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A New Prefilter Design for
Discrete Multiwavelet Transforms

Xiang-Gen Xia,Member, IEEE

Abstract—In conventional wavelet transforms, prefiltering is
not necessary due to the lowpass property of a scaling function.
This is no longer true for multiwavelet transforms. A few research
papers on the design of prefilters have appeared recently, but
the existing prefilters are usually not orthogonal, which often
causes problems in coding. Moreover, the condition on the pre-
filters was imposed based on the first-step discrete multiwavelet
decomposition. In this paper, we propose a new prefilter design
that combines the ideas of the conventional wavelet transforms
and multiwavelet transforms. The prefilters are orthogonal but
nonmaximally decimated. They are derived from a very natural
calculation of multiwavelet transform coefficients. In this new
prefilter design, multiple step discrete multiwavelet decomposi-
tion is taken into account. Our numerical examples (by taking
care of the redundant prefiltering) indicate that the energy com-
paction ratio with the Geronimo–Hardin–Massopust 2 wavelet
transform and our new prefiltering is better than the one with
DaubechiesD4 wavelet transform.

I. INTRODUCTION

NOW THAT single wavelet transforms are well-
understood, multiwavelets recently have attracted much

attention in the research community; see, for example,
[1]–[20], [26]–[32], where several wavelet functions
and scaling functions are used to expand a signal. The
multiwavelet functions constructed by Geronimoet al. [2]–[4]
have more desired properties than any single wavelet function,
such as short support, symmetry, and smoothness. Although,
in theory, they look more attractive than single wavelets,
not much more advantages in practical applications over
single wavelets have been found so far. In this author’s
opinion, the main reason behind this fact might be because of
their improper discrete implementations. For single wavelet
transforms, the discrete implementation automatically follows
from their multiresolution structure, i.e., tree-structured two-
channel filterbanks. In the tree-structured filterbank, lowpass
and highpass filters are explicitly used, which is tight with
the lowpass and the bandpass properties of the scaling and
wavelet functions, respectively. Although, for multiwavelet
transforms, the discrete implementation also follows from
their multiresolution structure, the tree-structured filterbank
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becomes a tree-structured vector filterbank [1], [8] (or time-
variant filterbank [13]). For a tree-structured vector filterbank,
the lowpass and the highpass properties for the two vector
filters are not as clear as those for the two filters in single
wavelet transforms. It has been found in [1], [16]–[17] that
in order to have a reasonable decomposition for discrete
multiwavelet transforms, prefiltering is necessary. A prefilter
design method was introduced in [1], [16]–[17], where the idea
is based on the computability of the multiwavelet transform
coefficients from uniformly sampled signals. Moreover, an
interpretation of the “lowpass” and “highpass” properties for
vector filters was introduced in [1] for the prefilter design
criterion. The criterion is, however, only good for the first step
discrete multiwavelet transform decomposition. The prefilters
designed with this method may be nonorthogonal, which
might kill the gain of the energy compaction in the transform
domain after the decoding is performed. In [31], a different
approach was proposed for perserving the orthogonality by
using the approximation order criterion. In [32], balanced
multiwavelets were studied, where prefiltering for these kinds
of multiwavelets is not necessary, but other properties, such
as the short supportness and the smoothness, are not as good
as the GHM multiwavelets. Notice that in [1] and [8], it was
also mentioned that when the “lowpass” filter satisfies

, prefiltering is not necessary.
In this paper, we introduce a new prefilter design by

combining ideas in single wavelet transforms and multiwavelet
transforms as follows. We first construct a function with
the lowpass property, i.e., its Fourier transform is 1
at , or , from the multiscaling functions
and their translations such that form an
orthonormal set. Notice that the functiondoes not have to
be a scaling function since the nested property is not required,
i.e., a dilation equation may not be satisfied. Due to the
lowpass property, a signal can be well approximated by
a linear combination of for a large ;
meanwhile, can also be well approximated by a linear
combination of the multiscaling functions and their trans-
lations due to their multiresolution approximation property.
Because of the lowpass property ofand the orthogonality
of , the coefficients in the linear combination of

