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On Optimal Quasi-Orthogonal Space–Time Block
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Abstract—Orthogonal space–time block codes (OSTBC) from
orthogonal designs have both advantages of complex symbol-wise
maximum-likelihood (ML) decoding and full diversity. However,
their symbol rates are upper bounded by 3/4 for more than two
antennas for complex symbols. To increase the symbol rates, they
have been generalized to quasi-orthogonal space–time block codes
(QOSTBC) in the literature but the diversity order is reduced by
half and the complex symbol-wise ML decoding is significantly in-
creased to complex symbol pair-wise (pair of complex symbols) ML
decoding. The QOSTBC has been modified by rotating half of the
complex symbols for achieving the full diversity while maintaining
the complex symbol pair-wise ML decoding. The optimal rotation
angles for any signal constellation of any finite symbols located on
both square lattices and equal-literal triangular lattices have been
found by Su-Xia, where the optimality means the optimal diver-
sity product (or product distance). QOSTBC has also been mod-
ified by Yuen–Guan–Tjhung by rotating information symbols in
another way such that it has full diversity and in the meantime it
has real symbol pair-wise ML decoding (the same complexity as
complex symbol-wise decoding) and the optimal rotation angle for
square and rectangular QAM constellations has been found. In this
paper, we systematically study general linear transformations of
information symbols for QOSTBC to have both full diversity and
real symbol pair-wise ML decoding. We present the optimal trans-
formation matrices (among all possible linear transformations not
necessarily symbol rotations) of information symbols for QOSTBC
with real symbol pair-wise ML decoding such that the optimal
diversity product is achieved for both general square QAM and
general rectangular QAM signal constellations. Furthermore, our
newly proposed optimal linear transformations for QOSTBC also
work for general QAM constellations in the sense that QOSTBC
have full diversity with good diversity product property and real
symbol pair-wise ML decoding. Interestingly, the optimal diversity
products for square QAM constellations from the optimal linear
transformations of information symbols found in this paper co-
incide with the ones presented by Yuen–Guan–Tjhung by using
their optimal rotations. However, the optimal diversity products
for (nonsquare) rectangular QAM constellations from the optimal
linear transformations of information symbols found in this paper
are better than the ones presented by Yuen–Guan–Tjhung by using
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their optimal rotations. In this paper, we also present the optimal
transformations for the co-ordinate interleaved orthogonal designs
(CIOD) proposed by Khan-Rajan for rectangular QAM constella-
tions.

Index Terms—Complex symbol-wise decoding, Hurwitz–Radon
family, linear transformations of information symbols, optimal
product diversity, quasi-orthogonal space–time block codes, real
symbol pair-wise decoding.

I. INTRODUCTION

O RTHOGONAL space–time block codes (OSTBC) from
orthogonal designs have attracted considerable attention

[3]–[20] since Alamouti code [3] was proposed. OSTBC have
two advantages, namely they have fast maximum-likelihood
(ML) decoding, i.e., complex symbol-wise decoding, and they
have full diversity. However, the symbol rates of OSTBC for
more than two antennas are upper bounded by for most
complex information symbol constellations no matter how large
a time delay is or/and no matter whether a linear processing is
used [15]. To increase the symbol rates for complex symbols,
OSTBC have been generalized to quasi-OSTBC (QOSTBC)
in Jafarkhani [21], Tirkkonen–Boarin–Hottinen [22] and Papa-
dias–Foschini [23], [24], also in Mecklenbrauker—Rupp [25],
[26] under the name “extended Alamouti codes,” by relaxing the
orthogonality between all columns of a matrix. The relaxation
of the orthogonality in QOSTBC increases the ML decoding
complexity and in fact, the ML decoding of QOSTBC is in
general complex symbol pair-wise (two complex symbols as a
pair) decoding. Moreover, the original QOSTBC in [21]–[26]
do not have full diversity. For example, the diversity order of
QOSTBC for four antennas is only , which is half of the full
diversity order . The idea of rotating information symbols in
a QOSTBC to achieve full diversity and maintain the complex
symbol pair-wise ML decoding has appeared independently in
[28]–[31]. Furthermore, the optimal rotation angles and

of the above mentioned information symbols for any signal
constellations on square lattices and equal-literal triangular
lattices, respectively, have been obtained in Su-Xia [30] in
the sense that the diversity products are maximized. In this
approach, half of the complex information symbols are rotated.
It has been shown in [30] that the QOSTBC with the optimal
rotations of the complex symbols have achieved the maximal
diversity products among all possible linear transformations of
all complex symbols. A different rotation method for QOSTBC
has been proposed in Yuen-Guan-Tjhung [37]–[39] such that
the QOSTBC has full diversity and its ML decoding becomes
real symbol pair-wise decoding that has the same complexity as
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the complex symbol-wise decoding. Furthermore, the optimal
rotation angle has been found to be
in [37]–[39] when the signal constellations are square or rect-
angular QAM. What is gained with this type of rotations is
that the complex symbol pair-wise ML decoding is reduced to
the real symbol pair-wise ML decoding and what is sacrificed
is that the optimal diversity product obtained in [30] from the
complex symbol rotations is reduced but the diversity product
reduction is not significant. As a remark, for rectangular QAM
signal constellations and OSTBC, the complex symbol-wise
ML decoding can be reduced to real symbol-wise decoding
that reaches the minimum decoding complexity. For QOSTBC,
it is not hard to show that the real symbol pair-wise decoding
has already reached the minimum decoding complexity and it
can not be reduced to real symbol-wise decoding due to the
non-existence of rate complex orthogonal designs [14] as we
shall see later.

A different method from the QOSTBC to increase symbol
rates in OSTBC has been proposed in Khan–Rajan [32]–[36] by
placing OSTBC on diagonal and jointly selecting information
symbols across all the OSTBC on the diagonal. This scheme is
called coordinate interleaved orthogonal design (CIOD or CID)
in [32]–[36], where it was shown that CIOD can also achieve
full diversity and have the real symbol pair-wise ML decoding
similar to QOSTBC. All the results are only for square QAM
signal constellations.

In this paper, we systematically study general linear transfor-
mations (not only limited to rotations) of information symbols
(their real and imaginary parts are separately treated) for
QOSTBC to have both full diversity and real symbol pair-wise
ML decoding. We first present necessary and sufficient
conditions on a general linear transformation of symbols for
QOSTBC such that it has a real symbol pair-wise ML decoding.
We then present the optimal transformation matrices (among
all possible linear transformations that are not necessarily
rotations or orthogonal transforms) of information symbols
for QOSTBC with real symbol pair-wise ML decoding such
that the optimal diversity products are achieved. The optimal
transformation matrices are obtained for both general square
QAM and general rectangular QAM signal constellations. By
applying the optimal linear transformations for rectangular
QAM signal constellations to any QAM signal constellations,
we find that the QOSTBC also have full diversity, good di-
versity products, and the real symbol pair-wise ML decoding.
Interestingly, the optimal diversity products for square QAM
signal constellations from the optimal linear transformations of
information symbols found in this paper coincide with the ones
presented in [37]–[39], which means that the optimal rotation
of two real parts and two imaginary parts obtained in [37]–[39]
already achieves the optimal diversity products. However, the
optimal diversity products for (non-square) rectangular QAM
signal constellations from the optimal linear transformations
of information symbols found in this paper are better than the
ones with the optimal rotations presented in [37]–[39]. Also
note that, since a general linear transformation does not require
the orthogonality, our study covers signal constellations on
not only square lattices but also other lattices as we discuss in
Section III-D.

In this paper, we also present the optimal linear transforma-
tions of symbols and the optimal diversity products for CIOD
studied in [32]–[36] for general rectangular QAM signal con-
stellations that can be treated as a generalization of the results
for square QAM signal constellations presented in [32]–[36].
We compare QOSTBC using optimal symbol linear transfor-
mations with CIOD also using optimal symbol linear transfor-
mations. It turns out that these two schemes perform the same
in terms of both the ML decoding complexity and the diver-
sity product, but the peak-to-average power ratio (PAPR) of the
QOSTBC is better than that of the CIOD as what has also been
pointed out in [37], [39].

