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Abstract—In most of the existing space–time code designs,
achieving full diversity is based on maximum-likelihood (ML)
decoding at the receiver that is usually computationally expensive
and may not have soft outputs. Recently, Zhang–Liu–Wong intro-
duced Toeplitz codes and showed that Toeplitz codes achieve full
diversity when a linear receiver, zero-forcing (ZF) or minimum
mean square error (MMSE) receiver, is used. Motivated from
Zhang–Liu–Wong’s results on Toeplitz codes, in this paper, we
propose a design criterion for space–time block codes (STBC),
in which information symbols and their complex conjugates are
linearly embedded, to achieve full diversity when ZF or MMSE
receiver is used. The (complex) orthogonal STBC (OSTBC) satisfy
the criterion as one may expect. We also show that the symbol
rates of STBC under this criterion are upper bounded by 1.
Subsequently, we propose a novel family of STBC that satisfy the
criterion and thus achieve full diversity with ZF or MMSE re-
ceiver. Our newly proposed STBC are constructed by overlapping
the � � � Alamouti code and hence named overlapped Alamouti
codes in this paper. The new codes are close to orthogonal and
their symbol rates can approach 1 for any number of transmit
antennas. Simulation results show that overlapped Alamouti
codes significantly outperform Toeplitz codes for all numbers of
transmit antennas and also outperform OSTBC when the number
of transmit antennas is above �.

Index Terms—Full diversity, linear receivers, multiple-input
multiple-output (MIMO) systems, minimum mean square error
(MMSE), orthogonal space–time block codes, overlapped Alam-
outi codes, space–time block codes, Toeplitz codes, zero-forcing
(ZF).

I. INTRODUCTION

S PACE-TIME codes have been extensively studied in
recent years since the early works [1]–[4]. Most of the

studies on space–time code designs are based on the criteria
obtained in [2], [3], namely full rank/diversity criterion and
large diversity product (coding gain or distance product) crite-
rion, and the full diversity criterion is the first one needed to be
satisfied since it governs the exponential in the pairwise error
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probability (PEP) decay vs. the signal-to-noise ratio (SNR).
These criteria obtained in [2] and [3] are, however, based
on maximum-likelihood (ML) decoding at the receiver that
usually has a high complexity and may not have soft outputs.
In a practical multiple-input multiple-output (MIMO) system,
decoding complexity is an important concern and a decoding
scheme with low complexity is always desired. A natural
question, then, is whether a space–time code can achieve full
diversity when a suboptimal receiver that has low decoding
complexity, such as a linear receiver, is used. Unfortunately,
most of the existing space–time codes, except orthogonal type
codes [4] [19], may not achieve full diversity when a linear
receiver is used, which is not surprising since they are not
designed in terms of linear receivers. For (complex) orthogonal
space–time block codes (OSTBC), due to the orthogonality of
the codes, their maximum likelihood (ML) decoding is already
linear and hence they achieve full diversity with linear re-
ceivers. However, the symbol rates of OSTBC (with or without
linear processing) were shown in [7] to be upper bounded by

for more than two transmit antennas and furthermore, a
tight upper bound was conjectured to be for

or transmit antennas in [7]. To improve symbol
rates, in [12]–[14], quasi-orthogonal STBC (QOSTBC) were
introduced for which the orthogonality is relaxed and decoding
complexity is hence increased. But the rates of QOSTBC
are ultimately limited by the rates of OSTBC. Recently, in
[20], [21] by Zhang–Liu–Wong, a family of space–time block
codes (STBC) called Toeplitz codes was introduced and it
was shown that Toeplitz codes achieve full diversity in a mul-
tiple-input–single-output (MISO) system when zero-forcing
(ZF) or minimum mean square error (MMSE) receiver is used.
For Toeplitz codes, although their symbol rates approach 1
as the block sizes go to infinity for any number of transmit
antennas, their performance degrades dramatically when the
rates or block sizes increase.

Motivated from Zhang–Liu–Wong’s results on Toeplitz
codes, in this paper, we propose a design criterion for STBC, in
which information symbols and their complex conjugates are
linearly embedded,1 to achieve full diversity when an MIMO
system is equipped with a linear receiver, specifically, ZF or
MMSE receiver. A general OSTBC satisfies the proposed crite-
rion as expected. We also show that the symbol rates of STBC
under this criterion are upper bounded by . Subsequently,
we propose a novel family of STBC that satisfy the criterion
and thus achieve full diversity with ZF or MMSE receiver.
Our newly proposed STBC are constructed by overlapping the

1They can be treated as linear dispersion codes [22], [23] when the real and
imaginary parts of information symbols are treated separately.
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Alamouti code and hence named overlapped Alamouti
codes in this paper. The symbol rates of overlapped Alamouti
codes are slightly higher than those of Toeplitz codes and also
approach as the block sizes go to infinity for any number
of transmit antennas. Simulation results show that overlapped
Alamouti codes significantly outperform Toeplitz codes for
all numbers of transmit antennas and also outperform OSTBC
when the number of transmit antennas is above .

For the existing linear dispersion codes [22], [23], for
example, linear lattice based STBC and BLAST, simplified
decoding algorithms have been explored in the literature,
which include, for example, sphere decoding [24]–[31] and
soft (and successive) interference cancellation (SIC) methods
[32]–[42], [52]. Although sphere decoding can approach ML
decoding performance and thus does not sacrifice the full
diversity property of those existing codes that are designed in
terms of ML decoding, its complexity may still be much higher
than that of linear receivers. For SIC methods, on the other
hand, the available diversity may not be fully exploited, even if
STBC are designed with full diversity for ML receiver. Besides
sphere decoding and SIC methods, space–time spreading and
lattice STBC encoders with MMSE decision feedback equal-
izer (MMSE-DFE) combined with vector or lattice decoding
were proposed in [43] and [44], respectively, to achieve the
diversity-multiplexing tradeoff [45] when SNR goes to infinity,
where, however, the complexity of vector or lattice decoding
may be high when the vector (and constellation size) or lattice
dimension is not small.

This paper is organized as follows. In Section II, we describe
the system model and propose a criterion (sufficient condition)
for STBC to achieve full diversity with linear (ZF and MMSE)
receivers. In Section III, we present overlapped Alamouti codes
that are shown to satisfy the criterion. Besides the construc-
tions, we also investigate some properties of overlapped Alam-
outi codes. In Section IV, we provide some simulation results
to illustrate the superb performance of our overlapped Alamouti
codes relative to some existing STBC, such as, Toeplitz codes,
OSTBC, V-BLAST, perfect codes and PLUTO codes. Finally,
in Section V, we conclude this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the general MIMO system
model and then propose a criterion for STBC to achieve full
diversity with linear receivers by considering an equivalent form
of the channel model. As two classes of known STBC achieving
full diversity with ZF or MMSE receiver, OSTBC and Toeplitz
codes are briefly reviewed to verify the criterion.

