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New Precoding for Intersymbol Interference
Cancellation Using Nonmaximally Decimated
Multirate Filterbanks with Ideal FIR Equalizers

Xiang-Gen Xia,Member, |IEEE

Abstract—In this paper, we propose a new precoding method  iii) precoding techniques, such as Tomlinson—Harashima
for intersymbol interference (ISI) cancellation by using non- (TH) precoding [7], [8], trellis precoding by Eyuboglu

maximally decimated multirate filterbanks. Unlike the existing ;
precoding methods, such as the TH and trellis precodings, the and Forney [9], [10], matched spectral null precoding

new precoding in partial response channels [12], and other precoding
i) may be independent of the ISI channel; schemes, for example, [13]-{17] and [40].
i) is linear and does not have to implement any modulo  The basic idea for DFE is that once an information symbol
operation; has been detected, the ISI that it causes on future symbols may

iii) gives the ideal FIR equalization at the receiver for any FIR . ; .
S| channe! including spectral-null channels: be estimated and subtracted out prior to symbol detection. DFE

iv) expands the transmission bandwidth in a minimum usually consist§ of.a fgedforward .fil_ter and feedback filter.
amount. The feedback filter is driven by decisions of the output of the
The precoding is built on nonmaximally decimated multirate detector, and its coefficients are adjusted to cancel the ISI on
filterbanks. Based on multirate filterbank theory, we present the current symbol that results from past detected symbols. The
a necessary and sufficient condition on an FIR ISI transfer ¢ qefficient adjustment may be done via a linear equalizer with
function in terms of its zero set such that there is a linear FIR LMS algorith Th f1h iterati lqorith
N x K precoder so that an ideal FIR equalizer exists, where algorithms. The convergence o gsg iterative aigor msl
the integers K and N are arbitrarily fixed. The condition is are dependent of the channel characteristics. When a channel is
easy to check. As a consequence of the condition, for any givenspectral null or frequency selective fading, these algorithms are
FIR ISI transfer function (not identically 0), there always exist yery slow and, therefore, become computationally expensive.
such linear FIR precoders. Moreover, for almost all given FIR - 1,0 orformance of the existing linear equalizers significantly
ISI transfer functions, there exist linear FIR precoders with size . .
N x (N = 1), i.e., the bandwidth is expanded byl /N . In addition degrades over frequency selective fadlng _cha_nnels. AIth(_)ugh
to the conditions on the ISI transfer functions, a method for the DFE has better performance than the existing linear equalizers
design of the linear FIR precoders and the ideal FIR equalizers when the frequency fading is in the middle of a passband,
is also given. Numerical examples are presented to illustrate the it qoes not offer much improvement in other fading cases.
theory. For more details, see, for example, [3] and [35]. In post
equalization techniques, there are many research results (see,
|. INTRODUCTION for example, [18]-[29] and [36]-[39] on blind equalizations

NTERSYMBOL interference (ISI) is a common problerﬁNhere_ ch_annel chgracteristics are assumgd unknown. In blind
in telecommunication systems, such as terrestrial televisigfualization techniques, there are approximately three groups
broadcasting, digital data communication systems, and celluffrresults:
mobile communication systems. The main reasons for the ISli) high-order statistics techniques;
are because of high-speed transmission and multipath fadingi) second-order cyclostationary statistics techniques with
There have been considerable studies for these problems, such oversampling;
as [1]-[29] and [33]-[40]. These studies can be primarily split i) antenna array (smart antenna) multireceiver techniques;
into three categories: where there is a considerable amount of overlaps between ii)
i) post equalization, such as least-mean-squared (LM&)d iii).
equalizer and decision feedback equalization (DFE), for A block diagram for TH precoding is shown in Fig. 1, where

example, [1]-[3], [18]-[29], and [36]-[39]; the basic idea is to equalize the signal before transmission.
if) multicarrier modulation to increase transmission symWith TH precoding there are two drawbacks: i) The transmitter
bol length, for example, [4]-[6]; needs to know the channel characteristics, and ii) the precoding
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Fig. 1. TH precoder.

(b)
Fig. 3. Blocking and unblocking.
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Next, we want to find brief solutions for these

::—*' ayin |mlyx it n guestions. WhenK = 1,Go(z) = 1,Gi(z) =
' = = Gn-1(z) = 0, the precoding scheme in Fig. 2 is
. . . equivalent to the fractionally spaced equalizer studied, for

; A example, [36]-[39], where the receiver needs to sample a
*. J[ By I,‘.;j_._liﬂ ]_.‘_H. 5 I_.f signal N times faster than the baud sampling. Whign= 1,
' the precoding concept has appeared in [39] by Tsatsanis and
Giannakis, where the precodéf(z) = ¢;,l =0,1,---, N—-1
Sigra Pmcoding channel  Aecever fOr N constantse; was used. As we can see, the case of
Fig. 2. Nonmaximally decimated multirate filterbank in a communicatior‘lK = 11is a very special c_ase In-our p_reC(_)de SCh_eme’ and
channel with ISI. moreover, our new precoding scheme in Fig. 2 provides other
potential precoders?(z),! = 0,1,---, N — 1 rather than
. . . only constants;, which allows one to search the optimal one
shgplng. There are also similar drawbacks about this appro h respect to an individual channel.

