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New Precoding for Intersymbol Interference
Cancellation Using Nonmaximally Decimated

Multirate Filterbanks with Ideal FIR Equalizers
Xiang-Gen Xia,Member, IEEE

Abstract—In this paper, we propose a new precoding method
for intersymbol interference (ISI) cancellation by using non-
maximally decimated multirate filterbanks. Unlike the existing
precoding methods, such as the TH and trellis precodings, the
new precoding

i) may be independent of the ISI channel;
ii) is linear and does not have to implement any modulo

operation;
iii) gives the ideal FIR equalization at the receiver for any FIR

ISI channel including spectral-null channels;
iv) expands the transmission bandwidth in a minimum

amount.
The precoding is built on nonmaximally decimated multirate
filterbanks. Based on multirate filterbank theory, we present
a necessary and sufficient condition on an FIR ISI transfer
function in terms of its zero set such that there is a linear FIR
N � K precoder so that an ideal FIR equalizer exists, where
the integers K and N are arbitrarily fixed. The condition is
easy to check. As a consequence of the condition, for any given
FIR ISI transfer function (not identically 0), there always exist
such linear FIR precoders. Moreover, for almost all given FIR
ISI transfer functions, there exist linear FIR precoders with size
N� (N�1), i.e., the bandwidth is expanded by1=N . In addition
to the conditions on the ISI transfer functions, a method for the
design of the linear FIR precoders and the ideal FIR equalizers
is also given. Numerical examples are presented to illustrate the
theory.

I. INTRODUCTION

I NTERSYMBOL interference (ISI) is a common problem
in telecommunication systems, such as terrestrial television

broadcasting, digital data communication systems, and cellular
mobile communication systems. The main reasons for the ISI
are because of high-speed transmission and multipath fading.
There have been considerable studies for these problems, such
as [1]–[29] and [33]–[40]. These studies can be primarily split
into three categories:

i) post equalization, such as least-mean-squared (LMS)
equalizer and decision feedback equalization (DFE), for
example, [1]–[3], [18]–[29], and [36]–[39];

ii) multicarrier modulation to increase transmission sym-
bol length, for example, [4]–[6];
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iii) precoding techniques, such as Tomlinson–Harashima
(TH) precoding [7], [8], trellis precoding by Eyuboglu
and Forney [9], [10], matched spectral null precoding
in partial response channels [12], and other precoding
schemes, for example, [13]–[17] and [40].

The basic idea for DFE is that once an information symbol
has been detected, the ISI that it causes on future symbols may
be estimated and subtracted out prior to symbol detection. DFE
usually consists of a feedforward filter and feedback filter.
The feedback filter is driven by decisions of the output of the
detector, and its coefficients are adjusted to cancel the ISI on
the current symbol that results from past detected symbols. The
coefficient adjustment may be done via a linear equalizer with
LMS algorithms. The convergence of these iterative algorithms
are dependent of the channel characteristics. When a channel is
spectral null or frequency selective fading, these algorithms are
very slow and, therefore, become computationally expensive.
The performance of the existing linear equalizers significantly
degrades over frequency selective fading channels. Although
DFE has better performance than the existing linear equalizers
when the frequency fading is in the middle of a passband,
it does not offer much improvement in other fading cases.
For more details, see, for example, [3] and [35]. In post
equalization techniques, there are many research results (see,
for example, [18]–[29] and [36]–[39] on blind equalizations
where channel characteristics are assumed unknown. In blind
equalization techniques, there are approximately three groups
of results:

i) high-order statistics techniques;
ii) second-order cyclostationary statistics techniques with

oversampling;
iii) antenna array (smart antenna) multireceiver techniques;

where there is a considerable amount of overlaps between ii)
and iii).