A. System Model and Equivalent Channel Model

Consider an MIMO system with transmit and receive
antennas. From a given constellation such as PAM, PSK
or QAM that is assumed to have unit energy, symbols

are chosen randomly and independently to form
an input symbol sequence , where

denotes the transpose of a matrix/vector. To be transmitted
from the transmit antennas, the symbols in are
encoded into a space–time block codeword matrix of size

, following some specific forms (for example, Alamouti

code structure), where is the number of channel uses to
transmit a codeword, i.e., the block length. Then, the STBC
is just the set composed of all the possible , i.e.,

(1)

and the symbol rate of is defined as . The channel coefficient
between the th transmit antenna and the th receive antennas
is denoted by , , . In this paper,
we consider the channel to be quasi-static Rayleigh flat fading
and is constant during the transmission of each codeword
matrix ( channel uses). Then, the channel model is

(2)

where is the channel
matrix that is zero-mean, complex Gaussian distributed with a
nonsingular covariance matrix , is
the noise matrix in which all entries are independently
and identically (zero-mean, unit variance, complex
Gaussian) distributed, and is the re-
ceived signal matrix of size . The entries of are as-

sumed to have unit variance, which implies
, and in (2) is a normalization factor such that is the

SNR at each receive antenna, where and thereafter denotes
the trace of a square matrix, denotes the transpose conju-
gate of a matrix and denotes the expectation over .

To decode the transmitted symbol sequence with a linear
receiver, we need to extract from . To do so, we introduce
the following equivalent channel model through some unitary
operations from (2):

(3)

where , called equivalent channel matrix, that has columns,
is from , is the equivalent received signal vector and is
the equivalent noise vector whose components are still indepen-
dently and identically distributed. Note that and
in (3) should not be dependent of or in any form, and the
noise term in (3) should also be independent of . Hence, if
the channel matrix in (2) is known at the receiver, then and

in (3) are also known from the corresponding transformations
and furthermore, is an all-zero matrix if and only if is an
all-zero matrix.

For a given STBC , if an equivalent channel model (3) holds
for single receive antenna case, i.e., , its corresponding
version for multiple receive antennas can be easily obtained as
follows. Let ,
and , where , and are the

th columns of and in (2), respectively. When there is
only one receive antenna, , , and the
channel model is simplified to

(4)

which can be reformulated into an equivalent channel model

(5)
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as assumed. For the same code in the system with multiple re-
ceive antennas, we have corresponding

to the th receive antenna and its equivalent form is automati-
cally , where , and have the same

form as , and in (5), respectively, .
Then, the equivalent channel model (3) for when
can be obtained by stacking , and , i.e., let-
ting , and

. Note that is from and
are independent with each other, so are . Then, the com-
ponents of are independently and identically dis-
tributed, as required in model (3).

In the rest of this paper, we mainly focus on the system with
single receive antenna, i.e., the MISO system, to study the full
diversity property of STBC with linear receivers and the reason
will be clear in Section II-B. To simplify the expression, we
rewrite (4) for the MISO channel into the following form:

(6)

by omitting the subscript index for receive antennas, where
is the channel matrix (vector) and

and are re-
ceived signal vector and noise vector, respectively.

The existence of an equivalent channel model (3) depends on
the structure of the STBC . A simple observation that will be
used in Section III is that if each row (corresponding to a channel
use) of has its transmitted symbols all in the form of
or, alternatively, all in the form of , then the reformulation
from (2) to (3) is feasible, where denotes the conjugate of
a scalar/matrix. For example, for the Alamouti code [4] in the
form of

where , we have the channel model

(7)

from (6) for single receive antenna, which is equivalent to

(8)

However, such a structure is not common for STBC and it has
been shown in [11] that the rates of the square OSTBC that
have this structure are upper bounded by for even number of
transmit antennas and for odd number of transmit antennas,
respectively. So, imposing such a special format on OSTBC
may induce rate losses, while their equivalent channel models
can be easily derived. Fortunately, the reformulation from (2) to
(3) is not only restricted to this special case.

For a general OSTBC, we can express its codeword matrix
as
with and being complex-valued constant ma-
trices, . From (6), we multiply its both sides

by and also the conjugates of its both sides by
, and sum the two resulting equations. It can be de-

rived from the Radon-Hurwitz equalities on that the
equivalent channel model corresponding to (6) for OSTBC is

(9)

where ,

, and
and denote the norm2 of a matrix and the identity matrix of
dimension , respectively. The model in (9) is intuitive as it is
well known that the orthogonality of an OSTBC completely de-
couples an MIMO channel into many parallel and independent
subchannels.

In [20] and [21], Zhang–Liu–Wong introduced a class of
STBC called Toeplitz codes that can achieve full diversity with
linear receivers in an MISO system. Using the notations in
[20], [21], we write to denote a Toeplitz matrix of
size as follows:

...
...

. . .
...

...
...

. . .
...

(10)

where is any vector of length . A Toeplitz
code with symbols embedded in each codeword matrix that
are transmitted from antennas is then defined as

(11)

The rate of is

(12)

that approaches 1 as goes to infinity for a fixed number of
transmit antennas. In fact, the above Toeplitz codes are delay
diversity codes [1], [3] if they are treated as trellis codes. From
(6) for single antenna at the receiver, the channel model for the
Toeplitz code is , which is

easily reformulated into the following equivalent channel model

(13)

where the equivalent channel matrix is still a Toeplitz matrix
.

2The norm of a matrix in this paper is referred to the Frobenius norm, i.e.,

��� � �� � for matrix � � �� � .
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B. A Criterion for STBC to Achieve Full Diversity With Linear
Receivers

The equivalent channel model (3) acts as the basis for linear
decoding. Specifically, for ZF receiver, the estimate of the
transmitted symbol sequence is, if exists,

(14)

and for MMSE receiver, the estimate is

(15)

where denotes the inverse of a square matrix. It is well-
known that MMSE receiver is superior to or, at least, equivalent
to ZF receiver. So, if an STBC in (1) can achieve full diversity
with ZF receiver, so can it with MMSE receiver.

The components of the above ZF or MMSE solution, i.e.,
or , can be treated as the soft outputs of the information
symbols in , when there is an outer error correcting decoder.
With component-wise hard decision at ZF or MMSE receiver,
the following theorem provides a criterion for STBC to achieve
full diversity.