are proportational to ; see,
for example, [23]–[25], and [35]. The conversion between
these two approximations naturally suggests a prefiltering
for computing the multiwavelet transform coefficients at the
highest resolution (or called approximation coefficients) from
the samples of the signal . Then, the rest of
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the multiwavelet transform coefficients (the lowest resolution
coefficients and the detailed coefficients) follows from a tree-
structured vector filterbank [1], [8]. We will see later that
the lowpass condition imposed on the functionis strongly
related to the lowpass condition imposed on the combined
filters of the prefilters and the multiscaling functions, which
also relates to the one imposed on the combined filters of
the prefilters and the cascaded vector filterbanks, i.e., multiple
steps of the discrete multiwavelet transform decompositions.
Notice that the above prefilter structure was first used in
[30], but neither thelowpass conditionon the function nor
any rationale for introducing such was mentioned. Instead,
in [30], signal-dependent optimal prefilters, in terms of the
energy compaction criterion, were designed. The drawbacks
are 1) that the computational load is high and 2) the signal
dependency. In this paper, we systematically study the prefilter
structure and its rationale. The prefilters are signal independent
and orthogonal, and they only depend on multiwavelets.

II. A PPROXIMATION OF LOWPASSFUNCTIONS USING

MULTISCALING FUNCTIONS AND NEW PREFILTER STRUCTURE

In this section, we want to motivate a new prefiltering for
multiwavelet transform coefficient computation by approxi-
mating a lowpass function using multiscaling functions. To
do so, let us first briefly review multiwavelets and matrix
dilation equations. For more details about multiwavelets, see,
for example, [1]–[20] and [26]–[32].

Consider compactly supported scaling functions
and their corresponding mother wavelet

functions , where all the translations
are mutually orthogonal,

and form
an orthonormal basis for . Let and be their
corresponding matrix quadrature mirror filters with

impulse response constant matricesand ,
respectively. Let

Then, we have the following matrix dilation equations.

(2.1)

(2.2)

The orthogonality implies

(2.3)

(2.4)

(2.5)

where means the complex conjugate transpose, and
and denote the identity and the all-zero matrix,
respectively.

For each fixed , let be the closure of the linear span
of . Then, the
spaces form an orthogonal multiresolution analysis
for .

Let ; then

(2.6)

(2.7)

where , and

and

Let

and

Then, by the matrix dilations (2.1)–(2.2)

(2.8)

(2.9)

and

(2.10)

Thus, to determine the multiwavelet transform coefficients
and for from , it is good

enough to determine the coefficients for from .
Unlike single wavelets, where is proportional to the

samples when is large enough due to the lowpass
property of a single scaling function, the determination of
for multiwavelet transforms from the samples of is not
trivial. When the multiscaling functions have the interpolating
property, the determination was given in [1] and [16]–[17].
Furthermore, a necessary and sufficient condition for the
solvability of from the samples of was also given
in [1]. The relationship between the samples ofand the
coefficients automatically provides a prefiltering for the
multiwavelet transform computation from the samples of.
For more details, see [1]. Unfortunately, the prefiltering based
on this relationship is usually not orthogonal, which seems to
limit the gain in the compression applications.

In order to present our new prefilter design method, i.e., a
new relationship between the samples ofand , let us look
at the conventional wavelet transform coefficient computation,
which is usually referred as the Mallat algorithm.

Let be a single orthogonal scaling function. Then, for
any signal , there exists such that can be well
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approximated by , i.e.,

(2.11)

where

(2.12)

The relationship in the above formula is because of the
lowpass property of , i.e., , see, for example,
[23]–[25] and [35]. The rest of wavelet transform coefficients
can be calculated recursively from . The key pointfor the
validation of (2.11)–(2.12) is that the scaling function has
the lowpass property, and are orthogonal.

Motivated from the above observation, we now want to
construct a function from the multiscaling functions

such that has the lowpass property, and
its translations are orthogonal to each other.
Notice that such may not be a scaling function because
it may not satisfy any dilation equation. As long as
has the lowpass property and the orthogonality, the properties
(2.11)–(2.12) hold for a signal .