i) The transmitter also needs to know the ISI channel \whenk > N and there aréV interference channels instead

characteristics. of a single channeH(z) in Fig. 2, a detailed analysis was
||) The trell_is shaping depeno!s on the ISI chann_el. given by Nguyen [31]. WhenkK > N, as mentioned in
iii) The trellis precoding technique may not be suitable fo31] PR is impossible, but partial alias cancellation filterbanks

spectral-null channels either. were proposed in [31]. The applications discussed in [31] are

In the matched spectral null precoding scheme [12] in partigl wide-band radio communications, where only part of the
response channels, certain error control codes are chosegigmal frequencies is of interest to the user. In this paper,
match the spectral nulls of partial response channels in ordeiie are interested in applications in the ISI channels with PR
lose less signal information through the channel. This approagjstems in Fig. 2 and, therefore, the casekbf< N. This
is mainly for magnetic recording systems. also implies that unlike the existing precoding techniques, the
We now propose a multirate filterbank as a precoder befaiew precoding expands the transmission bandwidth, which is
transmission (shown in Fig. 2), whefeX indicates downsam- what we lose for the new precoding method, and fortunately,
pling by K, and N indicates upsampling by, i.e., inserting we will show that the bandwidth expansion can be as small
N — 1 zeros between two adjacent samples, &) is the as possible in theory.
ISI transfer function. Later, we will see a multirate filterbank An intuitive way to reduce the ISI generated from a lowpass
decoder for the receiver to eliminate the ISI. If input signal/(») is to smoothly interpolate:[n] with a large enough
z[n] in Fig. 2 can be completely recovered from the receivasimber of interpolations between samples a¢f] so that
signal £[n] through an FIR linear system, we call that thehe interpolated one has the lowpass property. However, two
system in Fig. 2 has perfect reconstruction (PR) or an Filtawbacks about this approach may occur. One is that it
ideal linear equalizer. In what follows, we use “precoder” angsually requires a large amount of increasing of data rate

“multirate filterbank” interchangeably. (number of interpolations between samples). The other is
_ With the precoder proposed in Fig. 2, there are three quesat a good frequency band structure for a nonlowpass, such
tions to be answered: as bandpass, filtef(z) is required for PR. In this paper,

i) What is the condition onH(z) such that there existswe want to solve the above three problems systematically.
a multirate filterbank withV channels and decimationGiven two integersd < K < N, we present a necessary
by K in Fig. 2 so thatc[n] can be recovered fromn] and sufficient condition (see Theorem 1) on an FIR filter
through an FIR linear system? H(z) such that there exists an FIR nonmaximally decimated

ii) If the condition onH(z) in the first question is satisfied, multirate filterbank withV channels and decimation ldy so
how does one design a multirate filterbank in Fig. 2 tthat «[n] can be recovered froni[n] in Fig. 2 with an FIR
eliminate the ISI? synthesis bank. The condition we found is basically very weak.

iii) If both of these two problems are solved, how does thia fact, it can be proved that for any given FIR filtéf(z)
receiver recover the input signaln] from the received not identically O, there always exists an FIR nonmaximally
Z[n]? decimated multirate filterbank in Fig. 2 for recoveringn]
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Fig. 4. Equivalence of an LTI system and its blocked version.

&[n]

from Z[n]. A nonmaximally decimated filterbank precoder !
>

requires a higher transmission rate with the increasing amouﬁ‘ﬂ, Blocking with| ] Unblocking with
block sizeK | .+ | G(z) H(z) unblock size N

v

proportional to the differenceV — K. It is clear that the

smallestV — K is 1. In other words, a multirate filterbank >

with N channels and decimation by — 1 has the smallest T > >

increasing of a transmission rate, and therefore, it is usually T T

desired. We show that a multirate filterbank wih channels K many

and decimation by — 1 exists in Fig. 2 for PR if and only if Nmany N many

any two sets of zeros of the polynomiats(-W},) of »~* @)

for { = 0,1,.--, N — 1 do not intersect, wheréd¥y =

e~ ?V=1I/N_ This condition is true almost surely. Various — —> o

examples are presented. With the above conditions, we also —] pogerd W HAGE - Unibiocking wih

derive some results on the submatrices of a pseudo-circulant :

polynomial matrices [32]. Constructions of FIR nonmaximally |

decimated multirate filterbanks and their FIR syntheses for T

the reconstruction for a givel(z) in Fig. 2 are provided. K many T

Numerical examples are presented to illustrate the theory,

which also indicates that the technique we developed for

eliminating the ISl is robust. ()
This paper is organized as follows. In Section Il, we Fig. 5. Equivalent systems of the system in Fig. 2.