Theorem 1: For PAM, PSK and square QAM constellations,
the STBC in (1) can achieve full diversity, i.e., the symbol
error probability (SEP) of satisfies

for some positive constant that is independent of , with ZF or
MMSE receiver, if an equivalent channel matrix in (3) exists
and satisfies

(16)

for any realization of the channel matrix in (2), where
denotes the determinant of a matrix, and are positive con-
stants independent of , and is the number of symbols en-
coded in each codeword matrix of , i.e., the length of in (3).

Its proof is in Appendix A. Notice that a similar condition
as that in (16) was introduced and used in the proof of the
full diversity property of Toeplitz codes with linear receivers
in [20], [21]. Several simple observations can be made immedi-
ately from Theorem 1. First, for (16) to be satisfied, all the
components of must occur in each column of and other-
wise, may have all-zero columns, inducing ,
while is not an all-zero matrix. Second, in order to reduce
the interferences between the transmitted symbols , should
be as orthogonal as possible and once is orthogonal, the
symbols are fully decoupled and hence ZF decoder and ML
decoder are equivalent. We will discuss this more in Section III.
Third, the design criterion (16) does not explicitly depend on
the number of receive antennas , although for different ,
or is different. The reason is that once an STBC satisfies the

criterion (16) for a special number of receive antennas, say, ,
so does it for any , i.e., the code can then achieve full
diversity with ZF or MMSE receiver for any number of receive
antennas. We describe this result in the following corollary.

Corollary 1: Assume an equivalent channel model (3) ex-
ists for some STBC and the equivalent channel matrix is

for receive antennas, where
corresponds to the th receive antenna, . Then,

satisfies the criterion (16) in Theorem 1 for if and
only if satisfies (16) for .

Proof: Without loss of generality, we assume the channel
matrix in (2) is not an all-zero matrix,
where is the th column of . When , we have

, and the channel model and the equivalent
one are given in (4) and (5), respectively. The necessity can be
easily proved by setting in ,
which imposes in since is
the equivalent channel matrix corresponding to the th receive
antenna. So, it suffices for us to show the sufficiency.

Assume there exist some positive constants and such that

and for any . For
, since the equivalence between and is the same as

that between and and thus has the same form (struc-

ture) as , we know and

for any , . Hence, for any , we
have

One the other hand, for any given channel matrix , we
choose such that . Hence,

and . It is known that if matrices
are positive semidefinite, then [46]

(17)

for . Since must be positive semidefinite,
we have from (17) that

(18)

where is a positive constant independent of . Thus, we
have completed the proof.

Corollary 1 tells us that whether (16) holds or not is indepen-
dent of the number of receive antennas, , and we can pick any

when checking the full diversity property of an STBC
with ZF or MMSE receiver through (16). So, without loss of
generality, we only need to focus on the channel model (6) for
single receive antenna, i.e., an MISO system, in the subsequent
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discussions. From Corollary 1, the following corollary is imme-
diate.

Corollary 2: The symbol rates of the STBC that satisfy the
criterion (16) in Theorem 1 and thus achieve full diversity with
ZF or MMSE receiver can not be above 1, i.e., they are upper
bounded by 1.

Proof: Assume an STBC satisfies the criterion (16) for
receive antennas with and has symbol rate larger

than 1. The solution for ZF receiver is infeasible for when
there is single receive antenna since in this case, the number of
variables is larger than the number of linear equations in (3).
Then, has no full diversity for single receive antenna with
ZF receiver. However, from Corollary 1, we know has full
diversity with ZF receiver for any number of receive antennas.
So, a contradiction results. A similar argument can be applied
to MMSE receiver.

Theorem 1, together with Corollary 1 and Corollary 2, pro-
vides a criterion (sufficient condition) for us to construct STBC
by designing their equivalent channel matrices such that full di-
versity can be achieved when the MIMO system is equipped
with a linear (ZF or MMSE) receiver. Note that, as ML decoding
is always superior to or, at least, equivalent to linear decoding,
any STBC satisfying the criterion (16) in Theorem 1 is automat-
ically guaranteed to have full diversity with ML receiver.

To verify the validity of the criterion in Theorem 1, we con-
sider OSTBC and Toeplitz codes in MISO systems. From (9),
the equivalent channel matrix for a general OSTBC is

that obviously satisfies the criterion (16). For Toeplitz
codes , its equivalent channel matrix is
from (13) which meets the first part of the sufficient condition
in Theorem 1, i.e., with . In [20], [21],
Zhang–Liu–Wong showed that the second part of the criterion
(16), i.e., for some constant , holds
for Toeplitz codes. We cite this result in the following lemma
that will be utilized in Section III to show overlapped Alamouti
codes satisfy the criterion (16).

Lemma 1 (Zhang–Liu–Wong [20], [21]): For any given pos-
itive integers and , the equivalent channel matrix

in (13) for Toeplitz code satisfies

(19)

for any , where is a positive constant independent of , but
may depend on and .

According to Lemma 1 and Corollary 1, Toeplitz codes
achieve full diversity in an MIMO system when ZF or MMSE
receiver is used. In general, an explicit expression of the con-
stant in (19) that depends on and may be difficult to
obtain. However, when , can be explicitly expressed
in terms of as , i.e.

(20)

for any , and its proof is in Appendix B.
Note that the above lower bound may not be tight. For in-
stance, when and , a tight lower bound for

is easily shown to be that

is much larger than that given in (20), where for
.

III. A NEW FAMILY OF STBC: OVERLAPPED ALAMOUTI

CODES

While Toeplitz codes [20], [21] achieve full diversity with
linear receivers and have symbol rates approaching as the
block sizes go to infinity for any number of transmit antennas,
their performance degrades dramatically when the rates or block
sizes increase. Although for OSTBC, ZF receiver is already ML
receiver due to their orthogonality, their symbol rates are low for
more than two transmit antennas. This motivates us to design
other STBC that not only satisfy the criterion (16) in Theorem
1 and hence achieve full diversity with ZF or MMSE receiver,
but also have performance improvements over Toeplitz codes
and OSTBC. A novel family of STBC that meet the above two
requirements will be systematically constructed in this section
and their properties will also be investigated. Since the code-
word matrix of the newly proposed STBC is composed of a se-
quence of overlapped Alamouti codes, we call them as
overlapped Alamouti codes.

A. Overlapped Alamouti Codes for Odd Transmit Antennas

We now describe the construction of overlapped Alamouti
codes as well as their equivalent channel matrices in (3) for
odd number of transmit antennas, i.e., is odd, that is larger
than . To do so, we need to define two types of matrices that
have a similar form as the Toeplitz matrix in (10).
First, we define matrix of size as

...
...

. . .
...

...
...

. . .
...

(21a)

and

...
...

. . .
...

...

...
...

. . .
...

...