This paper is organized as follows. In Section II, we describe
the problem of interest in more details. In Section III-A, we
present necessary and sufficient conditions on general linear
transformations for QOSTBC to have real symbol pair-wise ML
decoding. In Sections III-B and E, we present the optimal linear
transformations for QOSTBC for both general square and rect-
angular QAM signal constellations and the optimal linear trans-
formations of symbols for CIOD for rectangular QAM signal
constellations, respectively. In Section III-D, we investigate op-
timal linear transformations for arbitrary QAM constellations
on general lattices. In Section IV, we set up a more general
problem in terms of generalized Hurwitz–Radon families for
QOSTBC with fast ML decoding. In Section V, we present
some numerical simulation results. Most of the proofs are in
Appendix.

Some Notations: , , denote the sets of all integers, all
real numbers, and all complex numbers, respectively. Capital
English letters, such as , , , denote matrices and small case
English letters, such as , , , , denote scalars unless otherwise
specified. denotes the identity matrix of size . ,
and denote the conjugate transpose, transpose, and conjugate
of matrix , respectively. denotes the trace of matrix .

II. MOTIVATION AND PROBLEM DESCRIPTION

In this section, we describe the problem in more details.
Consider a quasi-static and flat Rayleigh-fading channel with
transmit and receive antennas:

(1)

where is a transmitted signal matrix, i.e., a space–time
codeword matrix, of size , is the time delay, is a
space–time code, is the channel coefficient matrix of size

, and , are received signal matrix and AWGN noise
matrix, respectively, of size , and is the SNR at each re-
ceiver. Assume that the entries of are independent, zero-
mean complex Gaussian random variables of variance per
dimension and they are constant in each block of size . Also
assume that the entries of are independent, zero-mean
Gaussian random variables of variances per dimension. As-
sume at the receiver, channel is known. Then, the ML de-
coding is

(2)
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where denotes the Frobenious norm. Based on the pair-
wise symbol error probability analysis for the above ML de-
coding, the following rank and diversity product criteria were
proposed in [1], [2] for the design of a space–time code : The
minimum rank of difference matrix over all pairs of dis-
tinct codeword matrices and is as large as possible; The
minimum of the product of all the nonzero eigenvalues of matrix

over all pairs of distinct codeword matrices
and is as large as possible.
Clearly, when a space–time code has full diversity (or full

rank), i.e., any difference matrix of any two distinct codeword
matrices in has full rank, the product of all the nonzero eigen-
values of matrix in the diversity product
criterion is the same as the determinant

. Since, in this paper we are only interested in full diversity
space–time codes, in what follows we use the following diver-
sity product definition as commonly used in the literature:

(3)

and it is desired that the diversity product of a space–time code
is maximized for a given size, which in fact covers the full rank
criterion since if is not full rank then the determinant

is always .
Notice that a space–time codeword matrix has rows and
columns and the full rankness forces that for a fixed

number of transmit antennas. This means that, for bits/
channel use (or bits/s/Hz), the size of a space–time code
has to be at least for transmit antennas while it is only

in single antenna systems. Thus, in general the complexity
of the ML decoding in (2) increases exponentially in terms of

, the number of transmit antennas, if there is no structure on
is used. Orthogonal space–time block codes (OSTBC) from

orthogonal designs first studied in [3] and [4] do have simplified
ML decoding as we can briefly review below.

A. Orthogonal Space–Time Block Codes

A complex orthogonal design (COD) in complex variables
is a matrix such that

i) any entry of is a complex linear combina-
tion of , ;

ii) satisfies the orthogonality

(4)

for all complex values .
From a COD , an OSTBC can be formed by using
it and restricting all the complex variables in finite signal con-
stellations : .
With the orthogonality ii) and the linearity i), the ML decoding
(2) can be simplified as shown in (5)–(7) at the bottom of the
page where is a quadratic form of the only complex vari-
able . From (7), one can see that the original -tuple complex
symbol ML decoding

is reduced to independent complex symbol-wise decodings:
for . For convenience, we call the

decoding in (7) complex symbol-wise decoding. What we want
to emphasize here is that in the above complexity reduction, the
finite complex signal constellations can be any sets of finite
complex numbers and do not have to be rectangular or square
such as 16-QAM. With the properties i)–ii) in a COD, it is easy
to check that has full diversity.

When signal constellations are not arbitrary but have rect-
angular shapes, the above complex symbol-wise decoding can

(5)

(6)

(7)
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be further reduced as follows. Let . A signal constel-
lation is called rectangular QAM denoted as RQAM if

for (8)

where

(9)

where and are two positive integers and is a real pos-
itive constant that is used to adjust the total signal energy. For
convenience, we assume all signal constellations for infor-
mation symbols are the same, . When is an RQAM, by
noting , (7) becomes

(10)

where and are independent quadratic forms of integer
variables and , respectively. If each complex variable
in (7) is treated as a pair of real numbers, the complex symbol-
wise decoding in (7) has the same complexity of the real symbol
pair-wise decoding, i.e., two real symbols are searched jointly.
From (10), one can see that if the signal constellation is an
RQAM, the complex symbol-wise (or real symbol pair-wise)
decoding (7) can be reduced to the real symbol-wise decoding in
(10) that has the minimal decoding complexity. Unfortunately,
the symbol rates for an OSTBC or COD are upper bounded
by for more than two transmit antennas, i.e., , and for
most complex signal constellations no matter how large a time
delay is [15].

B. Quasi Orthogonal Space–Time Block Codes

In order to increase the symbol rates of OSTBC, quasi-or-
thogonal space–time block codes (QOSTBC) from quasi-or-
thogonal designs have been proposed by Jafarkhani [21],
Tirkkonen–Boarin–Hottinen [22], Papadias–Foschini [23],
[24], and also Mecklenbrauker–Rupp [25], [26]. For four
transmit antennas, let and be two Alamouti codes, i.e.

Then, the QOSTBC by Jafarkhani [21] and by
Tirkkonen–Boarin–Hottinen [22] are

respectively. Similar constructions were also presented in [24],
[25], [27]. Although their forms are different, their perfor-
mances are identical. One can see that the symbol rates in both
schemes are . However, their rank is only that is only half
of the full rank . Furthermore, due to the first two columns
and the last two columns are not orthogonal each other, the

complex symbol-wise decoding (7) does not hold in general.
However, since the first two columns are orthogonal and the
last two columns are also orthogonal, the original -tuple ML
decoding can be reduced into the following complex symbol
pair-wise decoding:

where is a quadratic form of complex variables and . As
mentioned before, although the symbol rates are increased from

to in the above QOSTBC, their diversity order is only .
To have full diversity for QOSTBC, the idea of rotating symbols

and in and rotating symbols and in have
been independently proposed in [28]–[31]. Furthermore, the op-
timal rotation angles for arbitrary signal constellations located
on both square lattices and equal-literal triangular lattices have
been obtained in [30] such that the optimal possible diversity
products for the QOSTBC are achieved. Since and
have the same performance, for convenience, in what follows
we only consider , i.e., the QOSTBC appeared in [22] as
follows.

Let be a complex orthogonal
design in complex variables (for its designs,
see for example [11]–[13]). Let and

. We consider the following quasi-or-
thogonal design (QCOD) :

(11)

Then

(12)

where

and (13)

From this equation and (5), the ML decoding becomes

(14)

where is a quadratic form of and , which is called
complex symbol pair-wise decoding. By rotating as

from , it is shown in [28]–[31],
QOSTBC with rotated symbols can achieve full diversity. Since

and are jointly decoded anyway, the symbol rotation
does not change the complex symbol-wise decoding.