present necessary and sufficient conditions/ix). We also

discuss the construction of nonmaximally decimated multiraj:,  nblock sizeV is wn] = w[l] whenn = NI—F for k =

filterbanks for eliminating ISI. In Section Ill, we presenty ; .. n _1 |n particular, whenu[n] = (y[Nn], y[Nn —
examples and the reconstruction method. In Section 1V, vﬁs . 7y[Nn N4 1T thénw[n] =y, )

consider applications of the ISI cancellation. Let H(z) = 3, h[n]Jz~" and H;(z) be its jth forward
polyphase component withV channels, i.e.,H;(z) =

Il. A NECESSARY AND SUFFICIENT CONDITION Yo h[Nn 4 j]z7,0 < j < N — 1. With Hj(2),0 < j <

. . - ... N —1, we form the followingN x N pseudo-circulant matrix
In this section, we study necessary and sufficient cond|t|oilf(7) (see [30], [32])

on the ISI transfer functiongf(z) in Fig. 2 such that there

A[n]

N many

exists a nonmaximally decimated multirate filterbank with Ho(z) 2z 'Hy_i(z) -+ 2z 'Hi(z)

N channels and decimation i and such that an ideal Hi(z) Ho(z) o 27 Ha(2)

FIR linear equalizer exists. We also present a design methagd(») = : : :

for an FIR nonmaximally decimated multirate filterbank for Hy_o(2) Hy_3(2) ;)
eliminating the ISI. Throughout this paper, boldface lower- Hy_1(2) Hy_o(2) Ho(z)

case letters denote vector-valued sequences, capital letters 2.1)

denote transfer functions, and boldface capital letters denote

function matrices (or polynomial matrices). We first consider Then, we have the equivalence for an LTI system and

the case wheri{’ and N (0 < K < N) are two arbitrarily blocking process shown in Fig. 4, whek(z) is from (2.1)

fixed integers. and is called thélocked versiorof H(z); see [30] and [32].
Before we go to the results, let us see some fundamental§or 0 < [ < N — 1, let G ;(z) be the jth forward

on blocking and linear time invariant (LTI) systems. We thepolyphase component of theh filter G;(z) in Fig. 2 with K

convert the system in Fig. 2 into a single multirate system. Tlebannels, i.e.(7; ;(z) = >, gi[Kn + jlz=", whenGi(z) =

outputy[n] shown in Fig. 3(a) of the blockeg{n] with block " g[n]z=", for0 < j < K — 1. Let G(z) be the polyphase

size N is the vector-valued signat[n] = (y[Nn], y[Nn — matrix of the filterbank Go(z), G1(2), -+, Gn_1(2) in

1], -+, y[Nn = N +1))T, where? indicates transpose. Con-Fig. 2: G(z) = [G; ;(2)]nxx. Then, the system in Fig. 2

versely, the outputv[n] shown in Fig. 3(b) of the unblocked is equivalent to the one in Fig. 5(a), which is also equivalent

vector-valued signaiv[n] = [wo[n], wi[n], ---, wy—1[n])¥ to the one in Fig. 5(b).
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Therefore, the PR of[r] from 2[n] in Fig. 2 is equivalentto ~ We, thus, consider the PR #1(2")G(z"). By (2.5)
the one of the linear multirate systeHyz)G(z) in Fig. 4(b).
Notice thatH(»)G(z) is anN x K function matrix ofz~!. To H(zY)G(Y) = [WHAR)] V) WLA(Z)G(ZY). (2.6)
analyze it, we need a property on the pseudo-circulant matrix
H(z) in (2.1). In fact,H(z) can be diagonalized as follows. | is clear thatf W4, A(2)]! = A(2~1)W y, which is parau-
let Wy be the N x N DFT matrix, i€, e N
Wa (W]{zt)ogjjkgjv_l, where Wy = G_Qﬂ\/?l/N.
Let A(z) be the diagonal matrix

113

G(2) 2 WiA(2)G(Y).
A(z) 2 diag (1, 271, .-, 2~ VHY),
Then, the PR ofH(z)G(z) is equivalent to the one of

Notice that the transpose of the matrH(z) is the for- v (;)G(z). Notice that the size of the matri¥ (z)G(z) is
ward polyphase matrix of theV filters H(z), »~*H(z), N x K.

-+, 27N+ H(z) in N channels On the other handV (z)G (=) has an FIR inverse equivalent
[H(2), 2 YH(z), -, 2N H(2)] = to that of the greatest common divisor (gcd) of all determinants
(1, 2L, -, N H(EY) of all K x K submatrices of théV x K matrix V(z)G(z)

_ z _ that is cz—¢ for a nonzero constant and an intege; see,
Replacingz by zWy for I = 0,1,---, N — 1 in the above for example, [32]. SinceV(z) is diagonal and of the form
equality, we have the followingV x N matrix multiplications (2 4), the above condition for the PR can be simplified further
H(z) = Wi A(2)H(z") (2.2) as follows. _
where we have (2.3), shown at the bottom of the page. Let Without loss of the generality, we assume
V(2) £ diag [H(z), H(zWx), ---, HEWY ™). (2.4) r
(2 =

N _ —k
Then, the matrixH(z) in (2.3) can be rewritten as H(z) = kzo hiklz

H(z) = V(z)WiA(z).