(21b)

for odd and even , respectively, where
is any vector of length . We can see that in , the
vectors and alternatively run through the matrix from the
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Fig. 1. Comparison of the condition numbers of the matrices ��� for overlapped Alamouti codes and Toeplitz codes when the MIMO system is equipped with
three, four, and five transmit antennas and one receive antenna.

top-left corner to the bottom-right corner. Second, we define
matrix of size as

...
...

...
...

...
...

...
...

(22a)

and

...
...

...
...

...

...
...

...
...

...

(22b)

for odd and even , respectively, where the vectors and
alternatively run through the matrix from the top right corner
to the bottom left corner. Furthermore, from the transmitted

symbol sequence , we define vectors
and for odd as

odd, odd
even, odd

(23)

which keeps all the components of with odd indices and re-
place the other components by , and correspondingly

odd, odd
even, odd

(24)

which instead keeps all the components of with even indices.
Note that and have the same length as . Now we are
ready to define the codeword matrix of overlapped Alamouti
codes for odd as follows.

For odd transmit antennas, the codeword matrix of
an overlapped Alamouti code which has information symbols
embedded is defined as

(25)

where is the transmitted symbol sequence and and are
defined in (23) and (24), respectively. Then, the corresponding
overlapped Alamouti code is

(26)

which has symbol rate , the same as the
symbol rate of the Toeplitz code in (11).
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As an example, when , the codeword matrix of
has the following form:

...
...

...
(27a)

and

...
...

...
(27b)

for odd and even , respectively. It can be seen from (27) that
any symbol or on the middle column of belongs
to two Alamouti codes simultaneously. This is why we
use the term “overlapped” in the definition for the novel codes.

Now, let us see the equivalent channel matrix corre-
sponding to in (26) for odd . When there is single
receive antenna, from (6) and (25), the channel model for
is

(28)

where ,
and . To describe the equivalent
channel model (3), for odd , we define matrix of
columns as

...
...

. . .
...

...
...

. . .
...

(29a)

and

...
...

. . .
...

...

...
...

. . .
...

...

(29b)

for odd and even , respectively, where
as before and the number of rows of the matrix is

for both odd and even . The definition
of is like that of in (21), but
here the vectors and

alternatively appear
in columns. Since each row of in (25) has its transmitted
symbols either all in the form of or all in the form of ,
like the transformation from (7) to (8), (28) can be reformulated
into the equivalent channel model

(30)

where the equivalent received signal vector

odd odd

even odd

(31)

the equivalent noise vector is defined similarly from and
the equivalent channel matrix with matrix

defined in (29). For example, for with the code-
word matrix in (27), the corresponding equivalent channel
matrix is

...
...

. . .
...

...

and

...
...

. . .
...

...

for odd and even , respectively.
Obviously, the in (30) satisfies the first part of the crite-

rion (16), i.e., , and to show the full diversity
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property of with ZF or MMSE receiver for odd and
, it suffices for us to show the second part of (16) ac-

cording to Theorem 1.

Theorem 2: For any given positive integer and odd , the
matrix satisfies

(32)

for any , where is a positive constant independent of , but
may depend on and .

A proof of Theorem 2 is in Appendix C. Similar to Toeplitz
codes, we generally do not have an explicit expression for the
constant in (32) in terms of and . However, for the simple
case of , i.e., three transmit antennas, we have

(33)

for any , where denotes the re-
mainder of divided by , and a proof of (33) is in Appendix D.

In general, for receive antennas, in accordance with the
discussion in Section II-A, the equivant channel matrix corre-
sponding to for odd is then

(34)

where and is the th column of the
original channel matrix in (2). From Corollary 1, the in
(34) still satisfies (16) and thus, with odd achieves full
diversity with ZF or MMSE receiver for any number of receive
antennas.

B. Overlapped Alamouti Codes for Even Transmit Antennas

The proposed overlapped Alamouti codes for even transmit
antennas , which is still denoted by , can be easily
obtained from the preceding construction of for odd
transmit antennas , by eliminating either the first or the
last column of the codeword matrix

of in (25). Note that eliminating any
other column of to obtain the codeword matrix of
is infeasible because that will destroy the overlapped Alamouti
structure of the original matrix. It is not hard to check that the
symbol rate of the resulting by this method is

odd, even

even, even

if we delete the last column of the codeword matrix of ,
or alternatively

odd, even

even, even

if we instead delete the first column of the codeword matrix of
. Therefore, we adopt the latter, i.e., the first column

elimination method, to generate the codeword matrix of
for the higher symbol rate for even case.

Specifically, to formally define the codeword matrix of
for even , we first supplement the definition of and in
(23) and (24), respectively, for even as follows:

odd, even
even, even

(35)

and

odd, even
even, even

(36)

which, as before, keep the components of with odd and even
indices, respectively. However, the length of and is now

if is odd and if is even. Then, by eliminating the
first column of the codeword matrix of , we have the
codeword matrix of for even defined as (37) shown
at the bottom of the page where and are defined in (35)
and (36), respectively, and matrices and are
defined in (21) and (22), respectively. Correspondingly, for even

(38)

As simple examples, we give the codeword matrices of
for and below. When , the codeword
matrix of is just the one obtained by eliminating the
first column of the matrix in (27), resulting in

...
... and ...

... (39)

for odd and even , respectively. Not surprisingly, is just
concatenated Alamouti codes for even , which results from

the overlapped Alamouti structure in . So, the proposed
overlapped Alamouti codes cover the classical Alamouti code as

odd, even
even, even

(37)
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a special case when . When , the codeword
matrix of is

...
...

...
... (40a)

and

...
...

...
... (40b)

for odd and even , respectively. As in (27), the overlapped
Alamouti structure can be easily observed in (40), i.e., each in-
formation symbol or belongs to two Alamouti
codes simultaneously, except for those on the most left and the
most right columns.

Let us now describe the equivalent channel model corre-
sponding to for even . For single receive antenna, the
original channel model is (6) with given in (37) and the
equivalent channel model also has the form of (30), where,
however, the length of , , and is for odd

and for even and furthermore, similar to the
definition of in (31), the equivalent received signal vector
is now

odd, even

even, even

and is generated similarly from by conjugating the com-
ponents with even indices in .

Since the first column of the codeword matrix corresponds to
the first component of the channel matrix (vector) in the model
(6) for single receive antenna, the equivalent channel matrix for

with even is easily obtained by setting the first com-
ponent of the channel matrix (vector) to be 0 in the equivalent
channel matrix for , which has been characterized by
the matrix in (29). With this observation, to charac-
terize the equivalent channel matrix corresponding to for

even , we supplement the definition of the matrix
of columns for even as

...
...

...
...

. . .
...

...
...

. . .
...

(41a)

and

...
...