Let

(2.13)

where are real constants. Then

(2.14)

where

(2.15)

The lowpass property implies

(2.16)

The orthogonality of is equivalent to

(2.17)

Write out the right-hand side of (2.17) as

By the orthognality of , it
is not hard to see that

Therefore

This implies that the orthogonality of is
equivalent to

(2.18)

In conclusion, we have proved the following lemma.
Lemma 1: A linear combination in (2.13) of multi-

scaling functions and their translations has the lowpass
property and the orthogonality of its translations if and only
if the properties (2.16) and (2.18) hold.

We now assume in (2.13) satisfies the lowpass property
(2.16) and the orthogonality (2.18). For a given signal ,
by the lowpass property of , there exists a such
that (see, for example, [35, Prop. 5.3.2, p. 142])

(2.19)

where

An estimate of the difference

is given in the Appendix. Notice that the only condition on
for the relationship (2.12) to hold is the lowpass property,

i.e., . Therefore, similar to (2.12), we have

for large

Without loss of the generality, we may assume for
simplicity. Then

and

From (2.13)

This implies that

(2.20)
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Fig. 1. New prefiltering: Decomposition.

Fig. 2. New prefiltering: Reconstruction.

where . The above result (2.20) suggests
the following new relationship, i.e., a new prefilter, between
the samples of and the multiwavelet transform
coefficients

(2.21)

which is shown in Fig. 1.
By the orthogonalities of multiwavelets (2.3)–(2.5) and

prefilters (2.18), the reconstruction can be shown in Fig. 2.
The difference between the above prefilter bank and the

prefilter bank proposed in [1] is the following. The above
prefilter bank is not maximally decimated, i.e., redundancies
are introduced. Actually, the number of coefficients in the
transform domain is increased by times. The prefilter bank
in [1] is, however, maximally decimated, and no redundancy
is introduced. We might want to ask, since we are usually
interested in reducing the redundancies, why we need to
introduce redundancy here. The answer here is two-fold.
First, proper overcomplete (or redundant) transforms plus
vector quantizations might perform better than nonredundant
transforms. This suggests that including redundancy in the
transform might not be a bad idea due to its better tolerance of
noise than nonredundant transforms. Second, from our numeri-
cal examples, the energy compaction with this new prefiltering
is better than the one with Daubechies wavelet transform
after the nonmaximality of the decimation in prefiltering has
been taken into account.

Notice that the energy of is preserved after the whole
discrete multiwavelet transform in Fig. 1 is performed due
to the orthogonalities of the multiwavelet transform and the
prefilter bank, although the prefilter bank is nonmaximally
decimated.

Motivated from the above prefiltering and the one in [1],
we propose the following general prefiltering for discrete
multiwavelet transforms, which is shown in Fig. 3, where

and the pre/post filterbank shown in Fig. 4
have the perfect reconstruction property. Specifically, when
the filterbank in Fig. 4 is paraunitary, the prefiltering in Fig. 3
is orthogonal.

III. PREFILTER DESIGN AND EXAMPLES

In this section, we first study the general wavelet case
and then study the case of . Finally, we look at two
examples. One is the Geronimo–Hardin–Massopust 2 wavelet
prefilter design, and the other is the prefilter design for one of
the 2 wavelets obtained by Chui and Lian in [20].

A. General Wavelet Prefilter Design

Although, for the general prefilter bank in Fig. 3 (i.e.,
general ), the interpretation in the previous section does not
hold, the design of a prefilter bank can be done using the
same criterion given in [1], where . In the following,
we focus on the case of and use the interpretation in
Section II to design the prefilter bank . Moreover, we are
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Fig. 3. General prefiltering: Decomposition and reconstruction.

Fig. 4. Pre/post filterbank.

only interested in designing FIR prefilter banks. The lowpass
and the orthogonality conditions (2.16) and (2.18) will be used.