A block diagram for TH precoding is shown in Fig. 1, where
the basic idea is to equalize the signal before transmission.
With TH precoding there are two drawbacks: i) The transmitter
needs to know the channel characteristics, and ii) the precoding
is not reliable when the ISI channel has spectral null or
frequency selective fading characteristics, which is because
the pre-equalizer mod oscillates in a dramatic
way when is close to zero. The trellis precoding scheme
proposed by Eyuboglu and Forney [9] whitens the noise at the
equalizer output. This scheme combines precoding and trellis
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Fig. 1. TH precoder.

Fig. 2. Nonmaximally decimated multirate filterbank in a communication
channel with ISI.

shaping. There are also similar drawbacks about this approach.

i) The transmitter also needs to know the ISI channel
characteristics.

ii) The trellis shaping depends on the ISI channel.
iii) The trellis precoding technique may not be suitable for

spectral-null channels either.

In the matched spectral null precoding scheme [12] in partial
response channels, certain error control codes are chosen to
match the spectral nulls of partial response channels in order to
lose less signal information through the channel. This approach
is mainly for magnetic recording systems.

We now propose a multirate filterbank as a precoder before
transmission (shown in Fig. 2), where indicates downsam-
pling by , and indicates upsampling by , i.e., inserting

zeros between two adjacent samples, and is the
ISI transfer function. Later, we will see a multirate filterbank
decoder for the receiver to eliminate the ISI. If input signal

in Fig. 2 can be completely recovered from the received
signal through an FIR linear system, we call that the
system in Fig. 2 has perfect reconstruction (PR) or an FIR
ideal linear equalizer. In what follows, we use “precoder” and
“multirate filterbank” interchangeably.

With the precoder proposed in Fig. 2, there are three ques-
tions to be answered:

i) What is the condition on such that there exists
a multirate filterbank with channels and decimation
by in Fig. 2 so that can be recovered from
through an FIR linear system?

ii) If the condition on in the first question is satisfied,
how does one design a multirate filterbank in Fig. 2 to
eliminate the ISI?

iii) If both of these two problems are solved, how does the
receiver recover the input signal from the received

?

(a)

(b)

Fig. 3. Blocking and unblocking.

Next, we want to find brief solutions for these
questions. When

, the precoding scheme in Fig. 2 is
equivalent to the fractionally spaced equalizer studied, for
example, [36]–[39], where the receiver needs to sample a
signal times faster than the baud sampling. When ,
the precoding concept has appeared in [39] by Tsatsanis and
Giannakis, where the precoder
for constants was used. As we can see, the case of

is a very special case in our precoding scheme, and
moreover, our new precoding scheme in Fig. 2 provides other
potential precoders rather than
only constants , which allows one to search the optimal one
with respect to an individual channel.

When and there are interference channels instead
of a single channel in Fig. 2, a detailed analysis was
given by Nguyen [31]. When , as mentioned in
[31], PR is impossible, but partial alias cancellation filterbanks
were proposed in [31]. The applications discussed in [31] are
in wide-band radio communications, where only part of the
signal frequencies is of interest to the user. In this paper,
we are interested in applications in the ISI channels with PR
systems in Fig. 2 and, therefore, the case of . This
also implies that unlike the existing precoding techniques, the
new precoding expands the transmission bandwidth, which is
what we lose for the new precoding method, and fortunately,
we will show that the bandwidth expansion can be as small
as possible in theory.

An intuitive way to reduce the ISI generated from a lowpass
is to smoothly interpolate with a large enough

number of interpolations between samples of so that
the interpolated one has the lowpass property. However, two
drawbacks about this approach may occur. One is that it
usually requires a large amount of increasing of data rate
(number of interpolations between samples). The other is
that a good frequency band structure for a nonlowpass, such
as bandpass, filter is required for PR. In this paper,
we want to solve the above three problems systematically.
Given two integers , we present a necessary
and sufficient condition (see Theorem 1) on an FIR filter

such that there exists an FIR nonmaximally decimated
multirate filterbank with channels and decimation by so
that can be recovered from in Fig. 2 with an FIR
synthesis bank. The condition we found is basically very weak.
In fact, it can be proved that for any given FIR filter
not identically 0, there always exists an FIR nonmaximally
decimated multirate filterbank in Fig. 2 for recovering
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Fig. 4. Equivalence of an LTI system and its blocked version.