. . .
...

...

...
...

. . .
...

...

(41b)

for odd and even , respectively, where
as before. Note that the number of rows of in (41)
is for odd and for even . Then, when

, the equivalent channel matrix for with even
is still with matrix defined in (41),
which obviously satisfies the first part of the criterion (16), i.e.,

, in Theorem 1.
The second part of (16) for with even

can be easily shown by utilizing the preceding result in The-
orem 2. Specifically, for any vector of
length , we have from the definitions of in (29) and
(41) that

where . Because is just a special
vector of length with the first constant component 0, we
know according to Theorem 2 that

where is a positive constant independent of and thus .
Therefore, from Theorem 1, in (38) for even achieves
full diversity with ZF or MMSE receiver for single receive an-
tenna. Similar to the proof of (33) for three transmit antennas in
Appendix D, for , i.e., four transmit antennas, we have

for any by using the result in (20).
For multiple receive antennas, the equivalent channel matrix

for with even is still the in (34), where the matrix
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is instead defined in (41) as is even, and from Corol-
lary 1, has full diversity when ZF or MMSE receiver is
used for any number of transmit antennas.

We present the following theorem that summarizes the main
results for the overlapped Alamouti code constructed in
this section for both odd and even .

Theorem 3: For any given positive integers , and , the
in (34) with is an equivalent channel

matrix corresponding to the overlapped Alamouti code
defined in (26) and (38), where is defined in (29)
and (41) for odd and even , respectively, and is the th
column of the original channel matrix in (2). This satisfies
the criterion (16) in Theorem 1 and hence overlapped Alamouti
codes achieve full diversity with ZF or MMSE receiver.

C. Equivalent Overlapped Alamouti Codes

The structure of the overlapped Alamouti codes proposed in
Sections III-A and B is not unique, just as the Alamouti code
that has several different but equivalent forms. For instance,
in Section III-B, we have constructed the codeword matrix of

for even by eliminating the first column of the code-
word matrix of . Alternatively, this method can also be
used to construct for odd . Specifically, if we already
have the construction of in (38) for odd , by elim-
inating the last column of its codeword matrix in (37),
we then obtain the codeword matrix of an overlapped Alamouti
code that is equivalent to in (26) as

where and are defined in (23) and (24), respectively, for
odd .

Some other equivalent constructions (structures) of over-
lapped Alamouti codes are also available. One equivalence is
from the different equivalent structures of Alamouti code. For
example,

and

are the codeword matrices of two equivalent Alamouti codes.
In terms of this equivalence, if the codeword matrix of an
STBC has any one of the forms in (42) shown at the bottom of
the page, this STBC is an equivalent overlapped Alamouti code,
where and are defined in (23) and (24) or (35) and (36) for
odd and even , respectively. This equivalence affected in the
corresponding equivalent channel matrix in (34) is to conju-
gate and/or change the signs of the odd and/or even columns
of , .

Besides the above equivalence, another equivalence is up
to the permutation of the columns of the codeword matrices
of overlapped Alamouti codes. At first glance, this operation
would “destroy” the overlapped Alamouti structure of the

original code. However, the orthogonality among the columns
is fully kept despite of the permutation, which essentially
determines the performance of the code with linear receivers.
Moreover, by identifying Alamouti codes on two columns that
may not be adjacent, we can still recognize the overlapped
Alamouti structure in the resulting code. Such a column per-
mutation on the codeword matrix results in the corresponding
row permutation of the original channel matrix and also the
corresponding permutation of the components in
the submatrix , , of the equivalent channel
matrix in (34).

D. Some Properties of Overlapped Alamouti Codes

Our proposed overlapped Alamouti codes have some good
properties that will be investigated and described in this subsec-
tion, and their performance comparison with some other STBC
is to be carried out in Section IV. We now make the following
remarks for overlapped Alamouti codes and the main counter-
parts in the comparison are OSTBC and Toeplitz codes.

1) Symbol rate. Overlapped Alamouti codes have symbol
rates

even

otherwise
(43)

which are slightly higher than in (12) for Toeplitz
codes when both and are even, and can approach
as goes to infinity for a fixed . Also, is strictly
less than unless and is even, i.e., if
and only if is equivalent to concatenated Alam-
outi codes. So, under the criterion in Theorem 1, over-
lapped Alamouti codes and Toeplitz codes are asymptot-
ically optimal in terms of symbol rates according to Corol-
lary 2. However, for OSTBC, the symbol rates are upper
bounded by for more than two transmit antennas and
furthermore, a tight upper bound was conjectured to be

for or transmit antennas in [7].
Hence, overlapped Alamouti codes have more flexible and,
generally, higher rates than OSTBC.

2) Orthogonality. If we say the first column and the last
column of a matrix are adjacent in a cyclic way, for
in (26) and (38), each column in its codeword matrix must
be orthogonal to its two adjacent columns except that
when is odd, the first and the th columns are only
orthogonal to the second and the th columns,
respectively. Nevertheless, for Toeplitz codes, no orthog-
onality exists in their codeword matrices.
Observing the corresponding equivalent channel matrices

is another way to evaluate the orthogonality of the codes.
For OSTBC, they have perfect orthogonality and the cor-
responding is a scaled unitary matrix. For overlapped
Alamouti codes, on the other hand, all the odd columns of

or odd
or odd, even

or even, even
(42)
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the equivalent channel matrix in (34) are orthogonal to
all its even columns as we can see from the definition of

in (29) and (41), which efficiently reduces the
interference between the transmitted information symbols
because the symbols with odd indices are then indepen-
dent of those with even indices. Equation (54) in the proof
of Theorem 2 in Appendix C is another efficient method
to observe this orthogonality, where for single receive an-
tenna, matrix has been decomposed into

(44)

with resulted from by setting the components of
the channel matrix (vector) with even indices to be
and . Finally, for Toeplitz codes, there is
no orthogonality in their corresponding equivalent channel
matrices.
To illustrate this property from an intuitive point of view,
in Fig. 1, we compare the average condition numbers3 of
the matrices ( is the equivalent channel matrix in
(3)) for overlapped Alamouti codes and Toeplitz codes that
dominate the performance of ZF or MMSE receiver. It can
be observed from Fig. 1 that the matrix for overlapped
Alamouti codes is much less singular than that for Toeplitz
codes and furthermore, unlike Toeplitz codes, the condition
number for overlapped Alamouti codes is quite stable, i.e.,
it has no significant increase as increases. Based on this
observation, we may expect the performance of Toeplitz
codes degrades rapidly as becomes large for a fixed
number of transmit antennas, while for overlapped Alam-
outi codes, this performance loss should be much smaller.