Due to its orthogonality, any FIR prefilter bank can
be factorized as (see, for example, [33], [34])

(3.1)

where

(3.2)

and

(3.3)

where and the norm of the vector
is , i.e.,

From the matrix dilation equation, we have

(3.4)

When is known, the vector can be
solved. Then, the orthogonality and the lowpass property
(2.16) and (2.18) are equivalent to

and (3.5)
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The only constraint for the parameters is that they need
to be of the unit norm for . The parameter
determines the prefilter length and is called theorder of the
prefilter . When there is no term in
(3.1), we set , i.e., the order of the prefilter is zero.

Additional conditions may be imposed on the above param-
eters. An important one is that the combined filters of
and need to be lowpass filters, and the combined filters
of and need to be highpass filters. The reason
for this condition is the same as what was proposed in [1],
i.e., we need to keep the “lowpass” part and decompose it
again and again but quantize the “highpass” part and therefore
keep the “highpass” part as small as possible. This means the
“highpass” part needs to be the high-frequency part; otherwise,
it will have a lot of energy.

By thinking of the multiscaling vectors as the cascaded
version of the “lowpass” vector filter , the new lowpass
property (2.16) for the function means the lowpass property
for the combined filters of the prefilters and cascaded
vector filters . Therefore, the above two lowpass condi-
tions [the new one (2.16) and the old one in [1]] somewhat
guarantee the lowpass properties of the all-approximation
multiwavelet transform coefficients for .
The old lowpass condition in [1] is for the lowpass property
of the first step decomposition and the new lowpass
condition in this paper is for the follow-up decompositions

for . The old lowpass condition in [1] can
be stated as follows.

There are combined filters of and and
combined filters of and . They are

(3.6)

and

(3.7)

respectively, where , and
. Then, the prefiltering, the first step multi-

wavelet transform decomposition, and their combined filters
can be shown in Fig. 5.

The lowpass property on is

(3.8)

The highpass property on is

(3.9)

In conclusion, the above four conditions [i.e., (3.1), (3.5),
(3.8), and (3.9)] need to be imposed on the prefilter design
given a multiwavelet.

Fig. 5. Combined filters of prefilters and multiwavelet filters.

B. Theory for 2 Wavelets

Since there always exists a solution for (3.4), there exist
two real constants and such that

(3.10)

Without loss of generality, we may assume
for a real constant . Then, by (3.5)

or

(3.11)

and

or

(3.12)

where is an arbitrary constant. This implies that there always
exist solutions for (3.5).

When matrix has full rank, the only solution for (3.9)
is , which does not satisfy (3.5).

When matrix does not have full rank, there exist
solutions for in (3.9), i.e., there exist two
real constants and such that

(3.13)

Clearly, there exists a solution for and in
(3.11)–(3.13).

Now, the only condition left is (3.8). Although the existence
of the zeroth-order prefilter
in (3.8) depends on the form of and (we
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will see later that there does not exist any zeroth-order prefilter
that satisfies (3.8) for the GHM 2 wavelets, but there does exist
for one of the 2 wavelets obtained by Chui and Lian in [20]),
we may analyze first order prefilters. In this case

(3.14)

and

where is an arbitrary angle.
For the same reason as before, when matrix has full

rank, there are no solutions for (3.5) and (3.8). Therefore, we
assume that matrix does not have full rank. Then, there
exist two real constants such that

By (3.14)

Thus, there exists an angle such that the above equation
holds. This proves the following theorem.

Theorem 1: There exists a first-order prefilter
that satisfies all conditions [i.e., (3.1),

(3.5), (3.8), and (3.9)] if and only if none of matrices
and has full rank.

As pointed out by one of the referees of this manuscript, the
condition in the above theorem always holds if a constant can
be expressed by a linear combination of the translates
and of two scaling functions and .

C. Design Examples for the GHM 2 Wavelets

We first want to see the Geronimo–Hardin–Massopust 2
wavelets with the following matrix impulse responses of the
vector filters and , respectively.

and

In this case

From (3.4)

(3.15)

Solving (3.4) and (3.5), we have

and

(3.16)

where is a real constant with . The condition (3.9)
implies

Therefore, we solve for as

and

Then, the prefilters in (3.1) can be written as

(3.17)

where

with for two real constants and . It
is clear that (3.8) implies that the orderin (3.17) must be
greater than or equal to 1. Since matrices and
do not have full rank, by Theorem 1, there exists a first-order
prefilter satisfying the conditions. Let us see what it looks like.

