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Phase Unwrapping and A Robust Chinese
Remainder Theorem

Xiang-Gen Xia and Genyuan Wang

Abstract—In the conventional Chinese remainder theorem
(CRT), a small error in a remainder may cause a large error in the
solution of an integer, i.e., CRT is not robust. In this letter, we first
propose a robust phase unwrapping algorithm with applications
in radar signal processing. Motivated from the phase unwrapping
algorithm, we then derive a type of robust CRT.

Index Terms—Chinese remainder theorem, phase unwrapping,
radar signal processing, remainder errors, synthetic aperture
radar (SAR).

I. INTRODUCTION

THE CHINESE remainder theorem (CRT) has tremendous
applications in many fields [9], [10], including phase un-

wrapping [8] in radar signal processing. It is to determine an
integer (usually larger) from its remainders (usually smaller)
modulo several moduli. The CRT is not robust in the sense that a
small error in its remainders may cause a large error in the deter-
mined integer by the CRT. CRT with remainder errors has been
studied in the literature, see, for example, [1]–[3] and [7] for
a generalized CRT, where the remainder errors are corrected by
using sufficiently enough remainders/moduli. What is interested
in this letter, however, is not necessarily to correct the remainder
errors but to reduce the CRT reconstruction errors due to the re-
mainder errors, and there is no requirement on the number of
remainders or moduli. To do so, we first propose a robust phase
unwrapping algorithm. The problem is described as follows.

Consider a multifrequency antenna array synthetic aperture
radar (SAR) [4]. The SAR value at the th antenna from the
th frequency of a moving target is approximately: for

,

(1)

where is independent of , is the total number of
antennas, is the total number of frequencies, is the wave-
length of the transmitted signal with the th frequency, is a
known parameter that is related to the range of the radar to
the moving target and the distance between adjacent antennas,

is an unknown parameter (Doppler shift) to be determined,
and is related to the speed and location of the moving target.
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Due to the motion of the target, its Doppler shift may cause the
target shifted in the SAR image domain. Since is unknown, the
shift amount is unknown, and therefore, a moving target is usu-
ally mislocated in a conventional SAR image. However, when

and , a reasonable size can be solved, and
therefore, a moving target can be correctly relocated in the SAR
image [4].

From (1), for each , , by taking the -point
discrete Fourier transform (DFT) of , , we
obtain (only) integer remainders with as
follows:

(2)

where is a nonnegative unknown integer, and is an un-
known real number with

(3)

Clearly, to determine the unknown parameter , it is sufficient
to determine . Thus, the problem is to determine from the
integer remainders . From (2), one can see that is the preci-
sion error, and is the folding error. While the precision error

causes a small error on , the folding error may cause a
large error on . Thus, in order to robustly determine , it is
necessary to correctly determine . The problem of interest in
this letter is how to uniquely determine , , in (2)
from , , , and and , where the remainders

, may have errors that may occur when there is an
additive noise in signal in (1). In Section II, we shall pro-
pose a solution for this problem under some minor conditions
on the wavelengths .

The above problem is related to the CRT as follows. Let
be a positive number such that , , are all
positive integers. If the precision error in (2), then

(4)

Let

and (5)

then

(6)

which is analogous to the CRT problem of determining from
its remainders and moduli , .

II. ROBUST SOLUTION

When the remainders in (2) have errors that are possible
from the -point DFT detection of the signal , what we
have is

and (7)
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where is the maximal error level in the remainders .
In this case, (2) becomes

(8)

where

(9)

We want to uniquely determine in (8) from , , and ,
. To do so, let be the smallest positive number such

that

(10)

are all integers, and and are co-prime for .
Note that this condition may not hold for all possible positive
real numbers , , but there are enough such in
any range. Thus, in what follows, we always assume that the
above condition is satisfied. In fact, in SAR applications, are
the wavelengths that we can design by ourselves and therefore
flexible to choose.

Without loss of generality, we assume

or equivalently
(11)

For , let

(12)

where and . For each with
, define

(13)

and let denote the set of all the first components of the
pairs in set , i.e.,

for some (14)

and define

(15)

We then have the following result.
Theorem 1: Assume and defined in (10) are co-prime

for . If

(16)

and

(17)

then set defined above contains only element , i.e.,
, and implies for , where

, are the true solution in (8).
Its proof is in the Appendix. Note that the case when

has been considered in [4], but there is an error in the result [4,
Theorem 1] obtained in [4] where the set may not necessarily
contain only one pair , and also, the proof in [4] has
errors. From the above result, we can see that, when conditions
(16) and (17) hold, the folding integers in (8) can be uniquely
solved, and the above results in fact provide an algorithm for the
solution of from the erroneous remainders . When in (8)
are correctly solved, the unknown parameter can be estimated
as

(18)

and the estimate error can be upper bounded by

(19)

The above estimate error of is due to the precision errors
and the remainder errors .

III. ROBUST CHINESE REMAINDER THEOREM

We now go back to the CRT problem (4)–(6) where the pre-
cision errors are because the CRT concerns only integers
and there are no fractional errors. From (4) and (5), we can see
that, for each with , modulo and re-
mainder have a common factor , and thus, integer also has
factor . Since a remainder is known a priori to have a factor

, its erroneous version has a factor , too, i.e., .
Thus,

(20)

Assume

(21)

Then, for

(22)

Since has factors for , integer has to have the
form for some integer . Using Theorem
1, we immediately have the following corollary.