from . A nonmaximally decimated filterbank precoder
requires a higher transmission rate with the increasing amount
proportional to the difference . It is clear that the
smallest is 1. In other words, a multirate filterbank
with channels and decimation by has the smallest
increasing of a transmission rate, and therefore, it is usually
desired. We show that a multirate filterbank withchannels
and decimation by exists in Fig. 2 for PR if and only if
any two sets of zeros of the polynomials of
for do not intersect, where

. This condition is true almost surely. Various
examples are presented. With the above conditions, we also
derive some results on the submatrices of a pseudo-circulant
polynomial matrices [32]. Constructions of FIR nonmaximally
decimated multirate filterbanks and their FIR syntheses for
the reconstruction for a given in Fig. 2 are provided.
Numerical examples are presented to illustrate the theory,
which also indicates that the technique we developed for
eliminating the ISI is robust.

This paper is organized as follows. In Section II, we
present necessary and sufficient conditions on . We also
discuss the construction of nonmaximally decimated multirate
filterbanks for eliminating ISI. In Section III, we present
examples and the reconstruction method. In Section IV, we
consider applications of the ISI cancellation.

II. A N ECESSARY AND SUFFICIENT CONDITION

In this section, we study necessary and sufficient conditions
on the ISI transfer functions in Fig. 2 such that there
exists a nonmaximally decimated multirate filterbank with

channels and decimation by and such that an ideal
FIR linear equalizer exists. We also present a design method
for an FIR nonmaximally decimated multirate filterbank for
eliminating the ISI. Throughout this paper, boldface lower-
case letters denote vector-valued sequences, capital letters
denote transfer functions, and boldface capital letters denote
function matrices (or polynomial matrices). We first consider
the case when and (0 ) are two arbitrarily
fixed integers.

Before we go to the results, let us see some fundamentals
on blocking and linear time invariant (LTI) systems. We then
convert the system in Fig. 2 into a single multirate system. The
output shown in Fig. 3(a) of the blocked with block
size is the vector-valued signal

, where indicates transpose. Con-
versely, the output shown in Fig. 3(b) of the unblocked
vector-valued signal

(a)

(b)

Fig. 5. Equivalent systems of the system in Fig. 2.

with unblock size is when for
. In particular, when

, then .
Let and be its th forward

polyphase component with channels, i.e.,
. With

, we form the following pseudo-circulant matrix
(see [30], [32])

...
...

...

(2.1)

Then, we have the equivalence for an LTI system and
blocking process shown in Fig. 4, where is from (2.1)
and is called theblocked versionof ; see [30] and [32].

For , let be the th forward
polyphase component of theth filter in Fig. 2 with
channels, i.e., , when

, for . Let be the polyphase
matrix of the filterbank in
Fig. 2: . Then, the system in Fig. 2
is equivalent to the one in Fig. 5(a), which is also equivalent
to the one in Fig. 5(b).
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Therefore, the PR of from in Fig. 2 is equivalent to
the one of the linear multirate system in Fig. 4(b).
Notice that is an function matrix of . To
analyze it, we need a property on the pseudo-circulant matrix

in (2.1). In fact, can be diagonalized as follows.
Let be the DFT matrix, i.e.,

, where .
Let be the diagonal matrix

diag

Notice that the transpose of the matrix is the for-
ward polyphase matrix of the filters , ,

in channels

Replacing by for in the above
equality, we have the following matrix multiplications

(2.2)

where we have (2.3), shown at the bottom of the page. Let

diag (2.4)

Then, the matrix in (2.3) can be rewritten as

This completes the following diagonalization of by
combining (2.2)

(2.5)

where means the inverse.
From now on, we assume all filters in Fig. 2 are FIR, and the

PR of the system in Fig. 2 means the overall system function
has an FIR inverse.