This completes the following diagonalization #f(>") by Where h[0] # 0, h[P] # 0, and P > 1. Let 5 de-
combining (2.2) note the set of all zeros of the polynomial(z) of »71:

A .
H(ZN) _ [W}k\rA(Z)]TV(Z)W}k\rA(Z) (25) S = {Zl, 29, 7, Zp} Wlth. H(Zl) -I 0, Wherezl, 1 <1<
P may not be necessarily distinct. For a constantlet

where ! means the inverse. S 2 {cz1, cz ezp}, which is a rotated version of
. . . = 21y CZ2y vouy CEP 1y .
From now on, we assume all filters in Fig. 2 are FIR, and t%e have the following result for the PR.

PR of the system in Fig. 2 means the overall system functlon_l_heorern 1: There exists an FIR nonmaximally decimated

H(2)G(z) has an FIR inverse. . . C L
The PR of the multirate systerfi(z)G(z) is equivalent multlrate_ fllterbank in F|g._2 su_ch that the system in Fig. 2 has
an FIR ideal linear equalizer if and only if

to the one of the multirate systeB(z")G(zY). In fact, if
H(zM)G(z") has PR, then any input signd (z) can be
reconstructed fronH(z")G(2")X(z). Thus, X (2") can be N (SuUS,U - US,)=¢ (27)
reconstructed fronH (™ )G(2™)X (2Y) with an FIR synthe- =~ 0Sh<lz<- <lx<N-1

sis filterbank. In other words, an¥ (z) can be reconstructed

from H(z)G(z)X(z) with an FIR synthesis filterbank. ThiswhereS;, = WS, k= 1,2,---, K.

implies the PR ofi(z)G(z). Conversely, we assume the PR Theorem 1 tells us that there exists a multirate filterbank
of H(z)G(z), which is equivalent to that there exists an FIR Fig. 2 for the ideal linear equalization if and only if the
inverse, i.e., there is an FIR x N polynomial matrixQ(z) intersection of the unions of an§ sets of all V' rotated

such that zero sets ofS with anglesi2r/N,l = 0,1,---, N — 1 of
. the ISI transfer functionH (=) is empty. Whenk = N, the
Q(x)H(2)G(z) = Ik intersection in (2.7) contains at lea$t which is not empty.

This implies that wheri{ = NV, the system in Fig. 2 does not
have PR in the sense of nonexistence of FIR inverses. This
QN H(EMGEY) = Ik. is not surprising because any maximally decimated multirate
filterbank does not add any redundancy to the signal and,
It implies thatH(zY)G(z") has an FIR inverse (or PR).  therefore, does not have any error correction capability.

where I is the K x K identity matrix. Thus, we also have

H(z) z71H(z) e 2~ NLH(2)
.~ | HWN ZTYWSTH (W T NHW N H Wy
H(z)é ( . ]\) N . ( ]\) N . ( ]\) (23)
HEWYY o twEDE-DEawd-1y L Ny CN DO D gy
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Proof: We first prove the “necessary part.” Assume thdecimated multirate filterbank means the increase of the redun-
set dancy. If a multirate filterbank with less redundancy eliminates
the ISI, then the multirate filterbank with much redundancy

ﬂ (S USp U - Uiy ) # ¢ eliminates the ISI as well.

Osh<la< <l sSN-1 The proof of Theorem 1 also suggests a way to construct

This implies that the polynomialg[*_, H (W ) for all pos- a nonmaximally decimated multirate filterbank in Fig. 2 to
sible0 <1 < Iy < --- <l < N—1 has at least a common&liminate the ISI ofH (z). When H(z) satisfies the condition
zeroz. In other words, they have a common factor —z; L. N Theorem 1, to _have the. PR, it is good enough fo set
By the form of V(z)G(z) and the diagonality oV (z), the the Polyphase matrix of the filterbako(z), ..., Gv-1(z) in
polynomial [T"_, H (W) is a factor of the determinant of 79- 2 t0 be the one in (2.8), i.e.

the submatrix oiV(z)G(z) at the rowsly, Iz, - -+, lx. When Ix

l1, 1o, -+, g runoverallpossibl® <y <ls < -+ <l < G(z) = |:0(N—K)><K:|'

N — 1, the corresponding submatrices run over all possible )

K x K submatrices oV (z)G(z). Therefore, all determinants This precoder basically add¢ — K zeros for eact’ symbols

of all K x K submatrices oW (z)G(z) have at least a common (O samples). It is certainly not necessary, as long as the
factor =1 — 25!, no matter whaiGi(z) is. This proves that N x K polynomial matrixV(z)G(z) has an FIR inverse. Put

V(2)G(z) does not have an FIR inverse. the aboveG(f:) into the system in Fig. 5(b), and the overall
Let us prove the “sufficient part.” Assume (2.7) is true. W8yStém function becomes
construct ﬂ(z)G(z)
G(z) = {0 I } 28  =Fx()
(N—-K)xK B HO(Z) Z_lHN_l(Z) s Z_IHN_K+1(Z)_
whereO y_ o)y i is the all-zero(N — K) x K matrix. Then Hi(z) Ho(2) oo 2T HNy-gpa(2)
G_ 2) =WH5A(z G’ZN = W dia 1, Z_l, "',Z_K+1 é . : .
(2) N (_)jk (=) vdiag ( ) Hir(2)  Hicolz) - Ho(2)
=(27"Wy"")o<j<N-1,0<k<K—1. : : :
It is not hard to see that the determinant of thels, -, Ik LHy_1(z)  Hn_2(z) -+~ Hy_g(z)
row submatrix ofV(z)G(z) is (2.10)

K .
Uiy — (1424 K —1) By the proof of Theorem 1, when the condition (2.7) on
syt [ [ HEWR)2 (2.9) H(z) is satisfied, therF(z) in (2.10) has an FIR inverse.