One can see that the above complex symbol pair-wise de-
coding holds for QOSTBC for any signal constellations .
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Fig. 1. Encoding of an QOSTBC.

Similar to OSTBC studied before, when signal constellations
are RQAM in (8), it can be further reduced as follows.

When symbols are all taken from RQAM, i.e.,
can be written as , where and are independent
real numbers. Then

(15)

and the ML decoding (14) becomes

(16)

where , , , are independent of each
other and also quadratic forms of independent variables ,
when and of independent variables , when .
The decoding in (16) is real symbol pair-wise decoding that
has the same complexity as complex symbol-wise decoding
in (7). Note that the decomposition (16) is due to the form of
QOSTBC and its properties (11)–(15), and the independence of
all the real and imaginary parts of all information symbols. As
we mentioned earlier, QOSTBC (11) has only diversity order

, i.e., half of the full diversity . The question now is whether
we can rotate the information symbols in such a way that the
QOSTBC has full diversity and in the meantime, a real symbol
pair-wise ML decoding similar to (16) also holds. This problem
has been studied by Yuen–Guan–Tjhung [37]–[39] and in [38],
they proposed to rotate into and
into , while in [37], [39], they proposed to rotate

into and into , which
is similar to the idea of rotating complex symbols in (14).
This type of rotations has been proposed earlier in co-ordinate
interleaved orthogonal designs (CIOD or CID) by Khan–Rajan
in [32]–[36], which is a different approach than QOSTBC
and shall be compared in more details later. Furthermore,
the optimal rotation angle for square QAM and rectangular
QAM signal constellations in QOSTBC have been obtained in
[37]–[39].

C. General Symbol Transformation Formulation

One can see that the reason why the ML decoding of a
QOSTBC can be reduced to the real symbol pair-wise decoding
in (16) is due to properties (12) and (15). From (15), one can
see that a real symbol pair-wise ML decoding exists as long as

the quadratic formulas and in (15) of four real symbols ,
, , can be decomposed into sums of two indepen-

dent forms each of which has two real variables and the two
forms have disjoint variables, respectively. This motivates the
following general linear transformation formulation of symbols
such that a real symbol pair-wise ML decoding of QOSTBC is
maintained.

For convenience, all information symbol constellations are
assumed the same, , that is a finite set of at least four points on
the integer/square lattice

(17)

We assume that is not equivalent to any PAM constellation,
i.e., not all points in are collinear (on a single straight line).
Then, the detailed encoding is as follows and shown in Fig. 1.

• A binary information sequence is mapped to points in
as for .

• For each , , take a predesigned real linear
transform and the real vector
of dimension is transformed to another real vector

of dimension :

(18)

where is non-singular.
• Form complex variables for .
• With these complex variables , form a QOSTBC

that is used as a space–time block
code and transmitted through transmit antennas.

The question now is how to design a real linear transforma-
tions of size for a QOSTBC to possess a real symbol
pair-wise ML decoding and to have full diversity (or optimal di-
versity product). In order to study a real symbol pair-wise ML
decoding, let us study and in (15). Let

(19)

(20)

To possess a real symbol pair-wise ML decoding, linear trans-
formation in (18) needs to be chosen such that one of the fol-
lowing three cases holds

Case 1) Functions and can be separated as

Case 2) Functions and can be separated as
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Case 3) Functions and can be separated as

With the above encoding and properties, the ML decoding
can be similarly described below. For the illustration purpose,
assume Case 1 holds for a design of . Then, the ML decoding
becomes

(21)

where we notice that . Real symbol pair-wise ML
decodings for other two cases can be similarly derived.

For Case 1, the th real and imaginary parts of the th complex
symbol are decoded jointly, i.e., it is the same as the complex
symbol symbol-wise decoding. Since its real and imaginary
parts are not separated in the decoding, the signal constellations

for can be any constellations.
For Case 2, the real parts of the th and the th complex

symbols and are decoded jointly and the imaginary parts
of the th and the th complex symbols and are
decoded jointly. In this case, real parts and imaginary parts of
complex symbols are required to be independent. Thus, signal
constellations and for and have to be square or
rectangular QAM.

For Case 3, the real part of the th complex symbol and
the imaginary part of the th complex symbol are
decoded jointly and the imaginary part of the th symbol and
the real part of the th complex symbol are decoded
jointly. In this case, similar to Case 2, signal constellations
and for and have to be square or rectangular QAM,
too.

It is not hard to see that in terms of real symbol pair-wise
decoding, the above three cases are the only possibilities. One
might want to ask why a transformation is only used for
four variables in (18) but not for more variables. The answer to
this question is rather simple and it is because of the particular
forms of the quadratic forms and in (15) and (13) that appear
in the ML decoding of a QOSTBC due to the structure of a
QOSTBC (12). To include more than four variables does not do
anything better in terms of real symbol pair-wise ML decoding
and diversity product.

The main goal of the remaining of this paper is to investigate
how to design a linear transformations in (18) such that the
above encoded QOSTBC has a real symbol
pair-wise ML decoding in terms of real information symbols
and for in each of the above three cases, and full
diversity and furthermore the diversity product is maximized.

III. DESIGNS OF LINEAR TRANSFORMATION MATRICES

In this section, we first characterize all linear transformation
matrices in (18) for Cases 1–3, i.e., for QOSTBC to possess

a real symbol pair-wise ML decoding. We then present the op-
timal in the sense that the diversity products of the QOSTBC
are maximized.

A. Necessary and Sufficient Conditions on for Real Symbol
Pair-Wise ML Decoding

First of all, the two quadratic forms of and and and
in (19)–(20) can be formulated as

(22)

(23)

In terms of the information symbols , , , through
linear transformations (18), these quadratic forms can be further
expressed as

(24)

(25)

We now have the following necessary and sufficient conditions.

Theorem 1: Let be a 4 4 non-singular matrix with all
real entries used in (18). Then, we have the following results.

i) Case 1 holds if and only if can be written as

(26)

where , , , are matrices of real entries,
and , and

(27)

ii) Case 2 holds if and only if can be written as

(28)
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where , , , are the same as in (i) for Case 1
and

iii) Case 3 holds if and only if can be written as

(29)

where , , , are the same as in i) for Case 1
and

Its proof is in Appendix. From what was discussed in
Section II-C, if in (18) satisfies Theorem 1, then the
QOSTBC has a real symbol pair-wise ML decoding. Although
this is the case, as what was explained in Section II-C, different
cases may require information signal constellations differ-
ently. If satisfies i) in Theorem 1, then information signal
constellations can be any QAM and not necessarily square or
rectangular QAM. On the other hand, if satisfies (ii) or (iii)
in Theorem 1, then information signal constellations have to
be square or rectangular QAM for a real symbol pair-wise ML
decoding. When satisfies i) in Theorem 1, the quadratic ob-
jective functions and
in (24) and (25) can be rewritten as follows:

(30)

(31)

In what follows, we only consider linear transformations
that satisfy Theorem 1. From Theorem 1, one can see that there
may be infinitely many options of such linear transformations

satisfying Theorem 1, i.e., there are infinitely many options
of in (18) such that the QOSTBC has a real symbol pair-wise
ML decoding. The question now is which is optimal in the
sense that satisfies Theorem 1 and the diversity product of
the QOSTBC is maximized when the mean transmission signal
power is fixed. In what follows, we present solutions for of
the following optimal linear transformation problem:

(32)

when the mean transmission signal power is fixed, where
is a QOSTBC, is the diversity product of
QOSTBC as defined in (3), and are defined in the en-
coding in Section II-C as shown in Fig. 1.