The PR of the multirate system is equivalent
to the one of the multirate system . In fact, if

has PR, then any input signal can be
reconstructed from . Thus, can be
reconstructed from with an FIR synthe-
sis filterbank. In other words, any can be reconstructed
from with an FIR synthesis filterbank. This
implies the PR of . Conversely, we assume the PR
of , which is equivalent to that there exists an FIR
inverse, i.e., there is an FIR polynomial matrix
such that

where is the identity matrix. Thus, we also have

It implies that has an FIR inverse (or PR).

We, thus, consider the PR of . By (2.5)

(2.6)

It is clear that , which is parau-
nitary. Let

Then, the PR of is equivalent to the one of
. Notice that the size of the matrix is

.
On the other hand, has an FIR inverse equivalent

to that of the greatest common divisor (gcd) of all determinants
of all submatrices of the matrix
that is for a nonzero constant and an integer ; see,
for example, [32]. Since is diagonal and of the form
(2.4), the above condition for the PR can be simplified further
as follows.

Without loss of the generality, we assume

where , , and . Let de-
note the set of all zeros of the polynomial of :

with , where
may not be necessarily distinct. For a constant, let

, which is a rotated version of .
We have the following result for the PR.

Theorem 1: There exists an FIR nonmaximally decimated
multirate filterbank in Fig. 2 such that the system in Fig. 2 has
an FIR ideal linear equalizer if and only if

(2.7)

where , .
Theorem 1 tells us that there exists a multirate filterbank

in Fig. 2 for the ideal linear equalization if and only if the
intersection of the unions of any sets of all rotated
zero sets of with angles of
the ISI transfer function is empty. When , the
intersection in (2.7) contains at least, which is not empty.
This implies that when , the system in Fig. 2 does not
have PR in the sense of nonexistence of FIR inverses. This
is not surprising because any maximally decimated multirate
filterbank does not add any redundancy to the signal and,
therefore, does not have any error correction capability.

...
...

...
(2.3)
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Proof: We first prove the “necessary part.” Assume the
set

This implies that the polynomials for all pos-
sible has at least a common
zero . In other words, they have a common factor .
By the form of and the diagonality of , the
polynomial is a factor of the determinant of
the submatrix of at the rows . When

run over all possible
, the corresponding submatrices run over all possible
submatrices of . Therefore, all determinants

of all submatrices of have at least a common
factor , no matter what is. This proves that

does not have an FIR inverse.
Let us prove the “sufficient part.” Assume (2.7) is true. We

construct

(2.8)

where is the all-zero matrix. Then

diag

It is not hard to see that the determinant of the
row submatrix of is

(2.9)

where is the
Vandermonde’s determinant of a submatrix of the
following matrix

which is a nonzero constant. By (2.7), the gcd of all polyno-
mials in (2.9) is for a nonzero constantand an integer
. This proves that the matrix has an FIR inverse

and, therefore, completes the proof.
By the fact that

we have the following immediate corollary.
Corollary 1: If there exists an FIR multirate filterbank

with channels and decimation by in Fig. 2 so that the
system in Fig. 2 has an ideal FIR linear equalizer, then there
also exists an FIR multirate filterbank with channels and
decimation by in Fig. 2 for the ideal linear equalization,
where .

Corollary 1 is not surprising. It is because that the decreasing
of the decimation rate from to of a nonmaximally

decimated multirate filterbank means the increase of the redun-
dancy. If a multirate filterbank with less redundancy eliminates
the ISI, then the multirate filterbank with much redundancy
eliminates the ISI as well.

The proof of Theorem 1 also suggests a way to construct
a nonmaximally decimated multirate filterbank in Fig. 2 to
eliminate the ISI of . When satisfies the condition
in Theorem 1, to have the PR, it is good enough to set
the polyphase matrix of the filterbank in
Fig. 2 to be the one in (2.8), i.e.