= Conversely, ifH(z)G(z) in (2.9) has an FIR inverse, then
where0 < l; <ly < -+ <lg < N —1cyp,..1, IS the z[n] can be recovered from[n] in Fig. 5(b). Therefore, by
Vandermonde’s determinant of & x K submatrix of the Theorem 1, the condition (2.7) is satisfied. In addition, using
following NV x K matrix Corollary 1, we have proved the following corollary.
—" Corollary 2: The N x K matrix Fx(z) in (2.10) with
( N >0§j§N—1,0§k§K—1 0 < K £ N has an FIR inverse if and only if the condition

2.7) is satisfied. The system in Fig. 2 has an ideal linear
which is a nonzero constant. By (2.7), the gcd of all polync(é ) y g

o 4 ) qualizer if, and only if, the matri¥ x(z) in (2.10) has an
mials in (2.9) iscz~¢ for a nonzeroAconstamand an integer FIR inverse. IfFx (z) has an FIR inverse, thefix_,(z) has
d. This proves that the matri¥ (z)G(z) has an FIR inverse : ’

d. theref I h f an FIR inverse forK > 1.
and, therefore, completes the proof. We now consider two special cases. The first case is when

By the fact that K = 1. In this case, (2.7) becomes
N (S, USL, U -+ USy,,) C N Si=¢ (2.11)

0l <l < s <1 <N—-1
Sh< << <15 0<ISN—1

(Sll US[2 (G US[K)

0<ly <ly< o <Ly <N—1 By Theorem 1 and Corollary 2, we have the following result.

Corollary 3: There exists a multirate filterbank in Fig. 2

we have the following immediate corollary. with K = 1 for the ideal linear equalization if and only if

Corollary 1: If there exists an FIR multirate filterbank )
with NV channels and decimation bl in Fig. 2 so that the ged {H(z), H(zWx), -+, HEW{ ™} = c127®
system in Fig. 2 has an ideal FIR linear equalizer, then the;e .
also exists an FIR multirate filterbank witN channels and ' and only if
decimation byK — 1 in Fig. 2 for the ideal linear equalization, gcd {Ho(z), Hi(2), -+, Hy_1(2)} = coz™®
where K > 1.

Corollary 1 is not surprising. It is because that the decreasimgpere ¢; and ¢, are two nonzero constants, adg and ds
of the decimation rate fronk to K — 1 of a nonmaximally are two integers.
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The result in Corollary 3 coincides with the known result  xin]
for fractionally spaced equalizers, i.e., there are no zeros of—’_’l 1 I—’I 2 f
H(z) equispaced on a circle with angle-/N separated one
zero from another. From Corollary 3, we immediately have —>| 0 r—-DI 2 *
the following consequence.

Corollary 4: For any ISl transfer functio (z) not iden- @
tically zero, there always exists a nonmaximally decimated &ln]

— i

A[n]

l

multirate filterbank in Fig. 2 for the ideal linear equalization
of the system in Fig. 2.

The nonmaximally decimated multirate filterbank with —>[ 2 ‘ M o
channels and decimation l#¥ in Fig. 2 plays the coding role xIn]
in eliminating the 1SI generated from the 1SI chand&(z). (b)
We have already known thadt has to be less thaiW for PR. Fig. 6. (a) Transmission and channel parts. (b) Reconstruction.

In other words, the data rate has to be increasetV byK > 0
for eliminating the ISI. In practice, the smallest data ratgase, the output[r] in Fig. 2 is
expansion is desired, which 8 — K =1, or K = N — 1. )
We next want to study this case. &[n]: -, 2[0], 2[0), #[1], 2[1], ---.
Theorem 2: There exists an FIR multirate filterbank withClearly, Fig. 6(b) gives the reconstruction.
N channels and decimation by — 1 in Fig. 2 such that the  Example 2: H(z) = (14 271)(1 — z~1). In this case, the
system in Fig. 2 has an ideal FIR linear equalizer if and onbero setS = {1, —1}. When N is even,S, = Snj2 = S.
if S;N Sy = ¢, i.e., polynomialsH (zW}) and H(zW}) are By Theorem 2, it is impossible to recovefn] from #[n]
coprime for0 <1 #k < N — 1 in Fig. 2 for any FIR nonmaximally decimated multirate
Proof: Theorem 2 can be proved by the following sefilterbank with two channels. However, for any odd >
equations. 2,8 = {Wk,-Wk},0,< 1< N—1.Clearly, $; N Sy, = ¢
N_1 N_1 for 0 <1 # k £ N —1. By Theorem 2, we proved that
ﬂ <U S, ) _ ﬂ USI the system in Fig. 2 with the aboud(z) and the multirate
~ B filterbank G(z) in (2.8) with0 < K < N > 2 for odd N
k=1 =0 \l#l . : : . -
always has an ideal FIR linear equalizer. This also implies
= U (St N S). that a little increasing of the data rate in coding may eliminate
U7k the ISI generated from the ISI channel.
0 Example 3: Consider a linear phase lowpass filié( =) of
ngth 5 constructed from the Parks—McClellan algorithm of
e optimal equiripple FIR filter design technique. The filter is