Before we come to the solution of (32), let us see the rotations
proposed in [37]–[39]. In [38], only rotations for and

are used

(33)
where is a rotation. This rotation only corresponds to
Case 2, and the corresponding in (18) in terms of the form in
(ii) in Theorem 1 for the rotation in [38] can be written as

(34)

In [37], [39], rotations are done individually for each complex
symbol as follows:

(35)
where is a rotation. This rotation corresponds to Case
1 and the corresponding in (18) in terms of the form in i) in
Theorem 1 for the rotation in [37] can be written as

(36)

It has been found in [37]–[39] that the optimal rotation angle
in the sense that the diversity product

of the QOSTBC is maximized among all different rotation an-
gles for square and rectangular QAM constellations.

Another remark we want to make here is that the optimal di-
versity product achieved by the optimal complex symbol rota-
tions for a QOSTBC in Su-Xia [30] has been shown in [30] op-
timal among all possible linear transformations without any
restriction. We may expect that the optimal diversity product of
a QOSTBC with the optimal solution of in (32) for the real
symbol pair-wise ML decoding may be smaller than the optimal
one obtained in [30] with the complex symbol pair-wise ML de-
coding as we shall see in Section III-C.

B. Optimal Linear Transformations for Square QAM

In this subsection, we consider square QAM, i.e., -QAM
for any . We present a solution of linear transformations
for the optimization problem (32), which turns out to be inde-
pendent of the size of the -QAM constellations and is
different from other QAM constellations, such as rectangular
QAM as we shall see in later subsections.

From a QOSTBC form (11) and the designs of complex or-
thogonal space–time block codes [11]–[13], one can see that in
most COD designs, the complex symbols or their com-
plex conjugates or zeros are directly placed in an COD

, i.e., no linear processing of these symbols is
used, therefore or , or are directly transmitted. Thus,
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the mean transmission signal power is determined by the mean
power of complex symbols . Even for a COD
with linear processing of symbols or , as long as the
QOSTBC pattern is fixed, the mean transmission signal
power is also determined by the mean power of complex sym-
bols . From the encoding in Section II-C, the signal powers of

are determined by in (18) and the information
symbols where and are integers. Since are
not necessarily orthogonal transforms, the problem of the mean
signal power of can be formulated as the real lattice packing
problem [53] as follows. The dimensional lattice of and

, , for the transmission signal can be formu-
lated in terms of the information integer lattice of and ,

...
...

. . .
...

... (37)

where , , are from the integer set and
are nonsingular real matrices. Then, the mean signal

power of the transmission signal lattice , is reciprocal to
the packing density of the dimensional real lattice, which is
determined by the determinant of the lattice generating matrix:

Therefore, the normalized diversity product of the QOSTBC
in (11) in terms of the mean signal power becomes

(38)

where is the diversity product (3) of QOSTBC
. Thus, the optimization problem (32) be-

comes: to find a non-singular linear transformation that
satisfies Theorem 1 such that the above normalized diversity
product is maximized. For this optimization problem,
we have the following solution.

Theorem 2: Let

and (39)

and and be the matrices defined in ii) and iii) in
Theorem 1, respectively. For the three cases in Section II-C, we
have the following results, respectively.

i) For Case 1, let

(40)

Then, the above orthogonal matrices satisfy i) for Case
1 in Theorem 1, i.e., the quadratic forms in (19) and

in (20) of four variables can be separated as Case 1,
and furthermore, are optimal in the sense that the nor-
malized diversity product in (38) is maximized
among all other nonsingular linear transformations that
satisfy i) in Theorem 1 and

(41)

ii) For Case 2, let

(42)

Then, the above orthogonal matrices satisfy (ii) for
Case 2 in Theorem 1 and they are optimal, and the
same maximum normalized diversity product in (41) is
achieved.

iii) For Case 3, let

(43)

Then, the above orthogonal matrices satisfy iii) for
Case 3 in Theorem 1 and they are optimal, and the
same maximum normalized diversity product in (41) is
achieved.

Its proof is in Appendix. As one can see, in this subsection, in-
stead of using the actual mean transmission signal power of ,
we use the packing density in dimensional real lattices in the
study. As we shall see in the next subsection, the results in The-
orem 2 are indeed true for any finite size square QAM, when the
actual mean transmission signal power is used. In other words,
when the actual mean transmission power is fixed, the maximal
diversity products are achieved by the optimal linear transfor-
mations presented in Theorem 2. This is due to the square size
of a square QAM that can be well represented by a dimen-
sional real lattice. The optimality result is also independent of
the size of a square QAM signal constellation.

Interestingly, although the optimal linear transformations
found in ii) for Case 2 in Theorem 2 are not the same as the op-
timal rotations (34) obtained in [38], the optimal diversity prod-
ucts for a QOSTBC with the two different optimal transforma-
tions are the same for square QAM signal constellations as we
shall see later in the next subsection. The same conclusion can
be drawn for the optimal rotations (36) obtained in [37], [39]
and the optimal linear transformations found in i) for Case 1.
The optimal rotation can be similarly obtained for iii) for Case
3. This means that in square QAM case, considering the rota-
tions as in (33)–(36) is sufficient in the sense that a QOSTBC
has a real symbol pair-wise ML decoding and in the meantime,
the diversity product is maximized among all linear transfor-
mations that satisfy the conditions in Theorem 1. Note that
since rotations in (33) are only for the real parts of the th and

th complex symbols, and the imaginary parts of the th
and th complex symbols, separately, the rotations in (33)
do not apply to Case 1 and Case 3.

It should be emphasized here that Case 1 is of particular in-
terest. It is because the real symbol pair-wise decoding is not
for two real or two imaginary parts but for the real and the
imaginary parts of a single complex information symbol . In
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this case, the signal constellation of can be any QAM.
When we consider (i) for Case 1 for an arbitrary QAM, al-
though we are not able to prove that the above is optimal,
the obtained QOSTBC still has full diversity with good diversity
product property. The details about this issue shall be discussed
in Section III-D later.

For rectangular QAM constellations, the situation is different
and we use a different approach and find that the optimal linear
transformations depends on the sizes/shapes of rectangular
QAM constellations as we shall see in the next subsection.

C. Optimal Linear Transformations for Rectangular QAM
(RQAM)

In this subsection, we consider RQAM signal constellations
in (8)–(9) with total points. It is not hard to see that the
total energy of the RQAM constellation in (8)–(9) is

(44)

For convenience, we assume the total energy of an RQAM con-
stellation is normalized to 1, i.e., . Therefore, the distance

between two nearest neighboring points in the constellation
becomes

(45)

Since there exist variables in a QOSTBC ,
the total energy of all these information complex symbols

is .
Let us consider Case 1 and the other two cases can be sim-

ilarly done. Linear transformations in (18) transform an in-
formation signal constellation RQAM for information symbols

and into another one for
transmitted symbols and ,

, in . For convenience, we require
that the total energies of these two signal constellations (before
and after transformations ) are the same, i.e., , ,
are total-energy-invariant. The total-energy-invariance implies

(46)

where, for ,

and

Since satisfy i) in Theorem 1, from (30)

Thus, the total-energy-invariance (46) becomes (47) shown at
the bottom of the page.

Under the above energy invariance/normalization require-
ment, we have the following results.

Theorem 3: Regarding to Cases 1)–3), we have the following
results.

i) For Case 1 and an RQAM in (8)–(9) with total energy ,
i.e., (45). Let , ,

, , and

(48)

Denote a diagonalization of symmetric matrix as
, where , , are the eigen-

values of and is an orthogonal matrix. Let

(49)

Then

(50)

satisfy i) for Case 1 in Theorem 1, and are optimal in
the sense that the diversity product of the QOSTBC is

(47)
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maximized among all under i) in Theorem 1 and the
optimal diversity product is

(51)

ii) For Case 2, with in Theorem 1 is optimal, where
is defined in (50).

iii) For Case 3, with in Theorem 1 is optimal, where
is defined in (50).

