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A New Prefilter Design for
Discrete Multiwavelet Transforms

Xiang-Gen Xia,Member, |IEEE

Abstract—In conventional wavelet transforms, prefiltering is becomes a tree-structured vector filterbank [1], [8] (or time-
not necessary due to the lowpass property of a scaling function. variant filterbank [13]). For a tree-structured vector filterbank,
This is no longer true for multiwavelet transforms. A few research the lowpass and the highpass properties for the two vector

papers on the design of prefilters have appeared recently, but .. . L
the existing prefilters are usually not orthogonal, which often filters are not as clear as those for the two filters in single

causes problems in coding. Moreover, the condition on the pre- wavelet transforms. It has been found in [1], [16]-[17] that
filters was imposed based on the first-step discrete multiwavelet in order to have a reasonable decomposition for discrete
?hegﬁo(?;%siiﬂgg-t& tihdiZapsagfrth ;"ecg’r:sgﬁﬁgnzl“V‘\?I‘;"Vglrgtf”ttrirng%iir%rs‘ multiwavelet transforms, prefiltering is necessary. A prefilter
and multiwvavelet transforms. The prefilters are orthogonal but F’es'g” method was mtroduc':(?d in [1], [16]_[_17]’ where the idea
nonmaximally decimated. They are derived from a very natural IS based on the computability of the multiwavelet transform
calculation of multiwavelet transform coefficients. In this new coefficients from uniformly sampled signals. Moreover, an
prefilter design, multiple step discrete multiwavelet decomposi- interpretation of the “lowpass” and “highpass” properties for
tion is taken into account. Our numerical examples (by taking ector filters was introduced in [1] for the prefilter design
care of the redundant prefiltering) indicate that the energy com- . S .
paction ratio with the Geronimo—Hardin-Massopust 2 wavelet criterion. The criterion is, however, only good for the first step
transform and our new prefiltering is better than the one with  discrete multiwavelet transform decomposition. The prefilters
DaubechiesD. wavelet transform. designed with this method may be nonorthogonal, which
might kill the gain of the energy compaction in the transform
domain after the decoding is performed. In [31], a different
approach was proposed for perserving the orthogonality by
OW THAT single wavelet transforms are well-ysing the approximation order criterion. In [32], balanced
understood, multiwavelets recently have attracted mughultivavelets were studied, where prefiltering for these kinds
attention in the research community; see, for examplgf multivavelets is not necessary, but other properties, such
[1]-[20], [26]-[32], where several wavelet functionsas the short supportness and the smoothness, are not as good
and scaling functions are used to expand a signal. Thg the GHM multiwavelets. Notice that in [1] and [8], it was
multiwavelet functions constructed by Geronimital. [2]-[4]  a1s0 mentioned that when the “lowpass” filtBl(w) satisfies
have more desired properties than any single wavelet functiq@(()) = I, prefiltering is not necessary.
§uch as short support, symmetry, _and smoot_hness. Althoughyy, this paper, we introduce a new prefilter design by
in theory, they look more attractive than single waveletgompining ideas in single wavelet transforms and multiwavelet
not much more advantages in practical applications ovghnsforms as follows. We first construct a functigft) with
single wavelets have been found so far. In this authorge lowpass property, i.e., its Fourier transfods(w) is 1
opinion, the main reason behind this fact might be becausegf , _ ¢ o #(0) = 1, from the multiscaling functions
their improper discrete implementations. For single wavelshd their translations such tha(t — n), n € Z form an

transforms, the discrete implementation automatically fonov‘@rthonormal set. Notice that the functighdoes not have to

from the|r. multiresolution structure, i.e., treg-structured twode a scaling function since the nested property is not required,
channel filterbanks. In the tree-structured filterbank, lowpass ~ _ jiiation equation may not be satisfied. Due to the

and highpass filters are explicitly used, which is tight Witl' Wpass broperty. a sianal(t) can be well approximated b
the lowpass and the bandpass properties of the scaling nlﬂfear c%m%ina)f[’ion Ogj/%]é)()2jt_n) ne pr%r a largeJ; y

wavelet functions, respectively. Although, for multiwavele . . .
: . ; meanwhile, f(¢) can also be well approximated by a linear
transforms, the discrete implementation also follows from

: . : ) (f(ombination of the multiscaling functions and their trans-
their multiresolution structure, the tree-structured fllterbar]ations due to their multiresolution approximation property
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XIA: NEW PREFILTER DESIGN FOR DISCRETE MULTIWAVELET TRANSFORMS

the multiwavelet transform coefficients (the lowest resolution Let f € Vj; then
coefficients and the detailed coefficients) follows from a tree- N
structured vector filterbank [1], [8]. We will see later that _
the lowpass condition imposed on the functigris strongly F6) =222 conbran®)
related to the lowpass condition imposed on the combined ~
filters of the prefilters and the multiscaling functions, which