0<ly <lg< o <In—1<N—-1

Let us consider the case when the ISI transfer functidﬁ
H(z) = a+ 27! with |a] = 1, i.e., the first-order case. In
this case, the zero s& = {—1/a}. For a generalV, S; = H(z)=3(1+2:71 42572 +2:° 4274, (3.1)
{-Wk/a},l =0,1,---, N — 1. Clearly, S$; N S}, = ¢ since , o
Wi # Wk when 0< [ # k < N — 1. By Theorem 2 and Its frequency and |mpuIS(=T responses are shown in Fig. 7. Its
Corollary 1, we proved the following resut. zeros and rotated zeros with angl@re shown in Fig. 8(a). Its

Corollary 5: Assume the ISI transfer functiodl(z) = zeros and rotated zeros with angles/3, 47 /3 are shown in
a + ==L in Fig. 2, where|a| = 1. Then, the system in Fig. 2 Fig. 8(b). One can see that all of them are disjoint. By Theorem

for the multirate filterbankG(z) in (2.8) always has PR for 2, the multirate filterbaniG (z) with N = 2 or V.= 3 gives

any integersk’ and N with 0 < K < N. thT’EPR Or tZ?CSySt?(;n in II_:ig. 2. h | filig f
Corollary 5 implies that any(> 0) amount of data rate xample 4: Consider a linear-phase lowpass fili(z) o

increasing in coding may eliminate the 1SI generated from alllspgth 9 also const_ructed from the Parks—McCIeIIgn a_lgorlthm.
first order ISI channel. This is because for any 0, there Its frequency and impulse response are shown in Fig. 9, and
exists a positive integel such tha) < 1 — (N — 1)/N < ¢ zeros and rotated versions are shown in Fig. 10. One can see

We then use thisV as the number of channels and— 1 as that with length 9, .the lowpass property is much better than the
the decimation ratio in the multirate filterbank in Fig. 2. "¢ \_N'th length 5 in Example 3, Qnd the rotate.d Zeros are also
disjoint. The lowpass property will be useful in applications
in denoising.
After we have discussed the possibility to eliminate the
In this section, we study some examples and also tH&l, the next problem is the reconstruction. Suppose an FIR
reconstruction ofz[n] from Z[n] in Fig. 2, given H(z) and nonmaximally decimated multirate filterbank is designed in
an FIR nonmaximally decimated multirate filterbank in Fig. Zig. 2, and it is able to eliminate the ISI generated frAtx).
where the system has perfect reconstruction. We first see sdie now want to construct another multirate filterbank for
examples. the receiver to reconstruct the original signgh] from the
Example 1: H(z) = 1+ z~1. By Corollary 5, one is able received onez[n].
to recoverz[r] from Z[n] when G(z) takes the form in (2.8) We consider a general nonmaximally decimated multi-
forany0 < K < N. ConsiderK = 1 and N = 2. In this rate filterbank G(z) in Fig. 5. By the above assumption,

Ill. EXAMPLES AND RECONSTRUCTION
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frequency response of H(z) zeros and their rotations
v v T T 4 T T T T T T T T T

: . . H 6 \x\
3 4 5 6 7 5 ok ,’ 1
impuise response of H(z) -9 \b xl
0.3 T T T T .§41> \\wo—x//
0.2t g o}
0.1} 9q -3t
a . . . . . . . AN
0 L i L L -5 -4 -3 -2 -1 0 1 2 3 4 5
0 05 1 15 2 25 3 35 4 real part
Fig. 7. Lowpass filterH (=) with length 5. (@
zeros and their rotations
4 T
we know that the overallV x K multirate system matrix
F(z) 2 H(z)G(z) has an FIR inverse. The problem is thento 3}
find its inverseF~1(z) in the sense thaF~!(2)F(z) = Ix.
Then,z[n] can be recovered bfF—1(z)z[n]. To find F~1(z), 2r 1
we use the Smith form decomposition technique [32] as | - |
described below. H «
It is known [32] that anyN x K polynomial matrix g o ! !
F(z), where all components are polynomials :0f!, can be g \g( /#
decomposed into a product of three polynomial matrigés), B Tk
A(z), and W(z):
2+
F(z) = U(z)A(x)W(z) (3.2)
-3t
whereU(z) and W(z) are N x N and K x K unimodular . . . L . . . .
matrices, respectively, andl(z) is diagonal with the form T = 2 4 e | 2 8 4 s
A(z) = [ARIDE), s A (2] ®
V O(N_K)XK Fig. 8. Length 5 filter: (a) Zeros marked by “o0,” their rotations with angle