Its proof is in Appendix. A QOSTBC from
a COD has size and thus in the
optimal diversity product formula in (51), there is instead of

as in the diversity product definition (3). Note that the optimal
diversity products in Theorem 3 are not in terms of the normal-
ized diversity products as used in the previous subsection for
square QAM constellations.

Since an RQAM covers a square QAM, i.e.,

in (8)–(9). In this case, and , .

Thus, and . Therefore, the
optimal in Theorem 3 coincides with the one obtained in
Theorem 2. Thus, we have following corollary.

Corollary 1: For a square QAM of size , the optimal di-
versity product of a QOSTBC among all different linear trans-
formations in (18) that satisfy Theorem 1 is

(52)

As mentioned in Section II-B that although the linear trans-
formation for Case 1 and Case 2 in Theorems 2 and 3 are dif-
ferent from the optimal rotations in (36) obtained in [37], [39]
and the optimal rotations in (34) obtained in [38], respectively,
the corresponding optimal diversity products are the same, i.e.,
(52), for a square QAM signal constellation of size .

From Theorem 2 and Theorem 3, one can see that, although
we use two different energy normalization methods and dif-
ferent proofs, the optimal linear transformations are the same
for square QAM constellations. In this regard, Theorem 3 covers
Theorem 2.

From Theorem 3, one can see that the optimal linear transfor-
mations in Theorem 3 depend on the size and the shape of an
RQAM, i.e., and , which is not what a rotation in (34) and
a rotation in (36) can achieve. In fact, with the optimal rotation
in (36) obtained in [37], [39] and the optimal rotation in (34)
obtained in [38], the optimal diversity product for an RQAM in
(8)–(9) is

(53)

It is not hard to see that

(54)

where the equality “ ” holds if and only if , i.e.,
or square QAM. This concludes the following result.

Theorem 4: The diversity product of a QOSTBC with the
optimal linear transformation in Theorem 3 is greater than the
one with the optimal rotation in (34) for any nonsquare RQAM.

Comparing with the optimal diversity product in
[30] of a QOSTBC among all possible linear transformations
without any restriction in Theorem 1 for RQAM, we have

(55)

where is the minimum Euclidean distance of the signal
constellation and in the above RQAM case, . Note
that in [30], it was shown that is an upper bound for
the diversity product of QOSTBC for any kind of linear trans-
formations of information symbols and any signal constellation
and furthermore the one from the optimal rotation of the half
complex information symbols reaches the upper bound.

As an example, for -RQAM, i.e., and
, and a 4 4 QOSTBC, i.e., , we have

D. Linear Transformations for Arbitrary QAM on Any
Lattice

In this subsection, we first present the optimal linear trans-
formations for a rectangular QAM on an arbitrary lattice and
then investigate them for an arbitrary QAM on an arbitrary lat-
tice.

As we explained before, when two real parts or two imaginary
parts of two complex information symbols, such as
or , or one real part of one complex symbol and one
imaginary part of another complex symbol, such as of and

of , are jointly decoded but independently among the
pairs, the real and the imaginary parts of a complex number have
to be independent each other.

This requirement forces that a signal constellation that a com-
plex symbol belongs to has to be RQAM on a square lattice.
Thus, some commonly used signal constellations, such as the
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Fig. 2. Nonrectangular QAM.

32-QAM shown in Fig. 2(a), and also equal-literal triangular lat-
tices are excluded for the fast decoding. Therefore, Case 2 and
Case 3 in Section II-C do not apply to an arbitrary QAM (non-
rectangular QAM), such as the ones in Fig. 2, that may have
better energy compactness than RQAM, or other lattices than a
square lattice. On the other hand, if the real part and the imag-
inary part of a complex symbol are not separated into two in-
dependent decodings, such as in Case 1, then the real part and
the imaginary part of a complex symbol do not have to be in-
dependent for a real symbol pair-wise decoding for QOSTBC.
In this case, a signal constellation can be any set of finite com-
plex numbers. For QOSTBC with a real symbol pair-wise ML
decoding, Case 1 is the only case for linear transformations .

We first consider a rectangular QAM on any lattice (not nec-
essarily square/integer) in the complex plane. Any two real-di-
mensional lattice on the complex plane can be generated from
the square integer lattice through a nonsingular real ma-
trix

(56)

where and are integers and it is simply called lat-
tice . A rectangular shape (or for simplicity QAM)
constellation on lattice corresponds to an RQAM

on a square/in-
teger lattice. With this relationship, one might think that what
we have obtained previously could be applied to any rectan-
gular QAM on any lattice by absorbing the matrix into
the linear transformation as and then
converting the problem to an RQAM on a square/integer lattice.
This is correct and incorrect. For a rectangular QAM on a
general lattice , the real and the imaginary parts and with

may not be independent. Thus, the results
for Case 2 or Case 3 obtained previously do not apply to a
rectangular QAM on an arbitrary lattice. Since in Case 1, the
independence of the real and the imaginary parts of a complex
symbol is not necessary, all the results for Case 1 apply to an
rectangular QAM on any lattice for a non-singular generating
matrix . This gives us the following corollary.

Corollary 2: For a rectangular QAM on lattice with a
nonsingular real matrix , let
where is defined in i) for Case 1 in Theorem 3. Let informa-
tion symbols be randomly taken in and then

follow the encoding procedure in Section II-C by replacing ,
, , , , , and with , , , , , , and , respec-

tively. Then, is optimal in the sense that the QOSTBC has a
real symbol pair-wise ML decoding and the diversity product is
maximized.

For an arbitrary QAM on an arbitrary lattice we have the fol-
lowing result.

Theorem 5: Let be defined in Corollary 2 and be the
linear transformation defined in i) in Theorem 3. Then, the
QOSTBC with this linear transformation has full diversity and
the real symbol pair-wise ML decoding (21) for any QAM
signal constellation on any lattice.

Proof: From the discussion of Corollary 2, without loss of
generality, we only need to consider a square lattice, i.e.,

. In this case, let be an arbitrary set of finite points on the
square lattice. Then, by adding proper points to it, constellation

can be made up into a RQAM of size . Clearly,
if a QOSTBC has full diversity for a larger constellation , it
also has full diversity for a smaller constellation . For RQAM

, we apply the result in i) for Case 1 in Theorem 3 and know
that the QOSTBC has the optimal diversity product expressed
in (51) that is not zero. This proves Theorem 5.

Although we are not able to prove the optimality of in The-
orem 5 in terms of the optimal diversity, we have the following
conjecture.

1) Conjecture 1: For an arbitrary QAM on an arbitrary lat-
tice, there exists a tightest RQAM in the sense that
the Euclidean distance between and is minimized. With
this RQAM , let be defined in Corollary 2. We conjecture
that is optimal in the sense that the QOSTBC reaches the op-
timal diversity product.

Although we are not able to prove the optimality of in i)
in Theorem 3 for an arbitrary QAM on a square lattice, we can
calculate the diversity product of the QOSTBC when this is
used

(57)

where and are defined in Theorem 3, and are de-
fined in Conjecture 1 and is the Euclidean distance of the two
nearest neighboring points in constellation with normalized
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total energy . When , i.e., is approximated by a
tightest square QAM, the diversity product of the QOSTBC with
the above is

(58)

where is as before. The optimal diversity of the QOSTBC
among all possible linear transformations is [30]

(59)

where is the same as before, which can be achieved by opti-
mally rotating half of the complex symbols [30].

As an example, let us consider 32-QAM in Fig. 2(a). By
using the transform in i) in Theorem 3, the diversity product

while the optimal diversity product in [30] is
. Note that for the -RQAM, by

using the optimal transform in (i) in Theorem 3, the diversity
product while the
optimal diversity in [30] is

as calculated at the end of Section III-C.

E. Optimal Transformations for Co-Ordinate Interleaved
Orthogonal Designs (CIOD) for RQAM and Some
Comparisons

To increase the symbol rates of COD, a different approach has
been proposed by Khan-Rajan [32]–[36], where they propose to
place a COD on diagonal repeatedly with different information
symbols and then these different information symbols are inter-
leaved in such a way that the final overall design has full diver-
sity, which is called a co-ordinate interleaved orthogonal design
(CIOD). Its definition is given below.