. . i = . (T
also relates to the one imposed on the combined filters of ZZCI’JO’W)I’JO”“( )
the prefilters and the cascaded vector filterbanks, i.e., multiple

=1 keZ

=1 kcZ

. . ey ]\T
steps of the discrete multiwavelet transform decompositions. + Z Z Z dyj e ()

Notice that the above prefilter structure was first used in

[30], but neither thdowpass conditioron the functiong nor

any rationale for introducing suchp was mentioned. Instead,where J; < J, and
in [30], signal-dependent optimal prefilters, in terms of the

energy compaction criterion, were designed. The drawbacks ClLjk = /f(t)d)l,j,k(t) dt
are 1) that the computational load is high and 2) the signal

dependency. In this paper, we systematically study the prefil’?é}l .

structure and its rationale. The prefilters are signal independent dijr = / F(E50(t) dt.
and orthogonal, and they only depend on multiwavelets.

=1 Jo<j<J k€Z

Let
Il. APPROXIMATION OF LOWPASSFUNCTIONS USING A T
MULTISCALING FUNCTIONS AND NEW PREFILTER STRUCTURE Cik = (Cl,j,kv R CN,j,k)

In this section, we want to motivate a new prefiltering fo"d
multiwavelet transform coefficient computation by approxi- djx = (dijns . dn )t
mating a lowpass function using multiscaling functions. To o
do so, let us first briefly review multiwavelets and matrid "en. by the matrix dilations (2.1)-(2.2)
dilation equations. For more details about multiwavelets, see,
for example, [1]-[20] and [26]-[32]. Ci-Lk = \/QZH"CJ??H"
Consider N compactly supported scaling functions(¢), "
[ =1,2,...,N and their corresponding mother wavelet dj1x= \/QZGnCMHn
functions ¢y(¢), | = 1,2,...,N, where all the translations n
¢i(t—k), ke Z, 1 =1,2,...,N are mutually orthogonal, 5nq
andy ;5 = 2//2(27t — k), j,k € Z,1=1,2,..., N form

an orthonormal basis fat?(R). Let H(w) and G(w) be their Cin = \/QZ(chj_mHn + Grdj—1,2k+4n)-

correspondingV x N matrix quadrature mirror filters with &
N x N impulse response constant matridésandGy, k € Z,
respectively. Let

1559

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

Thus, to determine the multiwavelet transform coefficients

cyk andd; for Jo < j < J, k € Z from f, it is good
() 2 (Pr(t),...,on ()T, W) & (P1(1),...,¥n(t)T. enough to determine the coefficients, for k € Z from f.
Unlike single wavelets, where;; is proportional to the
Then, we have the following matrix dilation equations. samplesf(k/2”) when J is large enough due to the lowpass

_ _ property of a single scaling function, the determinatior of
(1) = 22}; Hy@(2t = F) (1) for multiwavelet transforms from the samples fft) is not
trivial. When the multiscaling functions have the interpolating
U(t) = 2ZGk‘I’(2t — k). (2.2) property, the determination was given in [1] and [16]-[17].
k

The orthogonality implies

HWH (W) +Hw+n)H (w+7) =1y  (2.3)
Gw)GH (W) + Glw + )G (w+7) = Ix (2.4)
Hw)G'(w) +Hw+m)G (w+7m)=0x (2.5
where T means the complex conjugate transpose, @rd

and Oy denote theN x N identity and the all-zero matrix,
respectively.

Furthermore, a necessary and sufficient condition for the
solvability of c;; from the samples off was also given
in [1]. The relationship between the samples fofand the
coefficientsc;; automatically provides a prefiltering for the
multiwavelet transform computation from the samplesjfof
For more details, see [1]. Unfortunately, the prefiltering based
on this relationship is usually not orthogonal, which seems to
limit the gain in the compression applications.

In order to present our new prefilter design method, i.e., a
new relationship between the sampleg@ndc; ;, let us look

For each fixed € Z, letV; be the closure of the linear spamat the conventional wavelet transform coefficient computation,
of ¢ jp = 2/2¢(27t — k), 1 =1,2,...,N, k € Z. Then, the which is usually referred as the Mallat algorithm.
spacesV;, j € Z form an orthogonal multiresolution analysis Let ¢(¢) be a single orthogonal scaling function. Then, for

for L3(R).

any signalf(t), there exists/ > 0 such thatf(¢) can be well
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approximated bypj . (t) £ 27/2¢(27t — k), k € Z, i.e., By the orthognality ofg;(t — n), I = 1,2,...,N, n € Z, it

Z is not hard to see that
f)= > cipban(t) (2.11) . -
* Z P (w + 2mn) ¢y, (w + 2mn) = 6(ly — l2).

where Therefore

. i N
= [foonmixs(y). @) :