(3.18)

where is an angle. Thus

Therefore, (3.8) implies

or (3.19)

This proves the following theorem.
Theorem 2: The prefilter in (3.18) with the in (3.19)

satisfies all conditions we want, including the following.

1) the lowpass property of , i.e., ;
2) the orthogonality of and the orthogo-

nality of the prefilter bank for ;
3) the lowpass property of the combined filters for

of , and ;
4) the highpass property of the combined filters for

of , and .
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As mentioned earlier, the zeroth-order prefilter, i.e., without
any term in (3.18), does not satisfy the above property
3), although it satisfies all the rest, i.e., 1), 2), and 4). Notice
that the above zeroth-order prefilter was first used in [16]
and [17]. When the order of a prefilter increases, better
lowpass and highpass combined filters and ,
respectively, may be expected, and the length of a prefilter
also increases. The final version of the two prefilters in (3.18)
can be expressed as

(3.20)

(3.21)

D. Another Design Example

The second example of 2 wavelets is obtained by Chui and
Lian in [20]. The matrix impulse responses are

and

The multiscaling and multiwavelet functions are supported in
and have symmetry and certain smoothness. It is clear

that

Conditions (3.9) and (3.5) imply that and
. In this case, the zeroth-order

already satisfies (3.8). As pointed
out by one of the referees of this manuscript, this result
holds not only for the above Chui–Lian multiwavelets but for
other multiwavelets as well as long as one of two scaling
functions is symmetric and the other of two scaling functions
is antisymmetric.

E. Numerical Simulations for the Combined
Filters and

In this section, we want to illustrate the combined filters
and for for the GHM 2 wavelets.

Three sets of these combined filters are illustrated: without
prefiltering [Fig. 6(a) and (b)]; old zeroth-order orthogonal

(a)

(b)

Fig. 6. Combined filters of the GHM 2 wavelets without prefiltering. (a)
jHl(!)j. (b) jGl(!)j.

prefiltering in [1] [Fig. 7(a) and (b)]; new orthogonal prefilter-
ing in Theorem 2 [Fig. 8(a) and (b)].

IV. NUMERICAL EXPERIMENTS

In this section, we want to see the performance of our new
prefiltering scheme through some simple numerical examples.
The first test signal is the one hundredth horizontal line of
the Cameraman image with size , which is shown in
Fig. 9. Six experiments on energy compaction of the following
six transforms are done. The first transform is the GHM
2 wavelets without prefiltering. The second transform is
the GHM 2 wavelets with the old zeroth-order orthogonal
prefiltering with and in (3.29)
in [1]. The third one is the Daubechies wavelets. The
forth and the fifth are the GHM 2 wavelets with our new
orthogonal prefiltering of the zeroth and the first order, respec-
tively. The sixth transform is the Chui–Lian multiwavelet
transform in Section III-D with the zeroth-order prefiltering

. Two step decompositions, i.e.,
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(a)

(b)

Fig. 7. Combined filters of the GHM 2 wavelets with the old zeroth-order
orthogonal prefiltering in [1]. (a)jHl(!)j. (b) jGl(!)j.

and , in the first three transforms are performed,
where the lowpass part of the transformed signal is of length
64, whereas the bandpass part is of length 192. Since our new
prefiltering is nonmaximally decimated and the signal size in
the discrete multiwavelet transform domain is twice of the
input signal (or the output signals of the first three transforms),
three step decompositions, i.e., and , of the
discrete multiwavelet transform with our new prefiltering are
performed for the last three transforms, where the length of
the lowpass part of the transformed signal is also 64, whereas
the length of the bandpass part is . Therefore,
we have the following energy compaction ratio definitions.

The energy compaction ratioes for the first three transforms
for are defined by

(a)

(b)

Fig. 8. Combined filters of the GHM 2 wavelets with their first-order
orthogonal prefiltering. (a)jHl(!)j. (b) jGl(!)j.