Let be a COD with complex variables
as before. For , , define

, , as interleaved variables of
. A CIOD is a matrix

and defined by

(60)
By rotating a signal constellation properly, it has been shown

in [32]–[36] that the above CIOD can achieve full diversity. The
encoding is similar to QOSTBC shown in Fig. 1. Let be a
signal constellation of finite complex numbers. The encoding
for a CIOD scheme is as follows.

• Map a binary information sequence into symbols
in , .

• Rotate the mapped complex symbols into
:

(61)

• Define , .
• Transmit CIOD matrix .
With this scheme, it has been shown in [32]–[36] that the

CIOD possesses a real symbol pair-wise ML decoding where
are jointly decoded but independently in terms of index

. Therefore, it is similar to Case 1 in our study in Section II-C.
Thus, for the real symbol pair-wise ML decoding, the original
signal constellation does not have to be square or rectan-
gular QAM. Also, the rotation in (61) is not necessary and any
2 2 real linear transform does not change the real symbol
pair-wise ML decoding property. Regarding to diversity product
property, the following result was obtained in [35].

Proposition 1: Let be a square QAM on a square
lattice, i.e., an RQAM in (8)–(9) with . Then,

is the optimal rotation angle in terms of the
optimal diversity product for the rotation (61) and the optimal
diversity product with this optimal rotation angle is

(62)

where is as before.
From the above result, one can see that the optimal diversity

products in both QOSTBC and CIOD for square QAM con-
stellations on square lattices are the same when a real symbol
pair-wise ML decoding is imposed

For a nonsquare RQAM constellation, the optimal rotations
have not appeared so far. We next present an optimality result
for a nonsquare RQAM constellation.

Theorem 6: Let information signal constellation be an
RQAM defined in (8)–(9), and , be defined as in Theorem
3. Define , ,

, and

Replace the rotation in (61) by the above transform . Then,
the above transformation is optimal for a CIOD in terms of
optimal diversity product among all nonsingular linear transfor-
mations and the optimal diversity product with this transforma-
tion is

(63)

where is the same as before.
Its proof is in Appendix. From this result and Theorem 3, one

can see that the optimal diversity products for QOSTBC and
CIOD for any RQAM on a square lattice are the same, i.e.,

Thus, QOSTBC and CIOD with optimal linear transformations
of complex symbols perform identically in terms of both de-
coding complexity and diversity product property, which shall
be verified via numerical simulations in terms of symbol error
rates vs. SNR for 4-QAM in Section V. However, since half
of the entries are 0 in a CIOD, for a fixed mean transmission
signal power, PAPR for QOSTBC is better than that for CIOD
as pointed out in [37], [39].
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As a remark, the optimal linear transformation in Theorem
6 is a rotation, i.e., orthogonal, if and only if , i.e.,
the RQAM is square. Then, in this case, ,

and , and therefore it co-
incides with the optimal rotation in Proposition 1 obtained by
Khan–Rajan–Lee [35] and the optimal transformation becomes

IV. GENERAL SETTING WITH GENERALIZED HURWITZ-RADON

FAMILIES

In this section, we discuss some generalizations of QOSTBC
and CIOD we have previously studied. It is not hard to see that,
by splitting real and imaginary parts of complex symbols, both
QOSTBC and CIOD of complex variables1 can be represented
by a general linear dispersive form [45], [46] of real variables

(64)

where are constant matrices of complex entries and
are real variables. For convenience, we assume information

signal constellations are all RQAM. Then, all the real and imag-
inary parts are independent when an i.i.d. information sequence
is mapped to complex symbols in the RQAMs. Let be the
signal constellation for the th variable for . Then,
it is not hard to see that using the above as a space–time code-
word matrix, it has a real symbol -tuple ML decoding (regard-
less of a permutation of symbols) if and only if

(65)

where , , , are constant matrices,
and , , are independent functions of constant co-
efficients. If (65) holds for all real values of variables , when

, it is not hard to see that (65) is equivalent to

(66)

which is equivalent to that is a kind2 of COD
(when it has full diversity that implies has full rank) as
also mentioned in [32]–[36] and [37]–[39]. This also implies
that it is impossible for QOSTBC or CIOD to have full diversity
and real symbol-wise ML decoding unless its size is
by applying the COD symbol rate upper bound for a Hurwitz
family in [15]. In other words, real symbol pair-wise decoding
is the lowest complexity decoding of a QOSTBC or CIOD can
have, i.e., it is already the minimum complexity decoding for
QOSTBC or CIOD, for more than two transmit antennas.

For a general , it is related to a generalized Hurwitz–Radon
family. Let , , be a partition of the index
set , i.e., none of is empty, ,
empty, for , and the union of all is the whole set .

1For convenience, we consider � complex variables instead of �� complex
variables as previously used.

2Strictly speaking, it may not be a COD due to that � � may not be � but
has full rank.

TABLE I
DIVERSITY PRODUCT COMPARISON

A set of constant matrices , , of size and
complex entries are called a -tuple Hurwitz–Radon family if

(67)

for any and with . Clearly, (67)
is equivalent to (66) when . With the above generalized
Hurwitz–Radon family, it is not hard to see that if the matrices

in in (64) form a -tuple Hurwitz–Radon
family, then the linear dispersive code has a real
symbol -tuple ML decoding.

Corresponding to the real symbol pair-wise ML decoding
studied in Sections II and III, if we let , and

for , then QOSTBC or CIOD has
a real symbol pair-wise ML decoding if its constant matrices

, , form a 2-tuple Hurwitz–Radon family. From
Section III and [32]–[39], a 2-tuple Hurwitz–Radon family of

many matrices exists for .

V. SOME SIMULATION RESULTS

In this section, we present some simulation results to verify
the theoretical results obtained in the preceding sections. We
consider four transmit and one receive antennas with quasi-
static Rayleigh fadings. We simulate QOSTBC and CIOD of
rate for a square QAM (4-QAM), and QOSTBC of rate
for two nonsquare QAMs (8-QAM and 32-QAM). For 8-QAM
and 32-QAM, two different cases are tested: one is RQAM with

, and , , respectively, and the
other is non-RQAM shown in Fig. 2(a) and (b), respectively.
For nonsquare RQAM, we compare our newly obtained optimal
transformation in Theorem 3 with the optimal rotation in
[37], [39] that is not optimal among all linear transformations
in terms of diversity product. For the two non-square QAMs in
Fig. 2, we also apply the optimal transformation for Case 1 in
Theorem 2 or Theorem 3 for square QAM or RQAM. The cor-
responding diversity products are listed in Table I. In Table I, we
also listed the optimal diversity products using the optimal ro-
tations of half complex symbols obtained in Su–Xia [30] where
only complex symbol pair-wise ML decoding is possible. The
numbers of trials of their ML decodings are listed in Table II.
One can clearly see that for the same decoding complexity of
real symbol pair-wise ML decoding, the diversity products for
non-RQAM in Fig. 2 using Case 1 transformation are better than
the others since the constellations in Fig. 2 are better compacted
than the corresponding RQAMs.

Fig. 3 shows the block error rates vs. SNR at the receiver for
the square QAM, 4-QAM, for QOSTBC without any rotation of
symbols (diversity order 2), with the optimal rotations obtained
in [37], [39], with the optimal transformations in Theorems 2–3,
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Fig. 3. Simulation results for schemes with the transmission rate of 2 bits/channel use.