27 Yo lpw+2m)P = [ Auw).
The relationshipx in the above formula is because of the " z-=1 _
lowpass property ofs(t), i.e., $(0) = 1, see, for example, This implies that the orthogonality of(t — n), n € Z is
[23]-[25] and [35]. The rest of wavelet transform coefficientgquivalent to

can be calculated recursively froa ;. The key pointfor the N
validation of (2.11)—(2.12) is that the scaling functipft) has Z | Ay (w)|? = 1. (2.18)
the lowpass property, anfi(t — k), k € Z are orthogonal. =1

Motivated from the above observation, we now want % conclusion. we have proved the following lemma.
construct a functiogp(¢) from the multiscaling functiong;(¢), Lemma 1: A linear combinationg(¢) in (2.13) of multi-

[ =1,2,...,N such thatg(f) has the lowpass property, andycaiing functionss(£) and their translations has the lowpass

its translationsj(¢ — k), k € Z are orthogonal to each other., onerty and the orthogonality of its translations if and only

Notice that suchp(t) may not be a scaling function becausg e properties (2.16) and (2.18) hold.

it may not satisfy any dilation equation. As long @)  \ye now assume(t) in (2.13) satisfies the lowpass property

has the lowpass property _and the orthogonality, the propert@_sm) and the orthogonality (2.18). For a given sigfiét),

(2.11)~(2.12) hold for a signaf. by the lowpass property of(t), there exists a/ > 0 such
Let that (see, for example, [35, Prop. 5.3.2, p. 142])

P(t) = zj\: > anlgi(t —n) (2.13) F#) =Y bp272¢(27t = n) (2.19)

=1 n

where
where a;[n] are real constants. Then

by = /f(t)2J/2¢(2Jt —n)dt.

N
Bw) =" Aw)é 2.14 . .
$(w) ; (w)gu(w) ( ) An estimate of the difference
where F#) = 0272027t — n)
Ajw) = —ine 2.15 "
w) zn:al[n]e ( ) is given in the Appendix. Notice that the only condition on
o (t) for the relationship (2.12) to hold is the lowpass property,
The lowpass property implies i.e., »(0) = 1. Therefore, similar to (2.12), we have
: - : b ™, for large J
$(0) = A(0)(0) = 1. (2.16) nocf (27)’ oriarge.J.
=1 Without loss of the generality, we may assunie= 0 for
The orthogonality of(t — n), n € Z is equivalent to simplicity. Then
S dw + 2 =1, (2.17) FO) &> bapt—n) and b, x f(n).
From (2.13)

Write out the right-hand side of (2.17) as
> I¢(w + 2mn)?

=> <zj\: Azl(w)dszl(w+27rn)> =2 b 2 2 et =0 —m)

F#&) = baglt —n)

n =1 m
n =1 N
N . = Z Z <Z br—may [m]> ¢l(t - k)
X <Z Aj (W), (w + 27rn)> =1 k \m
=1 This implies that
N N R N
=2 2 Au@AL @Y duw+2m)gi(w+2m). Y b afmlm on, =12, N k€Z  (220)
I1=1l=1 n m

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on November 26, 2008 at 14:55 from IEEE Xplore. Restrictions apply.



XIA: NEW PREFILTER DESIGN FOR DISCRETE MULTIWAVELET TRANSFORMS 1561
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Fig. 1. New prefiltering: Decomposition.
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Fig. 2. New prefiltering: Reconstruction.

whereb,, < f(n), n € Z. The above result (2.20) suggests Notice that the energy of(n) is preserved after the whole
the following new relationship, i.e., a new prefilter, betweediscrete multiwavelet transform in Fig. 1 is performed due
the samplesf(n) of f(¢) and the multiwavelet transformto the orthogonalities of the multiwavelet transform and the

coefficients¢; o x prefilter bank, although the prefilter bank is nonmaximally
decimated.
_ Motivated from the above prefiltering and the one in [1],
.= k— 2.21
Lok Em:f( m)ai[m] ( ) we propose the following general prefiltering for discrete

multiwavelet transforms, which is shown in Fig. 3, where
1 < K < N and the pre/post filterbank shown in Fig. 4
aﬁhave the perfect reconstruction property. Specifically, when
the filterbank in Fig. 4 is paraunitary, the prefiltering in Fig. 3

which is shown in Fig. 1.
By the orthogonalities of multiwavelets (2.3)—(2.5) an
prefilters (2.18), the reconstruction can be shown in Fig. 2.,
The difference between the above prefilter bank and tﬁseorthogonal.
prefilter bank proposed in [1] is the following. The above
prefilter bank is not maximally decimated, i.e., redundancies
are introduced. Actually, the number of coefficients in the lll. PREFILTER DESIGN AND EXAMPLES

transform domain is increased By times. The prefilter bank  |n this section, we first study the genetil wavelet case
in [1] is, however, maximally decimated, and no redundan@hd then study the case &f = 2. Finally, we look at two
is introduced. We might want to ask, since we are usualdkamples. One is the Geronimo—Hardin—Massopust 2 wavelet
interested in reducing the redundancies, why we need ggefilter design, and the other is the prefilter design for one of

introduce redundancy here. The answer here is two-folghe 2 wavelets obtained by Chui and Lian in [20].
First, proper overcomplete (or redundant) transforms plus

vector quantizations might perform better than nonredundant _ .