This precoder basically adds zeros for each symbols
(or samples). It is certainly not necessary, as long as the

polynomial matrix has an FIR inverse. Put
the above into the system in Fig. 5(b), and the overall
system function becomes

...
...

...

...
...

...

(2.10)

By the proof of Theorem 1, when the condition (2.7) on
is satisfied, then in (2.10) has an FIR inverse.

Conversely, if in (2.9) has an FIR inverse, then
can be recovered from in Fig. 5(b). Therefore, by

Theorem 1, the condition (2.7) is satisfied. In addition, using
Corollary 1, we have proved the following corollary.

Corollary 2: The matrix in (2.10) with
has an FIR inverse if and only if the condition

(2.7) is satisfied. The system in Fig. 2 has an ideal linear
equalizer if, and only if, the matrix in (2.10) has an
FIR inverse. If has an FIR inverse, then has
an FIR inverse for .

We now consider two special cases. The first case is when
. In this case, (2.7) becomes

(2.11)

By Theorem 1 and Corollary 2, we have the following result.
Corollary 3: There exists a multirate filterbank in Fig. 2

with for the ideal linear equalization if and only if

gcd

if and only if

gcd

where and are two nonzero constants, and and
are two integers.
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The result in Corollary 3 coincides with the known result
for fractionally spaced equalizers, i.e., there are no zeros of

equispaced on a circle with angle separated one
zero from another. From Corollary 3, we immediately have
the following consequence.

Corollary 4: For any ISI transfer function not iden-
tically zero, there always exists a nonmaximally decimated
multirate filterbank in Fig. 2 for the ideal linear equalization
of the system in Fig. 2.

The nonmaximally decimated multirate filterbank with
channels and decimation by in Fig. 2 plays the coding role
in eliminating the ISI generated from the ISI channel .
We have already known that has to be less than for PR.
In other words, the data rate has to be increased by
for eliminating the ISI. In practice, the smallest data rate
expansion is desired, which is , or .
We next want to study this case.

Theorem 2: There exists an FIR multirate filterbank with
channels and decimation by in Fig. 2 such that the

system in Fig. 2 has an ideal FIR linear equalizer if and only
if , i.e., polynomials and ( ) are
coprime for .

Proof: Theorem 2 can be proved by the following set
equations.

Let us consider the case when the ISI transfer function
with , i.e., the first-order case. In

this case, the zero set . For a general
. Clearly, since

when 0 1. By Theorem 2 and
Corollary 1, we proved the following result.

Corollary 5: Assume the ISI transfer function
in Fig. 2, where . Then, the system in Fig. 2

for the multirate filterbank in (2.8) always has PR for
any integers and with .

Corollary 5 implies that any amount of data rate
increasing in coding may eliminate the ISI generated from any
first order ISI channel. This is because for any , there
exists a positive integer such that .
We then use this as the number of channels and as
the decimation ratio in the multirate filterbank in Fig. 2.

III. EXAMPLES AND RECONSTRUCTION

In this section, we study some examples and also the
reconstruction of from in Fig. 2, given and
an FIR nonmaximally decimated multirate filterbank in Fig. 2,
where the system has perfect reconstruction. We first see some
examples.

Example 1: . By Corollary 5, one is able
to recover from when takes the form in (2.8)
for any . Consider and . In this

(a)

(b)

Fig. 6. (a) Transmission and channel parts. (b) Reconstruction.

case, the output in Fig. 2 is

Clearly, Fig. 6(b) gives the reconstruction.
Example 2: . In this case, the

zero set . When is even, .
By Theorem 2, it is impossible to recover from
in Fig. 2 for any FIR nonmaximally decimated multirate
filterbank with two channels. However, for any odd

. Clearly,
for . By Theorem 2, we proved that
the system in Fig. 2 with the above and the multirate
filterbank in (2.8) with for odd
always has an ideal FIR linear equalizer. This also implies
that a little increasing of the data rate in coding may eliminate
the ISI generated from the ISI channel.

