeric
difficulties. In his recent experiments, Steffy[21] used the
Lehmer matrix as an example where Dixon’s method works
but numeric-symbolic iteration does not. We include it here
because it shows a striking difference between residual norm
based continuation and overlap confirmed continuation in
numeric-symbolic iteration. In fact, Wan’s code in LinBox
fails on Qn for n > 26.

The examples of Qn, along with the remaining five classes
of examples, are used for our performance study shown in
Table 2. These test cases are in many collections of matrices
used for testing. A notable such collection[3] is maintained
by John Burkardt.

Three of our test matrices (Qn,mn, and Mn) are Brown-
ian matrices[11] in that they have have a“echelon”structure:
that is, the elements obey bi,j+1 = bi,j , j > i, and bi+1,j =

bi,j, i > j, for all i, j. Many Brownian matrices have known
closed form results for inverses, determinants, factorization,
etc. One source of special results is the following obser-
vation[11]. If the matrix P is taken to be a Jordan block
corresponding to a repeated eigenvalue of −1, then PBPT

is tridiagonal if and only if B is Brownian.
Sn: The n × n Hadamard matrix using Sylvester’s def-

inition. S1 = (1), S2n =

(
Sn Sn

Sn −Sn

)
. This definition

results in n being a power of two. The determinant of Sn

equals nn/2, which is sharp for the Hadamard bound. Thus,
for any integral right hand side, the solution is a dyadic ra-
tional vector. This provides a test of early termination due
to a zero residual.

Algorithm performance comparisons
Matrix Dixon Wan Overlap Ov-ET
S512 0.728 0.711 0.0723 0.0721
m500 1.28 1.34 0.273 0.273
M500 1.46 fail 1.06 0.562
Q500 2.41 fail 2.98 1.39
R500 1.09 1.04 1.05 0.931
Z500 0.793 0.864 0.584 0.580
S1024 4.58 4.75 0.380 0.371
m1000 8.83 10.8 2.24 2.24
M1000 10.2 fail 8.56 4.42
Q1000 16.6 fail 24.5 17.4
R1000 7.25 fail 6.87 6.48
Z1000 6.04 6.38 4.41 4.46
S2048 32.3 36.6 2.08 2.10
m2000 72.0 89.6 17.1 17.0
M2000 82.8 fail 75.0 37.8
Q2000 137 fail 243 167
R2000 54.6 fail 53.7 49.3
Z2000 45.4 52.15 35.8 34.1
S4096 255 297 11.7 11.7
m4000 579 783 138 138
M4000 628 fail 658 319
Q4000 1519 fail 3274 2294
R4000 380 fail 393 397
Z4000 340 439 318 271
S8192 2240 2517 77.6 82.6
m8000 mem 6802 1133 1138
M8000 mem fail 6170.6 3049
Q8000 mem fail 33684 27367
R8000 mem fail 2625 2710
Z8000 mem 5771 2584 2474

Table 2: Dixon, Wan, and Overlap columns are as
in Table 1. Ov-ET is Overlap with with early ter-
mination enabled. “mem” denotes out of memory.
Times are in seconds.

mn: The n×n matrix with mi,j = min(i, j). Because this
a Brownian matrix[11], PBPT is tridiagonal, and in this
case, the tridiagonal matrix is the identity matrix. Thus,
determinant of mn is 1, so the solution is integral for any
integral right hand side. This is another case where early
termination due to zero residual is expected. But the entries
in the inverse are larger than in the Hadamard matrix case,
so more iterations may be needed for this example.

Mn: The n × n matrix with Mi,j = max(i, j). The de-
terminant of this matrix is (−1)n+1n, so the solution vector
has denominator much smaller than the Hadamard bound
predicts. The determinant of Mn is found by reversing its
rows and columns, which does not change its determinant.
The result is a Brownian matrix. Its tridiagonal form using
the matrix P is the identity matrix — except for the value
(−1)nn in the upper left corner.