transforms. This suggests that including redundancy in the GeneralN’: Wavelet Prefilter Design

transform might not be a bad idea due to its better tolerance ofAlthough, for the general prefilter bank in Fig. 3 (i.e.,
noise than nonredundant transforms. Second, from our numeeneralK), the interpretation in the previous section does not
cal examples, the energy compaction with this new prefilteririgld, the design of a prefilter bank (w) can be done using the
is better than the one with DaubechiBg wavelet transform same criterion given in [1], wher& = N. In the following,
after the nonmaximality of the decimation in prefiltering hasie focus on the case df = 1 and use the interpretation in
been taken into account. Section Il to design the prefilter bank(w). Moreover, we are
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Fig. 3. General prefiltering: Decomposition and reconstruction.
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Fig. 4. Pre/post filterbank.

only interested in designing FIR prefilter banks. The lowpasghereu, = (u,1,...,u,.n) and the norm of the vectom,.
and the orthogonality conditions (2.16) and (2.18) will be useis 1, i.e.,
Due to its orthogonality, any FIR prefilter bank(w) can

: N
be factorized as (see, for example, [33], [34]) Z | U/rl|2 -1
=1
Ar(w) A1(0)
. . From the matrix dilation equation, we have
=U,(w) - U(w . 3.1 - 2
| o ) G 3:(0) 3:(0)
An(w) Av(0) .| =mo| - . (3.4)
where - -
¢ (0) ¢n(0)
al - When H(w) is known, the vecto($(0),...,$x(0)) can be
2 40P =1 32 sl hen, the orth l he |
Pt solved. Then, the orthogonality and the lowpass property

(2.16) and (2.18) are equivalent to

and N N )
, AP =1 and > A(0)i(0) = 1. (3.5)
Un(w) = Ix + (7% = Dulu, (3.3) =1 =1

T
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The only constraint for the parametess; is that they need omtinue to decompose
to be of the unit norm for = 1,2,...,p. The parametep
determines the prefilter length and is called trder of the *

prefilter (A;(w))i=1,2,...~. When there is nd/.(w) term in

Cro, £m) Crox

(3.1), we sefp = 0, i.e., the order of the prefilter is zero. il A, ) | —
Additional conditions may be imposed on the above param-

eters. An important one is that.the combined fiIters'Ap(w)' A, ) Cﬁl'&k w
andH(w) need to be lowpass filters, and the combined filters H @) —
of 4;(w) and G(w) need to be highpass filters. The reason . :
for this condition is the same as what was proposed in [1], - G - c
. ! 0,k ,0,%
i.e., we need to keep the “lowpass” part and decompose it A ) - —»

again and again but quantize the “highpass” part and therefore

keep the “highpass” part as small as possible. This means the

“highpass” part needs to be the high-frequency part; otherwise,
£

Lo dig,

it will have a lot of energy. _w E&( Eﬂw
By thinking of the multiscaling vectors as the cascaded

version of the “lowpass” vector filteH(w), the new lowpass d, o Ay o

property (2.16) for the functiogy means the lowpass property B W) G ) —

for the combined filters of the prefilterd;(w) and cascaded
vector filtersH(w). Therefore, the above two lowpass condi-

tions [the new one (2.16) and the old one in [1]] somewhat A, W) EN’»” EN’»M
guarantee the lowpass properties of the all-approximation
multiwavelet transform coefficients;; for Jo < j < 0. f

The old lowpass condition in [1] is for the lowpass property X
of the first step decomposition_; ; and the new lowpass Qertize
condition in this paper is for the follow-up decompositions  Fig. 5. Combined filters of prefilters and multiwavelet filters.
c;r for Jo < j < —1. The old lowpass condition in [1] can
be stated as follows.
There areN combined filters ofd;(w) and H(w) and N B. Theory for 2 Wavelets
combined filters of4;(w) and G(w). They are Since there always exists a solution for (3.4), there exist
two real constants and b such that

~

Without loss of generality, we may assunj]@(o) = cp2(0)
for a real constant. Then, by (3.5)