3) Block length. First, compared with Toeplitz codes, the
block lengths of overlapped Alamouti codes are slightly
shorter when both and are even. For OSTBC, when

, Alamouti code has the highest rate and over-
lapped Alamouti codes cover it as a special case. For more
than two transmit antennas, to achieve the conjectured
maximum symbol rate of for or
transmit antennas for OSTBC [7], overlapped Alamouti
codes need to have block length . When ,
this length is much smaller than the block lengths of the
existing constructions for OSTBC with the conjectured
maximum rates in the literature [8]–[10].

4) Decoding complexity. In comparison with OSTBC that
have simple ML decoding algorithm, the decoding com-
plexities of Toeplitz codes and overlapped Alamouti codes
are higher, which mainly results from the matrix inverse
operation and for ZF receiver
(14) and MMSE receiver (15), respectively. However, for
overlapped Alamouti codes, according to (44) as well as
(55) and (56) in Appendix C, we have

(45)

3In this paper, the condition number of a matrix means the ratio of its largest
singular value to its smallest singular value.

when is even, where and are two Toeplitz matrices
with columns and denotes the Kronecker product
between two matrices. From (45), to obtain , it

suffices for us to calculate the inverse of ,
which is only of half dimension of . When is odd,
on the other hand, from the results on the inverse of a par-
titioned matrix [53, p. 29], the inverse of the matrix
for some can be easily derived from its counter-
part for with a slightly more matrix multiplica-
tion operations, while a simplified calculation for the latter
already exists in (45). So, benefitting from this property,
the decoding complexity of overlapped Alamouti codes be-
comes much smaller than that of Toeplitz codes for ZF re-
ceiver. With a similar derivation, a simplified calculation of

for MMSE receiver also exists for over-
lapped Alamouti codes.

5) Diversity-Multiplexing Tradeoff. It has been shown in [20],
[21] that in an independent MISO flat fading channel,
Toeplitz codes can approach the diversity-multiplexing
tradeoff [45] with ZF or MMSE receiver for square QAM
constellation. Since our overlapped Alamouti codes have
the same diversity as and slightly higher symbol rates than
Toeplitz codes, they can also approach the diversity-mul-
tiplexing tradeoff in the same situation.

In summary, overlapped Alamouti codes are consistently
superior to Toeplitz codes in all the above aspects in consid-
eration. Compared with OSTBC, overlapped Alamouti codes
have symbol rate and block length advantages. Therefore, al-
thoughoverlapped Alamouti codes can not outperform OSTBC
in the case when their symbol rates are the same due to the
perfect orthogonality of the latter, the higher available rates
of overlapped Alamouti codes can compensate the drawback
of orthogonality and may lead to performance gains over
OSTBC. For example, an OSTBC that uses 16-QAM con-
stellation may be outperformed by an overlapped Alamouti
code, which uses 4-QAM constellation, with a higher symbol
rate but the same throughput, and furthermore, the overlapped
Alamouti code generally has a smaller block length than the
OSTBC when the number of transmit antennas is not small.
The above observation will be verified from the simulation
results in Section IV.

IV. SIMULATION RESULTS

We next present some simulation results to compare the
performance of overlapped Alamouti codes with some known
STBC. In all the simulations, the channel model follows that
described in Section II-A except that, for simplicity, the covari-
ance matrix for the original channel matrix is assumed
to be an identity matrix, i.e., the channel coefficients
are independently and identically distributed. Fur-
thermore, the mapping from information bits to symbols in all
the constellations used in the simulations are Gray mapping.
To investigate the performance of overlapped Alamouti codes
when they are concatenated with a forward error correcting
code as what is usually done in a practical system, we use a rate
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Fig. 2. Comparison of the performances for overlapped Alamouti codes and Toeplitz codes with linear receivers: (a) three transmit and one receive antennas
(4-QAM) and (b) four transmit and one receive antennas (4-QAM).

convolutional code with generator polynomials
(in octal numbers) and constraint length as an outer code that

has been adopted in IEEE 802.16d WiMAX standard. This outer
convolutional code is decoded by Viterbi algorithm with soft in
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Fig. 3. Comparison of the performances for overlapped Alamouti codes, Toeplitz codes and JAC in (46) with MMSE receiver for four transmit and two receive
antennas: (a) without outer convolutional codes and (b) with outer convolutional codes.

puts. In all the simulation figures, the terms “OAC” and “Conv”
stand for overlapped Alamouti codes and convolutional codes,
respectively. Note that when , i.e., two transmit antennas,
overlapped Alamouti codes are equivalent to Alamouti code for
even and hence we do not investigate their performance.

A. Overlapped Alamouti Codes Versus Toeplitz Codes:
or 4,

In Fig. 2, we compare the symbol error rate (SER) perfor-
mances of overlapped Alamouti codes and Toeplitz codes in an
MIMO system with three or four transmit antennas and one re-
ceive antenna. 4-QAM constellation is used. It is easy to see
that our overlapped Alamouti codes significantly outperform
Toeplitz codes for as least 2.5 dB (when is small and MMSE
receiver is used) at SER equal to . As we may expect from
Fig. 1, the performance loss for overlapped Alamouti codes as
increases, i.e., symbol rate improves, is much smaller than that
for Toeplitz codes. For example, we can see from both figures
that for ZF receiver at SER equal to , the SNR loss for over-
lapped Alamouti codes is less than 1 dB as becomes twice
larger and, however, Toeplitz codes have at least 2 dB loss in
the same scenario. Furthermore, the performance improvement
of MMSE receiver over ZF receiver for overlapped Alamouti
codes is not as significant as that for Toeplitz codes, and this is
because the orthogonality of the equivalent channel matrix for
overlapped Alamouti codes is much better than that for Toeplitz
codes as we have discussed in Section III-D.

B. Overlapped Alamouti Codes Versus Juxtaposed Alamouti
Code: ,

Recently, an STBC with the form of two juxtaposed Alamouti
codes is proposed in 3GPP, which is transmitted from 4 antennas
and has symbol rate . We call this code as juxtaposed Alamouti
code, JAC for short. Specifically, the codeword matrix of JAC is

(46)

It is obvious that JAC only has diversity order , rather than
the full diversity order , with ML receiver and hence can not
achieve full diversity with linear receivers. In Fig. 3(a), the
performances of JAC, overlapped Alamouti codes and Toeplitz
codes are compared, where the number of receive antennas is
two so that linear receivers are feasible for JAC. Since 4-QAM
constellation is used for JAC (throughput is 4 bits/s/Hz), to
have a comparable throughput, we use 16-QAM constellation
for one overlapped Alamouti code with (throughput is
3.636 bits/s/Hz) and 64-QAM constellation for the other one
with (throughput is 5 bits/s/Hz). The Toeplitz code uses

so that it has the same symbol rate as the overlapped
Alamouti code with . We can observe from Fig. 3(a)
that the overlapped Alamouti codes not only outperform the
Toeplitz code but also have significant diversity gains over
JAC, while the latter has much shorter block length. For the
overlapped Alamouti code that has 25% more throughput than
JAC, it outperforms JAC for the bit error rate (BER) levels we
are interested in in practice and for the other overlapped Alam-
outi code with a slightly smaller throughput, its performance is
significantly and consistently superior to that of JAC.