= marked by “x.” (b) Zeros marked by “o0,” their rotations with angles/2
wherep is the normal rank oF'(z), \(z) divides \;y1(z) for and 4r/3 marked by “x” and “*,” respectively. Dashed line: the unit circle.
1=1,2,---, p=1, N(2) = Ay1(2)/A1(z) with Ay (z) =1, ; L ;
and A;(z),! > 1, which is the gcd of all the determinantsthe form_(13.4) OfF(f)l (see. Fig. 30), ;ts mversde S
of all the (I — 1) x (I — 1) submatrices off'(z). A square F7(2) =W (z)[diag (z*, 2, - -+, 2%%71)
polynomial matrix isunimodular means that its determinant OKX(N_K)]U—l(z). (3.5)
is a nonzero constant.

When F(z) has an inverse, we then haye= K and Fig. 11.

Ag1(z) = cz~¢ for a nonzero constant an(_j an INteger  Given a polynomial matrix, there is a systematic way to find
d. Thgrefore, wherF(z) has an inverse, the diagonal matri%.s smith form. Eor more details, see [32]
A(2) in (3.2) has the form

The reconstruction can be achieved by the diagram shown in

A gi Cdy —dy Cdgos 33 IV. APPLICATIONS IN THE ISI CANCELLATION
z)=aag(z z e, Z - . . . .
(2) 9l ’ T ) (3.3) We now consider the application for the ISI cancellation.

for K integersdo, dy, - -, dx—1. Using the above analysis,Exar_nple 3 in Section !II is used as the ISI transfer function.
we have that the overall system in Fig. 4 has the followingO" itS frequency and impulse responses, see Fig. 7. .

decomposition By the theory in Sections Il and I, and the properties of its

zero sets shown in Fig. 8(a), it is known that the nonmaximally

F(z) = H(2)G(2) = U(2)A(z)W(2) (3.4) decimated multirate filterbank with two channels and decima-

tion 1 and its polyphase matrix in (2.8) is able to eliminate

whereU(z) and W(z) are N x N and K x K unimodular the ISI. This implies that when we insert O between each two
matrices, respectively, and(z) has the form in (3.3). With samplesz[n], -- -, x[0], 0, z[1], O, - - -, which is the signal to
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frequency response of H(z) 4 zeros and their rotations
1F -
3F 4
05} 1 2 :
- 1 o ox- ~. B
o s et L | g ’ \
0 1 2 3 4 5 6 7 z e X
g o X x O 1 o 4
impulse response of H(z) g éz\ , /*
0.4 T T T T T T ' =40 O Loy X ]
0.3 i
2+ _
0.2r B
0.1} T T 1 _alb _
0 @ Q
~0.1 . . " L L . . -5 -4 3 2 - 0 1 2 3 4 5
1 2 3 4 5 6 7 8 real part
Fig. 9. Lowpass filterH(z) with length 9. @)
. zeros and their rotations
be transmitted, we can reconstrugt| from the outputi[n] of 4 - : , .  A— . .
the ISI transfer functio (). In this case, the overall system
transfer matrixF(z) is s * I
14252714272 ol
F(z)=: 4.1 1
( ) 9 2+2Z_1 ( )
Its inverse can be calculated as = x;x"*\& il
_ e °
F1(2)=9(=2,1.5+271). 4.2) g of - :o X o 1
i=
With the above inverse, we apply the reconstruction schemeg R& o /x’(
1 '~ > -
shown in Fig. 11 to the received signal. The simulation results ! ¢
are shown in Fig. 12 with the original signelln], the ISl trans- ol |
fer function in the frequency domain, the received sigifal
after the channel, and, finally, the reconstruction with mean _s} x §
square error 7.0704 10~7. In addition to the ISI, if there

is a random noise in transmission, the above reconstruction is 4————% p 5 p 5 P : 5

robust. A numerical example is shown in Fig. 13, where the real part

maximum magnitude of the additive channel white noise is (b)

0.05, whereas the one for the original signal shown in Fig. 2y 10. Length 9 filter: (a) Zeros marked by “0,” their rotations with angle

is 1. The mean square error for the reconstruction is 0.004r marked by “x.” (b) Zeros marked by “0,” their rotations with angle/2
By the property of zeros and their rotations shown iﬁnd 4r/3 marked by “x” and “*,” respectively. Dashed line: the unit circle.

Fig. 8(b), the above increasing of the transmission rate can

be reduced by using the nonmaximally decimated multirate Aln]

filterbank with three channels and decimation 2 in (2.8). In —> - z x[n]

other words, the rate 1/2 can be reduced to 2/3. In this case, 1

the overall system transfer matri(z) is 11
z'{ =
@

14227t 25271
F(z)=35 2427t 1+2271]. 4.3) 4».__J
2.5 24271

Its inverse can be calculated as shown in (4.4), shown at T T
man

the bottom of the page. Numerical simulations are given in

Fig. 14 without random channel noise and, in Fig. 15, with

additional channel additive white noise. One can see that the
reconstruction is also robust.

y K many

Fig. 11. Reconstruction.