N o o
Hw) 2> Hp@Ar(w), 1=12,...,N (36 a$1(0) +b¢2(0) = 0. (3.10)
k=1

and
N cA1(0) 4+ A2(0) = 1/¢2(0) =z, or As(0) =z — cA1(0)
Giw) £ G Arw), 1=12,...,.N (37) (3.11)
k=1
and
EZSpe(ct;\)/ely, Wr}ird{(fﬁ = (%lfk(_w))l\’?hl\’v fantd Gt‘r(w) — (14 ¢*)A}(0) — 22¢A1(0) + 2% —1=0, or
1k(w))nxn. Then, the prefiltering, the first step multi- T R
wavelet transform decomposition, and their combined filters A:(0) = zet vl +§ x (3.12)
can be shown in Fig. 5. l+e
The lowpass property of;(w) is wherez is an arbitrary constant. This implies that there always

exist solutions for (3.5).
N When matrixG(0) has full rank, the only solution for (3.9)
ZHz,k(W)Ak(W) =0, 1=12,...,N.  (38) is A4,(0) = A(0) = 0, which does not satisfy (3.5).
k=1 When matrix G(0) does not have full rank, there exist
solutions for 4;(0), I = 1,2 in (3.9), i.e., there exist two
real constantg/ and ¢ such that

The highpass property of¥;(w) is

N
> Gia(0)A0) =0, 1=1,2,...,N. (3.9)
=1 Clearly, there exists a solution for;(0) and A3(0) in
(3.11)—(3.13).

In conclusion the above four conditions [i.e., (3.1), (3.5), Now, the only condition left is (3.8). Although the existence
(3.8), and (3.9)] need to be imposed on the prefilter desigfithe zeroth-order prefiltdrd; (w), Az(w)) = (A41(0), A5(0))
given a multiwavelet. in (3.8) depends on the form ¢f4;(0), 45(0)) andH(0) (we
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will see later that there does not exist any zeroth-order prefilteolving (3.4) and (3.5), we have
that satisfies (3.8) for the GHM 2 wavelets, but there does exist

for one of the 2 wavelets obtained by Chui and Lian in [20]), B V2 £33 — 22 d A Tz FV3—a?
we may analyze first order prefilters. In this case 41(0) = 3 an 1(0) = 3
' (3.16)
<ﬁ1 EZ; ) = <Ig + (e = 1) <Z$Z ) (cosf,sin 9))
2 A1(0) wherez is a real constant withz| < +/3. The condition (3.9)
L 3.14) implies
<A2( )) (3.14) fme

and VZA5(0) = A,(0).

Ai(m)\ _ [—cos26 —sin20\ [ A;(0)
Ao(m) ) \—sin20  cos20 J\ A2(0)
where 8 is an arbitrary angle.

For the same reason as before, when mdf#ix) has full AL(0) = @ and  Ay(0) = @

Therefore, we solve ford;(0) as

rank, there are no solutions for (3.5) and (3.8). Therefore, we 3
assume that matrilI(r) does not have full rank. Then, there
exist two real constants,v such that Then, the prefilters in (3.1) can be written as
uAy (7() + UAQ(’]T) =0. A (w) %
- 3 3.17
By (3.14) <A2(w)) Up(w) - Uh{w) = (3.17)
(vA2(0) — uwA;1(0)) cos(20) = (uA2(0) + vA;(0))sin(26). where
Thus, there exists an angte such that the above equation
holds. This proves the following theorem. . Up(w) = Ip + (e — 1)<u,,1 )(url,mz)
Theorem 1: There  exists a  first-order  prefilter Ur2

(4;(w), A2(w)) that satisfies all conditions [i.e., (3.1),

(3.5), (3.8), and (3.9)] if and only if none of matric#(x) with 2, + u2, = 1 for two real constants; and u,. It

and G(0) has full rank. is clear that (3.8) implies that the orderin (3.17) must be
As pointed out by one of the referees of this manuscript, tiggeater than or equal to 1. Since matridd$r) and G(0)

condition in the above theorem always holds if a constant cela not have full rank, by Theorem 1, there exists a first-order

be expressed by a linear combination of the translatés— k)  prefilter satisfying the conditions. Let us see what it looks like.

and ¢»(t — k) of two scaling functionsp (¢) and ¢2(¢).

Al(w)> < —jw <C0$9) . )
—(r jo _ 1) 0, sin 0
C. Design Examples for the GHM 2 Wavelets <A2(w) 2+ (¢ M sing J(cost:sind)

We first want to see the Geronimo—Hardin—Massopust 2 % <\/§ )L (3.18)
wavelets with the following matrix impulse responses of the L /3

vector filtersH(w) and G(w), respectively.