The previous three test cases can benefit from early ter-
mination. Qn and the following 2 are expected to benefit
less from output sensitivity.
Rn: An n×n matrix with random entries in (−100, 100).
Zn: An n × n {0, 1}-matrix with probability 1/2 of a 1

in a given position. This is meant to represent some com-
monly occurring applications. The LinBox library is often
used to compute Smith forms of incidence matrices, where
invariant factor computation involves solving linear systems
with random right hand sides.

Reported are run times on a 3.0 GHz Intel Pentium D
processor in a Linux 2.6.32 environment. All codes used are
in LinBox, svn revision 3639, and will be included in the next
LinBox release. The experiments were run with right hand
sides being e1, the first column of the identity matrix. This
provides a direct comparison to Steffy’s examples [21] and in
some cases allows checking a known solution formula. But
for Qn,Mn, and Zn, the right hand sides used are random
with entries in (−100, 100). This is to create an interesting
early termination situation in the case of Qn and Mn (where
the solution for rhs e1 is obtained in the first iteration). For
Zn it is in view of the expected application.
S2k and mn are examples where the determinant is a

power of two and considerably less than the Hadamard bound.
Thus an early termination due to a perfect dyadic expansion
with residual zero can occur and no rational reconstruction
is needed. Both forms of the Overlap algorithm verify this.
The current implementation of Wan’s method does not check
for an exactly zero residual, though there no reason it could
not. The determinant (thus the denominator of solution
vector) of Sn is n = 2k and the Hadamard bound is con-

siderably larger, nn/2. Output sensitive termination due to
zero residual accounts for the factor of 10 or more speedups.
The determinant of mn is 1 and the Hadamard bound is
larger than that of Sn. For right hand side e1 the solution
vector is 2e2−e1 so that essentially no iteration is required if
early termination (Dixon) or zero residual detection (Over-
lap) is used. In these cases all the time is in matrix factor-
ization which is about 4 times more costly modulo a prime
(Dixon) than numerically using LAPACK (Overlap). The
Wan’s implementation lacks the early termination so does a
full iteration. That more than offsets the faster matrix fac-
torization than in Dixon making Wan’s the slowest on the
mn family.
Mn and Qn results show early termination saving a factor

of about 2, the most available with sufficient dyadic approx-
imation for a guaranteed rational reconstruction. Further
speedup is possible from very early speculative reconstruc-
tions. We have not explored this.

In the data for the random entry matrix, Rn, and random
{0, 1}-matrix, Zn, we see variable speedups up to a factor of
1.8 over Dixon’s p-adic lifting, sometimes aided a bit by early
termination. Significant early termination is not generally
expected for these matrix families.

The overlap method should work well with sparse numeric
solvers (both direct and iterative) for sparse matrices as
well. In that case performance asymptotically better than
obtained with Dixon’s method can be expected. The signif-
icant symbolic competition will be the method of Eberly, et
al[8]. We intend to explore the sparse matrix problem in the
future. To this end we have made a LinBox interface to call
MATLAB functions.

6. REFERENCES
[1] Bernhard Beckermann. The condition number of real

Vandermonde, Krylov and positive definite Hankel
matrices. Numerische Mathematik, 85:553–577, 1997.

[2] C. Bright and A. Storjohan. Vector rational number
reconstruction. In ISSAC ’11. ACM, 2011.

[3] John Burkardt. TEST MAT Test Matrices.
http://people.sc.fsu.edu/˜jburkardt/c src/test mat/
test mat.html.

[4] Stanley Cabay. Exact solution of linear equations. In
Proceedings of the second ACM symposium on
Symbolic and algebraic manipulation, SYMSAC ’71,
pages 392–398, New York, NY, USA, 1971. ACM.

[5] Z. Chen and A. Storjohann. A BLAS based C library
for exact linear algebra on integer matrices. In Proc.
of ISSAC’05, pages 92–99. ACM Press, 2005.