Example 3: Consider a linear phase lowpass filter of
length 5 constructed from the Parks–McClellan algorithm of
the optimal equiripple FIR filter design technique. The filter is

(3.1)

Its frequency and impulse responses are shown in Fig. 7. Its
zeros and rotated zeros with angleare shown in Fig. 8(a). Its
zeros and rotated zeros with angles , are shown in
Fig. 8(b). One can see that all of them are disjoint. By Theorem
2, the multirate filterbank with or gives
the PR of the system in Fig. 2.

Example 4: Consider a linear-phase lowpass filter of
length 9 also constructed from the Parks–McClellan algorithm.
Its frequency and impulse response are shown in Fig. 9, and
zeros and rotated versions are shown in Fig. 10. One can see
that with length 9, the lowpass property is much better than the
one with length 5 in Example 3, and the rotated zeros are also
disjoint. The lowpass property will be useful in applications
in denoising.

After we have discussed the possibility to eliminate the
ISI, the next problem is the reconstruction. Suppose an FIR
nonmaximally decimated multirate filterbank is designed in
Fig. 2, and it is able to eliminate the ISI generated from .
We now want to construct another multirate filterbank for
the receiver to reconstruct the original signal from the
received one .

We consider a general nonmaximally decimated multi-
rate filterbank in Fig. 5. By the above assumption,
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Fig. 7. Lowpass filterH(z) with length 5.

we know that the overall multirate system matrix

has an FIR inverse. The problem is then to
find its inverse in the sense that .
Then, can be recovered by . To find ,
we use the Smith form decomposition technique [32] as
described below.

It is known [32] that any polynomial matrix
, where all components are polynomials of , can be

decomposed into a product of three polynomial matrices ,
, and :

(3.2)

where and are and unimodular
matrices, respectively, and is diagonal with the form

diag

where is the normal rank of , divides for
, with ,

and , which is the gcd of all the determinants
of all the submatrices of . A square
polynomial matrix isunimodularmeans that its determinant
is a nonzero constant.

When has an inverse, we then have and
for a nonzero constant and an integer

. Therefore, when has an inverse, the diagonal matrix
in (3.2) has the form

diag (3.3)

for integers . Using the above analysis,
we have that the overall system in Fig. 4 has the following
decomposition

(3.4)

where and are and unimodular
matrices, respectively, and has the form in (3.3). With

(a)

(b)

Fig. 8. Length 5 filter: (a) Zeros marked by “o,” their rotations with angle
� marked by “x.” (b) Zeros marked by “o,” their rotations with angles 2�/3
and 4�/3 marked by “x” and “*,” respectively. Dashed line: the unit circle.

the form (3.4) of (see Fig. 10), its inverse is

diag

(3.5)

The reconstruction can be achieved by the diagram shown in
Fig. 11.

Given a polynomial matrix, there is a systematic way to find
its Smith form. For more details, see [32].

IV. A PPLICATIONS IN THE ISI CANCELLATION

We now consider the application for the ISI cancellation.
Example 3 in Section III is used as the ISI transfer function.
For its frequency and impulse responses, see Fig. 7.

By the theory in Sections II and III, and the properties of its
zero sets shown in Fig. 8(a), it is known that the nonmaximally
decimated multirate filterbank with two channels and decima-
tion 1 and its polyphase matrix in (2.8) is able to eliminate
the ISI. This implies that when we insert 0 between each two
samples , , which is the signal to
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Fig. 9. Lowpass filterH(z) with length 9.

be transmitted, we can reconstruct from the output of
the ISI transfer function . In this case, the overall system
transfer matrix is

(4.1)

Its inverse can be calculated as

(4.2)

With the above inverse, we apply the reconstruction scheme
shown in Fig. 11 to the received signal. The simulation results
are shown in Fig. 12 with the original signal , the ISI trans-
fer function in the frequency domain, the received signal
after the channel, and, finally, the reconstruction with mean
square error 7.0704 10 . In addition to the ISI, if there
is a random noise in transmission, the above reconstruction is
robust. A numerical example is shown in Fig. 13, where the
maximum magnitude of the additive channel white noise is
0.05, whereas the one for the original signal shown in Fig. 12
is 1. The mean square error for the reconstruction is 0.004.