Ho <:\5}1/040 2_\3%8) i = <9% 1/(310 1(/)2>

where# is an angle. Thus

(h) - (s (V)

Therefore, (3.8) implies

H2:<9\/§/40 —3/2())’ Hs :< V2/40 8)
d
(D ) (iR )

(42 GR) o= ()

1 2
—V25in20 +cos260 =0, or 9:§arctan§. (3.19)

This proves the following theorem.
Theorem 2: The prefilter in (3.18) with thed in (3.19)

In this case s avs 7 satisfies all conditions we want, including the following.
22 ~
H(0) = <2\3/§ 5 )7 H(n) = <0 T4> 1) the lowpass property af(t), i.e., ¢(0) = 1
3 5 0 -3 2) the orthogonality ofp(t — n), n € Z and the orthogo-
G(0) = <2\0/§ —%) nality of the prefilter bank4;(w) for I = 1,2;
0 0/ 3) the lowpass property of the combined filte#g(w) for
From (3.4) I =1,2of Aj(w), ! =1,2, andH(w);
) 4) the highpass property of the combined filtétgw) for
$1(0) — v2¢5(0) = 0. (3.15) [=1,20f Aj(w), | = 1,2, andG(w).
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As mentioned earlier, the zeroth-order prefilter, i.e., without
any termlU,.(w) in (3.18), does not satisfy the above property 1t
3), although it satisfies all the rest, i.e., 1), 2), and 4). Notice
that the above zeroth-order prefilter was first used in [16}%0'5‘
and [17]. When the ordep of a prefilter increases, better
lowpass and highpass combined filtet5(w) and Gi(w),
respectively, may be expected, and the length of a prefilter o ' L : . -

0 05 1 15 2 25 3 3.5
also increases. The final version of the two prefilters in (3.18) frequency
can be expressed as 1
2 1 L
Al(w) = £Sir129 — ——=sin26 08
V3 2V/3 =l |
V2 o, 1 ' =
+ | —=cos“f + ——=sin20 | 7% 3.20 4l ]
<\/§ 2\/3 ( ) 0.4
1 . 1 2 0.20 075 ; 1‘5 é 2‘5 (; 35
Ag(w) = —% sin 260 + %COS 0 'frequency ’ .
+ < L inoo + L 29) —Je (3.22) @
—= S11 —=S1n c . .
\/6 \/3 15 . . .

D. Another Design Example

|
The second example of 2 wavelets is obtained by Chui ané
Lian in [20]. The matrix impulse responses are 0.5

H _1 1/2 1/2 H _1 1 0 0 ) ) ) ‘ l ,
0_2 _\/7/4 _\/7/4 ) 1—2 0 1/2 05 1 15 2 25 3 35

frequency

iAo e

(=]

and 5
G (12 -1/2 a1 0 Fost
79\ 1/4 174 )0 TrT 200 V7/2
G = 1 <—1/2 1/2) o , , , ‘ ) )
2= 3 . . A . .
2 _1/4 1/4 0 0.5 1 1 Sfrequency2 2.5 3 3.5
The multiscaling and multiwavelet functions are supported in (b)
[0,2] and have symmetry and certain smoothness. It is cleag. 6. Combined filters of the GHM 2 wavelets without prefiltering. (a)
that [Hi(w)]. (b) [Gi(w)].
oy~ L(2 0 o L0 0
(0) = 2\ 0 l%ﬁ ’ (m) = 5\0 _1+2ﬁ prefiltering in [1] [Fig. 7(a) and (b)]; new orthogonal prefilter-
1/0 0 ing in Theorem 2 [Fig. 8(a) and (b)].
G(0) =5 1+V7 |-
2\0 5

IV. NUMERICAL EXPERIMENTS

jonditii)ns I(S.i)_ and (3.&;) implyh thé(ljl‘l;go) :Ail aTj In this section, we want to see the performance of our new
(2((()()))_140.(0;]) t_|s (iagfiaflrsazerostat-i(;;iees Eé‘g)’ AQ\gw))oi;te prefiltering scheme through some simple numerical examples.
A -\ Y = P he first test signal is the one hundredth horizontal line of

out by one of the referees of this manuscript, this r®S4fle cameraman image with si286 x 256, which is shown in

holds not qnly for the above Chui-Lian multiwavelets but f.of:ig. 9. Six experiments on energy compaction of the following
other multiwavelets as well as long as one of two scallrgqx transforms are done. The first transfofy is the GHM
functions is symmetric and the other of two scaling functionz<: wavelets without prefiitering The second transfdfinis

IS antisymmetric. the GHM 2 wavelets with the old zeroth-order orthogonal
_ _ _ _ prefiltering withe; = 1/(10v/3) andey = 7/(5v/6) in (3.29)

E. Numerical Simulations for the Combined in [1]. The third oneTg/Es the)Daubechieséi Wa\)/elets. The

Filters Hy(w) and Gy(w) forth and the fifth are the GHM 2 wavelets with our new
In this section, we want to illustrate the combined filtererthogonal prefiltering of the zeroth and the first order, respec-

Hi(w) and Gy(w) for I = 1,2 for the GHM 2 wavelets. tively. The sixth transforn¥y is the Chui-Lian multivavelet