In Fig. 3(b), the same performance comparison as that in
Fig. 3(a) is carried out when the codes are concatenated with an
outer convolutional code. To have a fair comparison, the MIMO
channel changes independently per 18 blocks (36 channel uses),
two blocks (36 channel uses), three blocks (36 channel uses),
and two blocks (44 channel uses) for JAC, the Toeplitz code,
the overlapped Alamouti code with and the other over-
lapped Alamouti code with , respectively. The length of
the input information bit sequence to the convolutional code is
360 bits that is a common multiple of the numbers of bits per
block for the four codes. Furthermore, all the codes are MMSE
decoded to extract soft outputs. As we can observe in Fig. 3(b),
the convolutional code has contributed at least 7dB reduction in
SNR at BER equal to , compared with the performances
of the codes in Fig. 3(a), while the relative trends among their
performance curves are still kept. As a result, the overlapped
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Fig. 4. Comparison of the performances of an overlapped Alamouti code, a Toeplitz code and an OSTBC with the same throughput for five transmit and one
receive antennas: (a) without outer convolutional codes and (b) with outer convolutional codes.

Alamouti codes also outperform the Toeplitz code and JAC
when they are concatenated with outer convolutional codes.

C. Overlapped Alamouti Codes Versus OSTBC: or
,

We have analyzed in Section III-D that overlapped Alamouti
codes can have higher rates than OSTBC for , which
may lead to performance gains. To illustrate this, in Fig. 4(a),
we compare the performances of an overlapped Alamouti code,
a Toeplitz code and an OSTBC in an MIMO system with five
transmit and one receive antennas. The highest known rate of
OSTBC for five transmit antennas is in the literature and
here we adopt the one in [10, p. 4345] with block length .
We choose for the overlapped Alamouti code and the
Toeplitz code, both of which use 64-QAM constellation, and the
OSTBC uses 256-QAM constellation. So, all the three codes
have the same throughput of 5.33 bits/s/Hz. It can be seen from
Fig. 4(a) that the overlapped Alamouti code has the best perfor-
mance among the three codes, consistently outperforming the
OSTBC in the SNR range of interest and having about 2 dB
coding gain over the OSTBC at the BER equal to , and the
Toeplitz code performs the worst, where the OSTBC is ML de-
coded and the overlapped Alamouti code and the Toeplitz code
are MMSE decoded.

Similar to Fig. 3(b), a performance comparison of the codes
in Fig. 4(a) when they are concatenated with an outer convo-
lutional code is presented in Fig. 4(b), where the Toeplitz code
and the overlapped Alamouti code use MMSE receiver to ex-
tract soft outputs and the OSTBC uses (9) to obtain soft outputs.
The block number per channel change is two (36 channel uses)
for both the Toeplitz code and the overlapped Alamouti code.
Since is not an integer multiple of the block length of the
OSTBC, we provide two simulation curves for the OSTBC, one
for two blocks (30 channel uses) per channel change and

Fig. 5. Comparison of the performances of an overlapped Alamouti code, a
Toeplitz code and an OSTBC with the same throughput of 5 bits/s/Hz for eight
transmit and one receive antennas.

the other for three blocks (45 channel uses) per channel change.
The length of the input information sequence to the convolu-
tional code is 480 bits. As we can expect from Fig. 4(a), while
the concatenated outer code has significantly improved the per-
formances for all the three codes, the overlapped Alamouti code
still outperforms the others.

Similar performance improvements of overlapped Alam-
outi codes over OSTBC as that in Fig. 4(a) have been also
observed for more than five transmit antennas, where with
the same throughput, overlapped Alamouti codes have shorter
block lengths than OSTBC. As an example, in Fig. 5, the
performances of an overlapped Alamouti code with , a
Toeplitz code with and an OSTBC are compared for
eight transmit and one receive antennas, where the OSTBC is
the one in [10, p. 4346] that has the highest known symbol rate
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Fig. 6. Comparison of the performances of overlapped Alamouti codes, V-BLAST, PLUTO codes and perfect codes with the same throughput for five transmit
and five receive antennas: (a) without outer convolutional codes and (b) with outer convolutional codes.

and also the shortest known block length . The over-
lapped Alamouti code and the Toeplitz code use 64-QAM con-
stellation while the OSTBC uses 256-QAM constellation so that
they have the same throughput of 5 bits/s/Hz. As a result, an al-
most the same performance comparison as that in Fig. 4(a) can
be observed in Fig. 5.

D. Overlapped Alamouti Codes Versus Full-Rate STBC:
,

In Fig. 6(a), we compare the performances of overlapped
Alamouti codes, V-BLAST, PLUTO codes [47] and perfect
codes [48] for five transmit and five receive antennas, where
all the codes are decoded with MMSE receiver and in addition,
MMSE-SIC (ordered) receiver is also used for V-BLAST that
has much higher decoding complexity. Notice that the PLUTO
codes proposed in [47] are designed in terms of minimizing
BER for MMSE receiver at a very high symbol rate, where the
requirement of high rates is due to the Gaussian approxima-
tion of the interference terms for MMSE receiver. Also note
that the perfect code has achieved the diversity-multiplexing
tradeoff with ML receiver when SNR goes to infinity [49]. In
the comparison, the overlapped Alamouti code uses
and 64-QAM constellation while all the other codes use BPSK
constellation. So, they have the same throughput of 5 bits/s/Hz.
In Fig. 6(a), one can clearly observe the diversity gain of the
overlapped Alamouti code over others and the overlapped
Alamouti code even outperforms V-BLAST with MMSE-SIC
(ordered) receiver when SNR is around 20.5 dB or above, while
the former has a substantially smaller decoding complexity
than the latter. In fact, it is known [54] that the diversity order
of V-BLAST with SIC (ordered) receiver is only
that is here.