By the property of zeros and their rotations shown in
Fig. 8(b), the above increasing of the transmission rate can
be reduced by using the nonmaximally decimated multirate
filterbank with three channels and decimation 2 in (2.8). In
other words, the rate 1/2 can be reduced to 2/3. In this case,
the overall system transfer matrix is

(4.3)

Its inverse can be calculated as shown in (4.4), shown at
the bottom of the page. Numerical simulations are given in
Fig. 14 without random channel noise and, in Fig. 15, with
additional channel additive white noise. One can see that the
reconstruction is also robust.

(a)

(b)

Fig. 10. Length 9 filter: (a) Zeros marked by “o,” their rotations with angle
� marked by “x.” (b) Zeros marked by “o,” their rotations with angle 2�/3
and 4�/3 marked by “x” and “*,” respectively. Dashed line: the unit circle.

Fig. 11. Reconstruction.

(4.4)
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Fig. 12. Rate 1/2 multirate filterbank for the ISI cancellation without random
noise in channel.

Fig. 13. Rate 1/2 multirate filterbank for the ISI cancellation with additional
channel additive white noise.

Remarks: One can further reduce the data rate 2/3 by using
a multirate filterbank in (2.8) with and .
For simplicity, we do not go to higher ’s here. Another
point that should be noticed is that the above ISI cancellation
technique is data independent. Although we use the Smith form
decomposition technique for the equalization, it is certainly
possible and might be better that some existing equalization
techniques, such as [23]–[29], [36], [38], are applicable.

V. CONCLUSIONS

In this paper, we have studied nonmaximally decimated
multirate filterbanks as precoders for the ISI elimination,
where each samples are expanded into samples. When

, it is equivalent to the fractionally spaced equalizers,
where the sampling rate is times faster than the baud rate
in the receiver. We have found a necessary and sufficient
condition on the ISI transfer function for the existence of
an FIR ideal linear equalizer. The condition coincides with

Fig. 14. Rate 2/3 multirate filterbank for the ISI cancellation without random
noise in channel.

Fig. 15. Rate 2/3 multirate filterbank for the ISI cancellation with additional
channel additive white noise.

the known one for the fractionally spaced equalizers when
. The condition is not difficult to check when the

ISI transfer function is known. In particular, we obtained a
simplified version of the condition for an FIR nonmaximally
decimated multirate filterbank precoder with channels and
the largest decimation, i.e., , which corresponds to
the case of the smallest bandwidth expansion in the precoding.
The condition can be stated as follows: All rotations of the
zero set of the FIR transfer function at angles
for are disjoint from each other. These
conditions are basically easy to satisfy. Thus, the approach
in this paper suggests that the sampling rate that is
times faster than the baud rate for the receiver may be good
enough. Moreover, the approach in this paper also suggests the
possibility of other precoders besides the trivial one in (2.8)
or the constants in [39].

The new precoding method proposed in this paper differs
from the existing precoding methods in the following aspects.
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It is reliable for any FIR ISI channel, including spectral-null
channels, may be independent of the ISI channel, does not
implement any modulo operations and is linear; however, it
expands the transmission bandwidth with a minimum amount
as a sacrifice. This paper provides a framework on the ISI
cancellation using multirate filterbanks as precoders. Many
practical implementation issues still remain to be investigated
in the future.

As a final remark, in this paper, the receiver needs to know
the ISI channel characteristics. Most recently, we have studied
precoding equalizations without knowing the ISI channel
characteristics for the transmitter or the receiver in [41]–[46].
Particularly, ambiguity resistant precoders have been studied
in [41]–[44] to combat the ISI.
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