Three sets of these combined filters are illustrated: withowinsform in Section IlI-D with the zeroth-order prefiltering

prefiltering [Fig. 6(a) and (b)]; old zeroth-order orthogonal4;(w), A2(w)) = (1,0). Two step decompositions, i.ely =
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12 T . ; . T . 1 . . . . . T
WL i 0.8F 1
06f i
Zos} . z
T o4 |
0.6} 1 0ol .
0.4 . . . . . . 0 . . : . . ;
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 as
frequency frequency
r . T T T . 0.8 . . T T . r
1+ _
06k 1
Tost . T
02 E
o . . . . . . 0 . . . . . .
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
frequency frequency
(@) (a)
1.5 T : . : . T 0.4 . . T T . T
0.3} E
1+ |
= 202} ]
(O] (6]
05F J
0.1} J
0 . . : . . A o . . . . . .
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
frequency frequency
T ] 0.8} :
5 06} :
g 0.5 1 (‘?)‘ 0.4}F 4
0.2t ]
0 . . . . . . o . . . . .
0 0.5 1 15 2 25 3 35 0 05 1 15 2 25 3 35
frequency frequency
(b) (b)
Fig. 7. Combined filters of the GHM 2 wavelets with the old zeroth-ordeFig. 8. Combined filters of the GHM 2 wavelets with their first-order
orthogonal prefiltering in [1]. (a)H;(w)|. (b) |Gi(w)]. orthogonal prefiltering. (@)H;(w)|. (b) |Gi(w)].
—2 and J = 0, in the first three transforms are performed, ., . ___ ongmalsignal .

where the lowpass part of the transformed signal is of length
64, whereas the bandpass part is of length 192. Since our new
prefiltering is nonmaximally decimated and the signal size in '®f
the discrete multiwavelet transform domain is twice of the
input signal (or the output signals of the first three transforms), so
three step decompositions, i.ep = —3 and J = 0, of the
discrete multiwavelet transform with our new prefiltering are
performed for the last three transforms, where the length of °
the lowpass part of the transformed signal is also 64, whereas
the length of the bandpass partsis2 — 64 = 448. Therefore,  -s0
we have the following energy compaction ratio definitions.

The energy compaction ratioes for the first three transforms, |
Ty for k = 1,2,3 are defined by

_ 272;665 ly[n]|? 189 50 100 150 200 250 300
27210_—61 y[”]|2 Fig. 9. First test signal.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on November 26, 2008 at 14:55 from IEEE Xplore. Restrictions apply.



XIA: NEW PREFILTER DESIGN FOR DISCRETE MULTIWAVELET TRANSFORMS 1567

decomposition by multiwavelet transfarm decomposition by Daubechies D4 transform
100 T . T T T 300 T T T r T
501 g 200 1
0 1 100} 1
-50 1 of 1
-100 g -100 g
-150} 1 ~200 g
-2001 1 -3001 R
-250 1 -4001 1
—300 1 L ! . 1 —500 L L L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Fig. 10. Decomposition of the first test signal using the GHM 2 waveletsig. 12. Decomposition of the first test signal using Daubechies
without prefiltering. wavelets.
decomposition by multiwavelet transform ™ |
300 . § N . . decomposition by multiwavelet transform
150 T T T T T
250 1
100 1
200 .
50 1
150 :
of ]
100 R
-50 4
50 1
-100 E
0 4
-150 1
-50F 1
-200 .
~100 ) \ . . .
0 50 100 150 200 250 300 -250 L L L

0 100 200 300 400 500 600
Fig. 11. Decomposition of the first test signal using the GHM 2 wavele

with the old zeroth-order orthogonal prefiltering in [1]. Eg. 13. Decomposition of the first test signal using the GHM 2 wavelets

with the new zeroth-order orthogonal prefiltering.

TABLE |
ENERGY COMPACTION RATIO COMPARISON FOR THEFIRST TEST SIGNAL TABLE I
ENERGY COMPACTION RATIO COMPARISON FOR THESECOND TEST SIGNAL
r

GHM 2 wavclets without prefiltering 0.1374 r
GHM 2 wavelets with the old Oth order orthogonal prefiltering in [1] | 0.1247 Daubechies D, wavelets 0.0110
Daubechies D, wavelets 0.1123 GHM 2 wavelets with the new 1th order orthogonal prefiltering | 0.0071
GHM 2 wavelets with the new 0th order orthogonal prefiltering 0.0896 Chui-Lian 2 wavelets with the Oth order orthogonal prefiltering | 0.0065
GHM 2 wavelets with the new 1th order orthogonal prefiltering 0.0722
Chui-Lian 2 wavelets with the Oth order orthogonal prefiltering 0.0944

the zeroth-order orthogonal prefiltering for the Chui-Lian

wherey[n] are the signals in the transform domain. The enerdgyultiwavelet is shown in Fig. 15. Their energy compaction
compaction ratioes for the rest three transforms, i.e., with thatioes are listed in Table I.