Corollary 1: Let for some nonnegative
integer . If and , then ,

, in (22) can be uniquely determined from , , and ,
, via (12)–(15). An estimate of is

(23)

and its error is upper bounded by

(24)
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In the conventional CRT, the moduli have to be pair-wisely
co-prime, such as . In this case, the reconstruction of would
be expressed as

(25)

where is a positive integer such that mod ,
and is an erroneous remainder of modulo with error

, . Clearly, the above estimate
error due to the erroneous remainders is at least

which is at least in the order of

(26)

Comparing (26) with the error estimate (24) in Corollary 1,
our proposed robust CRT has much less error than the con-
ventional CRT does. Furthermore, in our case here, the moduli

, and have a common divisor , and
therefore, the conventional CRT reconstruction formula (25)
does not apply. Our study above also provides a reconstruction
algorithm of an integer from its erroneous remainders when
moduli are not pair-wisely co-prime.

IV. SIMULATIONS

We now see some simple simulations. We first consider our
proposed robust phase unwrapping algorithm in Section II. Con-
sider the case when , , , ,
and . We take . Thus, , , and

. In this case, the maximal range of determinable in
(16) is 14. In our simulations, the unknown parameter is uni-
formly distributed of any real value in the interval . We
take in (17) and consider the max-
imal remainder error levels ,1,2,3,4,5. The error between
the estimate in (18) and the true value is plotted by the solid
line marked with , and the error upper bound in (19) is plotted
by the solid line marked with in Fig. 1. Noticing that the mean
value of is 7, one can see that the reconstruction errors of
from the erroneous remainders in (8) are small. Since the pa-
rameter is a general real number, there is a precision error
in (2) that is reflected from error curves shown in Fig. 1 when
there is no remainder errors, i.e., when . The results shown
in Fig. 1 are obtained from 200 trials.

For the robust CRT proposed in Section III, we use the same
parameters as in Fig. 1, namely, , , ,

, and the maximal remainder error levels ,1,2,3,4,5.
We also take . Note that

is sufficient as stated in Corollary 1 but is not
taken to avoid when , which can be, however,
easily verified similarly. For an integer , in-
teger is uniformly taken in the interval , including
0 and . The estimate error of in (23) from the true is
plotted by the solid line marked with in Fig. 2. The estimate
error upper bound in (24) is plotted by the solid line marked
with in Fig. 2. The errors shown in Fig. 2 can be thought
of as absolute errors. The relative errors are shown in Fig. 3,
and the curves in Fig. 3 are the error curves shown in Fig. 2 di-
vided by the mean values of , respectively. The results shown
in Figs. 2 and 3 are obtained from 500 trials. One can see that
our robust CRT provides small relative estimate errors when the

Fig. 1. Estimate error of x̂ in (18) and its upper bound in (19) using proposed
robust phase unwrapping algorithm. x is a uniformly distributed real number in
[0; 14).

Fig. 2. Absolute estimate error of n̂ in (23) and its upper bound in (24) using
proposed robust CRT.

remainders are erroneous, which the conventional CRT cannot
provide. Compared to the robust phase unwrapping algorithm
dealing with real numbers in Fig. 1, we are dealing with inte-
gers here, and thus, there are no precision errors, i.e., ,
in (2). The reconstruction (23) is accurate when there is no re-
mainder errors, i.e., , which can be verified from Figs. 2
and 3, where the errors are all zero when .

V. CONCLUSION

In this letter, we proposed a robust phase unwrapping algo-
rithm when the remainders have errors. Motivated from the ro-
bust phase unwrapping algorithm, we proposed a type of robust
CRT for erroneous remainders. As we have mentioned before,
what we want to emphasize here is that our proposed robust CRT
is not trying to correct remainder errors nor precisely reconstruct
an integer as in [1]–[3] but to reduce the reconstruction error
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Fig. 3. Relative estimate error of n̂ in (23) and its upper bound in (24) using
proposed robust CRT.

from the conventional (non-robust) CRT. Also, what we studied
in this letter is only for one integer (one or one target) and
different from the generalized CRT recently studied in [5]–[7],
where multiple integers (multiple or multiple targets) and suf-
ficiently many moduli (remainder sets) are involved. Simula-
tion results were provided to verify the theory. As a remark, this
letter not only corrected an error on a result obtained in [4] but
also considered a more general case for erroneous remainders
than in [4].

APPENDIX

PROOF OF THEOREM 1

From Condition (16) on , it is not hard to see that the true
solution in (8) falls in the range for .
Thus, for and any , we have

(27)

From (8)

(28)

Let for . From (28), we replace
by in both sides of (27) and have

Thus, using (9) and (17), we have

(29)

Since , , , and are all integers, (29) implies

(30)

Since and are co-prime, (30) implies

i.e., (31)

for some integers with . Replacing (31)
into (27), we find that

(32)

which means for . This proves
. We next show . Property (31) also implies

for some integers

with (33)

If , then for , and therefore,
from the definition of in (14) and (33), we have

for some integer with for
. This implies that divides all for
, and therefore, from (12), is a multiple of

. Since , , we conclude .
This proves that . In the meantime, implies

in (33), i.e., for . Hence,
Theorem 1 is proved. As a remark, despite the fact that [4] only
considers the case when , the proof in [4] has errors.
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