When an outer convolutional code is concatenated with the
codes in Fig. 6(a), their performances are compared in Fig. 6(b),
where MMSE receiver is used to extract soft outputs for all the

codes. The numbers of blocks per channel change for the over-
lapped Alamouti code, V-BLAST, the PLUTO code and the per-
fect code are (24 channel uses), (25 channel uses), (25
channel uses), and (25 channel uses), respectively, and the
input information bit sequence to the convolutional code has
length of 300 bits. One can see in Fig. 6(b) that due to the sig-
nificant diversity gain, the overlapped Alamouti code outper-
forms the other codes when SNR is around 8.5 dB or above.
Note that a little difference from the performance comparison
in Fig. 6(a) is that when concatenated with the outer convolu-
tional code, V-BLAST is slightly superior to the perfect code in
the low SNR range.

V. CONCLUSION

In this paper, motivated by Zhang–Liu–Wong’s results on
Toeplitz codes [20], [21], we proposed a criterion for STBC to
achieve full diversity with ZF or MMSE receiver in an MIMO
system. This criterion is verified by OSTBC for which ML de-
coding and ZF decoding are equivalent and both achieve full
diversity. We also showed that the symbol rates of STBC under
this criterion are upper bounded by . Then, a novel family of
STBC named overlapped Alamouti codes that satisfy the pro-
posed criterion was systematically constructed and their prop-
erties were also investigated. Overlapped Alamouti codes are
close to orthogonal and their symbol rates can approach 1 for
any number of transmit antennas. Simulation results were pro-
vided to compare overlapped Alamouti codes with some ex-
isting codes.

APPENDIX

A. Proof for Theorem 1

Here, we only show the result for ZF receiver and then The-
orem 1 holds automatically for MMSE receiver since MMSE re-
ceiver is optimal among linear receivers. With component-wise
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hard decision at ZF receiver, (14) can be viewed as parallel ad-
ditive white Gaussian noise (AWGN) channels and the symbol
SNR for at the receiver is , where

is the th component of and denotes the th diag-
onal element of a square matrix. If is selected from some
usual constellations such as PAM, PSK, or square QAM, the
SEP of for a fixed channel matrix is well-
known in the literature that is expressed in terms of the con-
stellation size and . In [20], [21], a unified upper bound on

is derived to be

(47)

by using the alternative expressions for Gaussian -function
and -function [50], [51, Ch. 4], where ,
and for PAM, PSK and square QAM constellations of
cardinality , respectively. Now, we are ready to give the fol-
lowing proof for Theorem 1, which is similar to the proof of the
full diversity property of Toeplitz codes with linear receivers in
[20], [21].

Proof: Without loss of generality, we assume
in the following proof. Let , and

. So, and from the condition (16),
we have and .
Hence, must be a positive definite matrix and exists
which is also positive definite. Let

be the ordered eigen-
values of and correspondingly, and
be the minimum and the maximum eigenvalues of , re-
spectively. Then, and

. So,

(48)

where the second inequality follows from the arithmetic-geo-
metric means inequality. Note that in (48) only depends on

and and hence is independent of the channel matrix
and the SNR at each receive antenna. Since is a posi-
tive define matrix, we know

.

From the above result, the receiver SNR of is lower
bounded by

(49)

by letting that is also independent of and
. Substituting (49) into (47), we have

(50)

for . It has been assumed that
the channel matrix (or its vectorized version

of length
) is zero-mean, complex Gaussian distributed with the

covariance matrix . Taking the expectation of
over (or, equivalently, over ), we obtain from (50)

(51)

(52)

(53)

where (51) follows from and (52) follows from
the fact that and thus are positive definite. Since the
negative exponential of the SNR is and other terms are
independent of in (53), achieves full diversity with ZF re-
ceiver.

B. Proof of the Inequality (20)

Proof: Without loss of generality, we assume
, i.e., is not an all-zero vector. The

Toeplitz matrix has the form of

...
...

. . .
...

Since , either or

. If , we write
with composed of the

first rows of and
being the last row of . So, from (17), we have

The proof for the case of is similar except that
is now the first row of , i.e., the row vector

, and is composed of the last rows
of .
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C. Proof of Theorem 2

Proof: Without loss of generality, we assume is not an
all-zero vector and . First, we write as the summation
of two matrices by defining matrix
and matrix .
From the structure of the matrix in (29), we can

easily show that the matrix is skew-Hermitian, i.e.,

, and thus

(54)

Below we prove the conclusion by considering even and odd ,
respectively, for .

a) Even . To describe the structure of and

, we define and
, i.e., the vectors consisted of

the components of with odd and even indices, respec-
tively, where and have lengths and ,
respectively. Note that the indices are in a decreasing
order in . From the structure of , it is not
hard to verify

(55)
and

(56)
for even , where is the Toeplitz matrix defined
in (10) and denotes the Kronecker product between two
matrices. It has been shown in Lemma 1 that there exist
two positive constants and that are independent of

and , respectively, such that

(57)
and

for any and , respectively. Hence

(58)

[53, p. 48] and similarly, . Note
that and do not depend on . Now, we consider the
following two cases regarding to .

i) . For any , we have from (17), (54)
and (58) that

ii) . Then, and sim-
ilar to the derivation in case i), we have

Therefore, by letting that is inde-
pendent of , we have and thus
prove the conclusion for even .

b) Odd . For any given channel matrix (vector) , we have

(59)

where, for simplicity, we write and to de-
note and , respectively, and
is a vector of length .
Since is even, we have shown in part a) that

(60)

for some positive constant that is independent

of . So, is positive definite and we

use

to denote the

ordered eigenvalues of . Correspond-

ingly, let

be the ordered eigenvalues of

. Then, from [55, Th. 4.3.8, p. 185], we
have

(61)

Since

that im-

plies , we have
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where the first inequality follows from (61) and the last
inequality follows from (60). Since is a positive
constant independent of , we have thus completed the
proof.

D. Proof of the Inequality (33)

Proof: Without loss of generality, we assume
is not an all-zero vector and . Like the proof

of Theorem 2 in Appendix C, we consider the cases for even
and odd , respectively.

a) Even . Still using the notations and symbols in
Appendix C, , we have

(62)

from (54) to (56), where . Consider the
following two cases regarding to .

i) . Then, from (17)

ii) . Then, and hence

where the second inequality follows from (20).
For both of the above cases, we have from (62)

that

[53, p. 48] because is even. Thus,
we have proved the result for even case.

b) Odd . As in the the proof of Theorem 2, for any given ,
we use to denote the matrix of columns,

. So, like (59), we can write

(63)

with of length . For a par-
titioned matrix

with square submatrices and , we have [53, p. 50]

(64)

if is invertible. Therefore, we know from (63) that

(65)
On the other hand, we can write

with of length , and thus
according to (64)

(66)

Since is even, we have shown in part a) that

and hence

(67)

from (66), implying is a positive definite matrix.
So, according to (17),

(68)

as matrix is positive semidefinite. Hence, we
have from (65), (67) and (68) that

because is odd, and we have thus completed the proof.
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