Fig. 9. First test signal.
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Fig. 10. Decomposition of the first test signal using the GHM 2 wavelets
without prefiltering.

Fig. 11. Decomposition of the first test signal using the GHM 2 wavelets
with the old zeroth-order orthogonal prefiltering in [1].

TABLE I
ENERGY COMPACTION RATIO COMPARISON FOR THEFIRST TEST SIGNAL

where are the signals in the transform domain. The energy
compaction ratioes for the rest three transforms, i.e., with the
new prefiltering, are defined by

The transformed signals with the first three transforms are
shown in Figs. 10–12, respectively. The transformed signals
with the new orthogonal prefiltering of the zeroth- order
and the first-order for the GHM multiwavelets are shown in
Figs. 13 and 14, respectively. The transformed signal with

Fig. 12. Decomposition of the first test signal using DaubechiesD4

wavelets.

Fig. 13. Decomposition of the first test signal using the GHM 2 wavelets
with the new zeroth-order orthogonal prefiltering.

TABLE II
ENERGY COMPACTION RATIO COMPARISON FOR THESECOND TEST SIGNAL

the zeroth-order orthogonal prefiltering for the Chui-Lian
multiwavelet is shown in Fig. 15. Their energy compaction
ratioes are listed in Table I.

The second test signal is the two hundred and fiftieth
horizontal line of the Einstein image with size .
The original signal, the transformed signal with transform
(Daubechies wavelets), the transformed signal with trans-
form (the GHM 2 wavelets with the first-order orthogonal
prefiltering), and transform signal with transform (the Chui-
Lian 2 wavelets with the zeroth-order orthogonal prefiltering)
are shown in Figs. 16–19. Their energy compaction ratioes are
listed in Table II with the same definitions as above.
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Fig. 14. Decomposition of the first test signal using the GHM 2 wavelets
with the new first-order orthogonal prefiltering.

Fig. 15. Decomposition of the first test signal using the Chui-Lian 2 wavelets
with the new zeroth-order orthogonal prefiltering.

Fig. 16. Second test signal.

Fig. 17. Decomposition of the second test signal using DaubechiesD4

wavelets.

Fig. 18. Decomposition of the second test signal using the GHM 2 wavelets
with the new first-order orthogonal prefiltering.

A better energy compaction with the new orthogonal pre-
filter than with others can be seen from the above tables.

V. CONCLUSION

In this paper, we have introduced a new prefilter design tech-
nique for discrete multiwavelet transforms. The new technique
is based on approximating a function with the lowpass property
and the orthogonality of their translations by using linear com-
binations of multiscaling functions and their translations. The
new prefiltering is orthogonal but not maximally decimated. It
deals with all decomposition steps for discrete multiwavelet
transforms, whereas the prefiltering in [1] only focuses on
the first step decomposition. The decimation nonmaximality
allows one to have more freedom in designing a prefilter so
that more desired conditions on the prefilters and the combined
filters of the prefilters and multiwavelet vector filters are
satisfied. Our numerical examples show that a better energy
compaction ratio with the GHM 2 wavelets and the Chui-Lian
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Fig. 19. Decomposition of the second test signal using the Chui-Lian 2
wavelets with the new zeroth-order orthogonal prefiltering.

2 wavelets with the new orthogonal prefiltering than the one
with the wavelet transform is achieved. This suggests the
potential applications of discrete multiwavelet transforms in
image compression/denoising.

It is known that any nonredundant orthogonal transform
keeps the energy. For example, the error energy after the
quantization in the transform domain in the compression is
equal to the error energy in the reconstruction domain in
the decompression. This no longer holds for the redundant
prefiltering/postfiltering studied in this paper. In the case
when the quantization errors are random, it can be easily
shown that the error energy in the reconstruction domain in
the decompression is one fourth of the error energy in the
transform domain in the compression.

APPENDIX

The error

where

can be estimated as follows. In the Fourier transform domain,
the error can be expressed as

When is bandlimited with bandwidth , the error can be
simplied as

Notice that . When is large enough and the
bandwidth of the signal is much smaller than , i.e.,

, then

This is because for large for .
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