TABLE II
ML DECODING COMPLEXITY COMPARISON: NUMBER OF TRIALS

and for CIOD with the optimal rotation in [32]–[36], and fi-
nally for the optimal rotation obtained in [30] with the complex
symbol pair-wise ML decoding. All other methods but the one
in [30] are real symbol pair-wise ML decoding that is the same
as the complex symbol-wise decoding. One can see that three
curves, QOSTBC with the optimal rotations obtained in [37],
[39], with the optimal transformations in Theorems 2–3, and
CIOD with the optimal rotation in [32]–[36] coincide, which
verifies what we mentioned at the end of Section III-E, i.e.,
they perform identically in terms of the performance and the
decoding complexity.

The aim of Figs. 4 and 5 is to compare the performance
between the newly obtained optimal transformations in
Theorem 3 for both RQAM and non-RQAM (Case 1) with the
optimal rotation obtained in [37], [39] for RQAM. The block
error rates vs. SNR at the receiver for 8-QAM (3 bits/s/Hz) and
32-QAM (5 bits/s/Hz) are shown in Figs. 4 and 5, respectively.
One can see that newly obtained optimal transformations
in Theorem 3 for RQAM are better than the optimal rotation
obtained in [37], [39] for RQAM, and the newly obtained
optimal transformation for Case 1 in Theorems 2–3 for the
non-RQAM constellations in Fig. 2 have the best performance
when real symbol pair-wise ML decoding is imposed. In Figs. 4
and 5, we also compare with the optimal rotation obtained in
[30] with the complex symbol pair-wise ML decoding. All
these results have confirmed the theoretical results obtained

and discussed in Sections II–III. Note that, for the QAM con-
stellations generated from square QAM as shown in Fig. 2, the
optimal rotation obtained in [37], [39] can achieve the same
performance as the optimal rotations for Case 1 in Theorems
2–3 do.

VI. CONCLUSION

In this paper, we systematically studied general linear
transformations of information symbols for QOSTBC to have
both full diversity and real symbol pair-wise ML decoding. We
presented necessary and sufficient conditions on the linear trans-
formations for a QOSTBC to possess a real symbol pair-wise
ML decoding. We then presented the optimal transformation
matrices (among all possible linear transformations not neces-
sarily symbol rotations) of information symbols for QOSTBC
with real symbol pair-wise ML decoding such that the optimal
diversity product is achieved for both general square QAM and
general rectangular QAM signal constellations. We showed
that with our newly proposed optimal linear transformations
for QOSTB for RQAM in one of the three cases, i.e., Case 1,
QOSTB has full diversity and good diversity product property
and real symbol pair-wise ML decoding for any finite signal
constellation on any lattice. Interestingly, the optimal diversity
products for square QAM constellations from the optimal linear
transformations of information symbols found in this paper
coincide with the ones presented by Yuen-Guan-Tjhung by
using their optimal rotations. However, the optimal diversity
products for non-square RQAM constellations from the optimal
linear transformations of information symbols found in this
paper are better than the ones presented by Yuen–Guan–Tjhung
by using their optimal rotations. We also presented the optimal
transformations for the coordinate interleaved orthogonal de-
signs (CIOD) proposed by Khan–Rajan for rectangular QAM
constellations.
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Fig. 4. Simulation results for schemes with the transmission rate of 3 bits/channel use.

As a remark, in this paper, we assume MIMO channels are
uncorrelated and no any feedback is used. When MIMO chan-
nels are correlated, studies on QOSTBC can be found in, for
example, [47]. When a limited feedback is available, studies on
OSTBC and QOSTBC can be found in, for example, [48]–[52].
Further recent developments on fast decoding and linear trans-
formations can be found in, for example, [41]–[44].

APPENDIX

In this Appendix, we prove Theorems 1, 2, 3, and 6. To do so,
let us first see a lemma.

Lemma 1: Let be a real \ symmetry matrix and
be a subset of two dimensional real space . Assume

that there are at least four points in such that they are not
collinear. If for any real number pairs

then, .
Proof: Assume , , 2, 3, 4, are not

collinear. Since is a real symmetric matrix, has a diago-
nalized form , where is an orthogonal matrix and

with real . To prove Lemma 1, it is
enough to prove that .

From the condition of the lemma,

for any , . Thus, if there exist , such that the
first component of vector is not 0, then

is proved. To show so, let us use the contradiction method.

Assume that for any , , , , the first component
of is 0. Denote the first row of matrix as

. Then

Considering and , we have

Considering and , we have

Therefore

i.e.,

Similarly, we have

and

If , the above three equations imply that the four
points , , and are collinear,
which contradicts with the assumption in the beginning of the
proof. Thus, we have proved . Similarly, we can
prove . This means that the first row of orthogonal
matrix is the all zero vector, which is impossible. Therefore,
we have proved that there exist , such that the first component
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Fig. 5. Simulation results for schemes with the transmission rate of 5 bits/channel use.

of is not . Hence, . Similarly, we can
prove .

Proof of Theorem 1: We first consider Case 1. Consider
in (20) or its representation in (25). Clearly, is a quadratic
form of the variables , , , and hence if can be
separated as

then, and are also quadratic forms of , and ,
, respectively. Therefore, there exist two real 2 2 sym-

metric matrices and , such that

(68)

and

(69)

Combining with (25), we have

(70)

Letting and rewriting (70), we have

(71)

where

Therefore, by Lemma 1, can be separated as a sum of two
functions as Case 1 if and only if

(72)

Doing the similar calculations for function in (19) or in
(24), we have that functions can be separated as a sum of two
functions as Case 1 if and only if

(73)

Thus,

(74)

Since is non-singular and thus, the column vectors of ma-

trix are linearly independent and so are true for ma-

trices and . The first equation in (74) tells us

that the two dimensional real space spanned by the column vec-

tors of is the complimentary space of the one spanned

by the column vectors of in the four dimensional real

space. The second equation in (74) also tells us that the two di-

mensional real space spanned by the column vectors of

is the complimentary space of the one spanned by the column

vectors of in the four dimensional real space. Thus, the

two dimensional real space spanned by the column vectors of
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is the same as the one spanned by the column vectors

of . This means that there exists a 2 2 (real) non-sin-

gular matrix such that

i.e.

(75)

Therefore,

Again, by the linear independence of the two columns of matrix

, we have

(76)

Similarly, we can obtain the results for . Thus, we have

proved (i) for Case 1 in Theorem 1.

For (ii) for Case 2, it is enough to note that

and

Then, all results can be derived if is replaced by as in
i) for Case 1.

The proof of iii) for Case 3 is similar to the one of ii) for Case
2.

Proof of Theorem 2: Let and ,
, be symbols taken from a

square-QAM and denote and . The
transmitted symbols are obtained through the transformations
(18):

(77)

Denote and . Then

(78)

and

where and
. And

(79)

In the rest of this proof, since a QOSTBC is linear in terms
of variables , , , and their differences are also integers,
for simplicity we omit the notation . For convenience, we also
denote

where and . Thus, the diversity
product of a QOSTC can be expressed as

Let us first consider i) for Case 1 in Theorem 2. By the defi-
nitions of and , we have

(80)

where
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By (27) and , we know that . Therefore

(81)

For any ,

Hence

and , , are nonnegative definite. Similarly,
, , are also nonnegative definite. Therefore,

for any fixed index ,

(82)

and

(83)

Similarly

(84)

where

Also for any , ,

Hence

and , , are nonnegative definite. Similarly,
, , are nonnegative definite too. Therefore,

for any fixed index ,

(85)

and

(86)

Summarizing the above results, we have

(87)

(88)

for any index , , which gives lower bounds of
the determinant. Since , , , are independent
integers, these lower bounds can be achieved by letting

for . Hence, the minimum of (87) or (88) for
is the minimum of the determinant, i.e., see

(89) at the bottom of the page where can be
or that are nonnegative definite.

We next want to have an upper bound for . To do so, we
need the following lemma, which can be found in pp. 83, [54].