new prefiltering, are defined by The second test signal is the two hundred and fiftieth
512 5 horizontal line of the Einstein image with SiZ56 x 256.
= ET})TQGOM The original signal, the transformed signal with transfdfpn

> e [yn]? (DaubechiesD, wavelets), the transformed signal with trans-

The transformed signals with the first three transforms al@m 75 (the GHM 2 wavelets with the first-order orthogonal
shown in Figs. 10-12, respectively. The transformed signdlggfiltering), and transform signal with transfoffy (the Chui-
with the new orthogonal prefiltering of the zeroth- ordekian 2 wavelets with the zeroth-order orthogonal prefiltering)
and the first-order for the GHM multiwavelets are shown iare shown in Figs. 16—-19. Their energy compaction ratioes are
Figs. 13 and 14, respectively. The transformed signal witisted in Table Il with the same definitions as above.
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decomposition by multiwavelet transform
150 T T T T T

100
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_250 ) ) ' ' L
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600 T T T T T

500 b

400 b

200 -

100 i

-100 b

200 L t n I L
0 50 100 150 200 250 300

Fig. 14. Decomposition of the first test signal using the GHM 2 waveletsg. 17. Decomposition of the second test signal using Daubechigs

with the new first-order orthogonal prefiltering.

100

50

-50

-100

-150

-200 ~

-250 b

-300 B

_350 L L It L L

0 100 200 300 400 500 600

wavelets.

300 T T T T T

250

150 4

100 —

50 1

_50 1 A L 1 1
0 100 200 300 400 500 600

Fig. 18. Decomposition of the second test signal using the GHM 2 wavelets

Fig. 15. Decomposition of the first test signal using the Chui-Lian 2 waveletdth the new first-order orthogonal prefiltering.

with the new zeroth-order orthogonal prefiltering.

140 T T T T T

130 T

120

100 4

S0 R

80 R

701 b

S0 b

o .
0

"
50 100 150 200 250 300

Fig. 16. Second test signal.

A better energy compaction with the new orthogonal pre-
filter than with others can be seen from the above tables.

V. CONCLUSION

In this paper, we have introduced a new prefilter design tech-
nigue for discrete multiwavelet transforms. The new technique
is based on approximating a function with the lowpass property
and the orthogonality of their translations by using linear com-
binations of multiscaling functions and their translations. The
new prefiltering is orthogonal but not maximally decimated. It
deals with all decomposition steps for discrete multiwavelet
transforms, whereas the prefiltering in [1] only focuses on
the first step decomposition. The decimation nonmaximality
allows one to have more freedom in designing a prefilter so
that more desired conditions on the prefilters and the combined
filters of the prefilters and multiwavelet vector filters are
satisfied. Our numerical examples show that a better energy
compaction ratio with the GHM 2 wavelets and the Chui-Lian
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When f is bandlimited with bandwidtl2’#, the error can be
simplied as

2

| / ‘f(t) = 027227t — )| dt

| R Ler(elE) e

Notice that ¢(0) 1. When J is large enough and the
bandwidthW of the signalf is much smaller thag”/r, i.e.,
1 W < 277, then

: / ‘ F#) = 0,272¢27t —n)| dt

- . . ; . . W
100, 1

100 200 300 400 500 600 4 |f(w)|2 <1 B ‘(;)(;—J)‘Q> o

27 W

= 0.
Fig. 19. Decomposition of the second test signal using the Chui-Lian 2

wavelets with the new zeroth-order orthogonal prefiltering. o
This is because(w/27) ~ 1 for large J for |w| < W.

2 wavelets with the new orthogonal prefiltering than the one
with the D, wavelet transform is achieved. This suggests the
potential applications of discrete multiwavelet transforms in The author would like to thank the referees for their useful

image compression/denoising. comments and suggestions that have improved the clarity of

It is known that any nonredundant orthogonal transforfis manuscript.

ACKNOWLEDGMENT

keeps the energy. For example, the error energy after the
guantization in the transform domain in the compression is
equal to the error energy in the reconstruction domain i "
the decompression. This no longer holds for the redundant
prefiltering/postfiltering studied in this paper. In the case
when the quantization errors are random, it can be easilg;]
shown that the error energy in the reconstruction domain in
the decompression is one fourth of the error energy in th&l
transform domain in the compression.

(4]

APPENDIX -

The error
(6]
F#) = 0,272¢(27t — n) [7]
[8]

where

[0
by = /f(t)2‘]/2</>(2‘]t —n)dt [10]
[11]

can be estimated as follows. In the Fourier transform domaiﬁz]

the L? error can be expressed as [13]
2
/ ‘ 18 = 3 0,2726(27t — )| dt 4]
n [15]
27 [z y y [16]
/5 [ [F270) = ) Y b+ 20m)

27

n [17]
2

x f(27(w - 2n7))| dw. (18]
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