_E_@7—1_% -2 68+130 —1+ -2 _ 34 _ 9% -1 _ 36 -2
—1 _ 35 35~ 35~ 35 35 z 35 z 35 35~ T35~
F1(z)=9 (4.4)
4,12 -1 _li_ 2 1 12 418 -1
7 7" 7 7" 7 7"
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original signal in time domain IS transfer function (frequency) original signal in time domain 181 transfer function (frequency)
2 1 2 1
1 0.8 1 0.8
0.6 0.6
0 0
0.4 0.4
-1 02 -1 02
-2 0 -2 0
0 50 100 150 0 2 4 6 8 [ 50 100 150 Q 2 4 6 8
received signal in time domain reconstruction in time domain received signal in time domain reconstruction in time domain
2 2 2
MSE=7.0704e-07 MSE=1.2927e-09
1 1 1 1
0 —W‘W’\*/\* 0 0 W/\/\/\/\/\/\/\/——""J\'\/\,\/\/\“ 4]
-1 -1 -1 -1
_2 -2 -2 -2
0 100 200 300 0 50 100 150 0 50 100 150 200 0 50 100 150
Fig. 12. Rate 1/2 multirate filterbank for the ISI cancellation without randorig. 14. Rate 2/3 multirate filterbank for the ISI cancellation without random
noise in channel. noise in channel.
channel random noise I1SI transfer function (frequency) channel random noise ISt transfer function (frequency)
0.05 1 0.05
0.8 08
| Il
‘ | 0.6 TR 0.6
0 l ‘ 0 ! ‘
TR\ 0.4 i I 0.4
0.2 0.2
-0.05 0 -0.05 0
0 100 200 300 ¢} 2 4 6 8 0 50 100 150 200 0 2 4 6 8
received signal in time domain reconstruction in time domain received signal in time domain reconstruction in time domain
2 2 2
MSE=0.004 MSE=0.0058
1 1 1 1
ov“ﬂﬂMMN"MWWUW 0 OW 0
-1 - -1 -1
-2 -2 -2 -2
0 100 200 300 0 50 100 150 0 50 100 150 200 0 50 100 150

Fig. 13. Rate 1/2 multirate filterbank for the ISI cancellation with additiondfig. 15. Rate 2/3 multirate filterbank for the ISI cancellation with additional
channel additive white noise. channel additive white noise.

Remarks: One can further reduce the data rate 2/3 by usirtge known one for the fractionally spaced equalizers when
a multirate filterbank in (2.8) withV > 3 andK = N —1. K = 1. The condition is not difficult to check when the
For simplicity, we do not go to higheN’s here. Another ISI transfer function is known. In particular, we obtained a
point that should be noticed is that the above ISI cancellatisimplified version of the condition for an FIR nonmaximally
technique is data independent. Although we use the Smith fotscimated multirate filterbank precoder with channels and
decomposition technique for the equalization, it is certainiyre largest decimation, i.e5 = N — 1, which corresponds to
possible and might be better that some existing equalizatigie case of the smallest bandwidth expansion in the precoding.
techniques, such as [23]-{29], [36], [38], are applicable.  The condition can be stated as follows: All rotations of the

zero set of the FIR transfer functioH (=) at anglesi2r/N
V. CONCLUSIONS fori =0,1,---, N — 1 are disjoint from each other. These

In this paper, we have studied nonmaximally decimaté@nditions are basically easy to satisfy. Thus, the approach
multirate filterbanks as precoders for the ISI eliminatiod) this paper suggests that the sampling rate thatvjg<
where eachk samples are expanded infé samples. When times faster than the baud rate for the receiver may be good
K =1, itis equivalent to the fractionally spaced equalizergnough. Moreover, the approach in this paper also suggests the
where the sampling rate & times faster than the baud ratgoossibility of other precoders besides the trivial one in (2.8)
in the receiver. We have found a necessary and sufficientthe constants in [39].
condition on the ISI transfer function for the existence of The new precoding method proposed in this paper differs
an FIR ideal linear equalizer. The condition coincides witfrom the existing precoding methods in the following aspects.
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It is reliable for any FIR ISI channel, including spectral-nulf19]
channels, may be independent of the ISI channel, does not
implement any modulo operations and is linear; however, i
expands the transmission bandwidth with a minimum amount
as a sacrifice. This paper provides a framework on the IEA]
cancellation using multirate filterbanks as precoders. Many
practical implementation issues still remain to be investigated
in the future. 22]

As a final remark, in this paper, the receiver needs to know
the ISI channel characteristics. Most recently, we have studigdl
precoding equalizations without knowing the ISI chann £4]
characteristics for the transmitter or the receiver in [41]—[463.
Particularly, ambiguity resistant precoders have been studi[gg]
in [41]-[44] to combat the ISI.

[26]
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