Lemma 2: Let , , and
, where and are integers. Then, for the indefinite

binary quadratic form with discriminant , there exists
a point such that

(90)

To use this lemma, we need to change

(91)

(89)
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into a product of two linear forms. To do so, it is enough to
consider the case when and and the other
case is the same.

From , we have or

where , , are real numbers and subject to the following
condition:

(92)

We next make some assumptions to partially prove the result
we wanted, and then we fully prove the result by removing the
assumptions.

First, we assume Assumption 1: . Let

Then, we have (93) shown at the bottom of the page. Note that
is a nonnegative definite (symmetry) matrix. Thus,

, and

(94)

Assume Assumption 2: . Then, using
(92) and (94), we have

(95)

Similarly, for we have (96) shown at the bottom of the page.
Also note that is a nonnegative definite (symmetry) matrix
and thus .

Assume Assumption 3: . Then

(97)

Therefore, (91) can be rewritten into the following squared
product of two linear forms as shown in (98) at the bottom of
the page. Let

(93)

(96)

(98)
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By Assumptions 2 and 3, and
, and using (92), we conclude that .

Thus, by using (92) and (94), the discriminant is

(99)

By Lemma 2, we have (100) shown at the bottom of the page.
We next begin to remove the three assumptions: Assumption

1, ; Assumption 2, ; and
Assumption 3, .

For Assumption 1, if , then from the defi-
nition of . Using (89), we know that . So (100) is
true. If , then and (100) is also true.

For Assumption 2, if , then from
(93)

Letting and , we have

Going back to (89), we have . Hence, (100) is still
true. The same method can be used to remove Assumption 3.
Therefore, the upper bound formula (100) is always true.

To derive an upper bound of the normalized diversity product
in (38), we need to calculate the determinant

Let us see as shown in the last equation at the bottom of
the page, where the third equality comes from (27) and
and in the last equality, we denote that

For and , similar properties as (92), (94), and (100) also
hold. Again by , we have

Therefore

(101)

and

(102)

We assume that

(103)
Then

(104)

By the definition of in (38), (100) and (104) for or
, we obtain the following upper bound as shown in (105) at

the bottom of the following page. On the other hand, from (92)
and (94), it is not hard to see that

(100)
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Thus, we obtain the following upper bound on :

(106)

Next, we show that if we let and

where , then achieves the above upper
bound.

By letting , , we know that
are orthogonal matrices. By the definitions in (80) and (84),

we know that and . Thus, from
(89), we have (107) shown at the bottom of the page, where the
last equality comes from , i.e., .

Since and are integers and , we have

If we let and , we have

Therefore

But , and hence

(108)

On the other hand, since are orthogonal matrices, we have
. Therefore, we obtain

(109)

This proves i) for Case 1 in Theorem 2.
If in the above proof, we replace by , we can similarly

prove ii) for Case 2, and if we replace by , we can prove
iii) for Case 3, in Theorem 2.

Proof of Theorem 3: We inherit all the notations in the
above proof of Theorem 2. Similar to the proof of Theorem 2,
we evaluate and obtain an upper bound, and then show
that this upper bound can be achieved. Unfortunately, the result
for indefinite binary quadratic forms in Lemma 2 can not be ap-
plied here for finite signal constellations.

By checking formulas from (77) to (89) and from (91) to (98),
we find that these formulas are all true under the conditions
of Theorem 3. Especially, (89) and (98) are true and the three
assumptions in the proof of Theorem 2 can be removed too. Let
us recalculate

(110)

under the conditions of Theorem 3. Continuing with (98) and
using and from (94),
we have

(111)

Since

we have

(112)

On the other hand

(105)

(107)

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on February 26, 2009 at 15:04 from IEEE Xplore.  Restrictions apply.



WANG et al.: ON OPTIMAL QUASI-ORTHOGONAL SPACE–TIME BLOCK CODES 1125

(113)

where the second equality is from the definition of in the
proof of Theorem 2, and the last equality is from the facts that

Consequently, (112) can be changed into

(114)

Note that the above calculations are also true for ,
and thus (114) holds if the subscript 1 in (114) is replaced by .
Hence, going back to (89), we obtain (115) shown at the bottom
of the page, where

From the form of an RQAM in (8)–(9), ones can see that for
, and must be integer multiples of .

Let us first evaluate determinant

We now need the energy constraint (47). Without loss of gener-
ality, we may assume that

where , . Then, from (47), we have

(116)

From the definition

and we have

(117)

Note that the above matrix is symmetric, we have
, and (116) can be changed into

(118)

Because

(119)

(120)

and , (118) becomes

(121)

From , the energy constraint (116)
becomes

(122)

Now we can evaluate determinant

From (113), and , we have

(115)
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(123)

where we have assumed that . The case when
will be considered later.

Using Lagrange multipliers, we can obtain the upper bound
of under condition (122):

(124)

Combining it with (115), we have

(125)
Since , and

Therefore

(126)
It is not hard to prove that under conditions
and that is from the definitions of and in
Theorem 3, when , i.e.,

, the right hand side of (126) achieves
the maximum. Therefore, we have

(127)

We now consider the case when . If , then
from the fact that and the energy

constraint (121) becomes

(128)

On the other hand, from (117),

Since the left hand side of the above equation is nonnegative
definite, we have and .

Since , and , we have
. Hence, combining and

with inequality (128) and , , we obtain that the
left-hand side of inequality (128) is positive and

Consequently

where the first equality comes from (123), and the second
equality comes from , and
the first inequality is from , and the last inequality
is also due to and , . Therefore, (124)
is also true when , and so is the upper bound formula
(127).

With the upper bound (127) on , we next prove that this
upper bound is achievable. To do so, it is enough to construct
matrices such that this bound is achieved.

For a fixed RQAM, the numbers , and with
are fixed. Let

and

Let the matrices , , be

(129)

Clearly, , and . Because
, is symmetric and positive definite. So, has a diagonal

decomposition , where , ,
are the eigenvalues of , is an orthogonal matrix.

Let

for and

for . Then

and

Let and for . Then

and
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Therefore, the conditions in i) for Case 1 in Theorem 1 are sat-
isfied.

We next calculate the minimum determinant by using
(115). Since, for any , ,

(130)

For , we want to show

(131)

To do so, we first show

(132)

From the definitions of and ,

Note that

Thus, to prove (132), it is enough to prove

Denote the matrices inside the determinant signs of the left- and
the right-hand sides of the above equation by and , re-
spectively. Then

If we denote , then

where we use the fact that . Thus, we have
proved (132). From (132) and (130), we have (131).

Clearly

because . On the other hand, for any

where is a nonzero positive integer. Hence

Similarly

Going back to (115), we have

This proves i) for Case 1 in Theorem 3. Similar to the proof of
Theorem 2, the rest two cases ii) and iii) can be proved the same
as Case 1 by replacing with and , respectively.

Proof of Theorem 6: Let us first see the conditions on to
maintain the total signal constellation energy to be 1. Consider
a RQAM and let

and

for RQAM

Thus, see (133) at the top of the following page. We next calcu-
late the determinant of . Denote

for

Then

for

and

for

Denote

and
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(133)

(134)

By the linearity of the transformation

where

and

Hence, by the linearity and the orthogonality of ,
we have the second equation shown at the top of the following
page where not all , the second equality is due to
the orthogonality of in (60), and in the first equality comes
from the consideration on energy because at every transmission,
the half of antennas are silent, i.e., .

Since are independent in terms of , from the
above equation the following holds as shown in (134) at the top
of the page. We next simplify

and use the same method as in the proof of Theorem
3. We also omit the notation .

Since is nonsingular, . Hence

where

(135)

and obviously, . Therefore, see the fourth equation
at the top of the page. It is not hard to check that, under the
constraint (133)

Therefore

(136)

The same as the proof of Theorem 3, we can prove that is
upper bounded by

(137)
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Furthermore, for a fixed RQAM, define ,

, , and

(138)

Then, this transformation achieves the upper bound
(137).
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