[6] J. D. Dixon. Exact solution of linear equations using
p-adic expansion. Numer. Math., pages 137–141, 1982.

[7] J-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi,
B. Hovinen, E. Kaltofen, B. D. Saunders, W. Turner,
and G. Villard. Linbox: A generic library for exact
linear algebra. In ICMS’02, pages 40–50, 2002.

[8] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann,
and G. Villard. Solving sparse rational linear systems.
In Proc. of ISSAC’06, pages 63–70. ACM Press, 2006.

[9] Joachim Von Zur Gathen and Jurgen Gerhard.
Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 2 edition, 2003.

[10] Keith O. Geddes and Wei Wei Zheng. Exploiting fast
hardware floating point in high precision computation.
In J. Rafael Sendra, editor, ISSAC, pages 111–118.
ACM, 2003.

[11] M. J. C. Gover and S. Barnett. Brownian matrices:
properties and extensions. International Journal of
Systems Science, 17(2):381–386, 1986.

[12] Andrzej Kie lbasiński. Iterative refinement for linear
systems in variable-precision arithmetic. BIT,
21(1):97–103, 1981.

[13] E. Kilic and P. Stanica. The Lehmer matrix and its
recursive analogue. Journal of Combinatorial
Mathematics and Combinatorial Computing,
74(2):195–205, 2010.

[14] D. H. Lehmer. Solutions to problem E710, proposed
by D. H. Lehmer: The inverse of a matrix, November
1946.

[15] Robert T. Moenck and John H. Carter. Approximate
algorithms to derive exact solutions to systems of
linear equations. In Proceedings of the International
Symposium on on Symbolic and Algebraic
Computation, pages 65–73, London, UK, 1979.
Springer-Verlag.

[16] Michael B. Monagan. Maximal quotient rational
reconstruction: an almost optimal algorithm for

rational reconstruction. In Jaime Gutierrez, editor,
ISSAC, pages 243–249. ACM, 2004.

[17] Teo Mora, editor. Symbolic and Algebraic
Computation, International Symposium ISSAC 2002,
Lille, France, July 7-10, 2002, Proceedings. ACM,
2002.

[18] T. Mulders and A. Storjohann. Certified dense linear
system solving. Jounal of symbolic computation, 37(4),
2004.

[19] Victor Y. Pan and Xinmao Wang. Acceleration of
euclidean algorithm and extensions. In Mora [17],
pages 207–213.

[20] Alicja Smoktunowicz and Jolanta Sokolnicka. Binary
cascades iterative refinement in doubled-mantissa
arithmetics. BIT, 24(1):123–127, 1984.

[21] Daniel Steffy. Exact solutions to linear systems of
equations using output sensitive lifting. ACM
Communications in Computer Algebra, 44(4):160–182,
2010.

[22] The LinBox Team. LinBox, a C++ library for exact
linear algebra. http://www.linalg.org/.

[23] John Todd. Basic Numerical Mathematics, Vol. 2:
Numerical Algebra. Birkhäuser, Basel, and Academic
Press, New York, 1977.

[24] Silvio Ursic and Cyro Patarra. Exact solution of
systems of linear equations with iterative methods.
SIAM Journal on Algebraic and Discrete Methods,
4(1):111–115, 1983.

[25] Mark van Hoeij and Michael B. Monagan. A modular
gcd algorithm over number fields presented with
multiple extensions. In Mora [17], pages 109–116.

[26] Zhengdong Wan. Computing the Smith Forms of
Integer Matrices and Solving Related Problems. PhD
thesis, University of Delaware, Newark, DE, 2005.

[27] Zhengdong Wan. An algorithm to solve integer linear
systems exactly using numerical methods. Journal of
Symbolic Computation, 41:621–632, 2006.

[28] James H. Wilkinson. Rounding Errors in Algebraic
Processes. Dover Publications, Incorporated, 1994.

