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Abstract

In this correspondence, we present a systematic and closed form construction of complex orthogonal space-

time block codes from complex orthogonal designs of rates(k+1)=2k for 2k� 1 or 2k transmit antennas for any

positive integerk.
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I. INTRODUCTION

Since the pioneering work of Alamouti [1] in 1998, orthogonal design has become an effective technique

for the design of space-time block codes (STBC). The importance of this class of codes comes from the

fact that they achieve full diversity and have the fast maximum-likelihood(ML) decoding. In this paper,

we are interested in complex orthogonal designs (CODs).

Let Bn be ap� n matrix. It is a COD of variablesx1; x2; � � � ; xu if entries ofBn are complex linear

combinations of these variables and their complex conjugates, i.e.,x1; x2; � � � ; xu; x�1; x�2; � � � ; x�u, such that
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the following orthogonality holds for any complex values ofxi:BHn Bn = (jx1j2 + jx2j2 + � � �+ jxuj2)I (1)

whereH denotes the complex conjugate transpose andI denotes then�n identity matrix. Theu variablesx1; x2; � � � ; xu represent information symbols from a signal constellation, such as QPSK, to be transmitted

throughn transmit antennas inp time slots. There are two criteria for the evaluation of a COD code:� RateR: R = u=p, higher rate means more information carried by the code;� Block lengthp: givenn andR, smallerp results less delay in en/decoding.

Considerable efforts have been made on the search of CODs for different numbers ofantennas. Alamouti

[1] proposed the following scheme forn = 2 with R = 1 andp = 2:" x1 x�2x2 �x�1 # : (2)

It is known that real orthogonal designs (ROD) of maximum rate1 with minimum delay for real

variables, such as PAM, can be systematically constructed for any numbern of transmit antennas from

Hurwitz-Radon theory [14], [15], [2]. In [7], a comprehensive study on complex orthogonalspace-time

codes, CODs, and some historical background can be found. Tutorials on this subject canbe also found

in [13], [9]. In [2], a systematic COD construction with rate1=2 for any number of transmit antennas

is proposed by using rate1 ROD. The question is then how to construct CODs of rates above1=2. Forn = 3 andn = 4, CODs of rateR = 3=4 andp = 4 are developed in [2]-[5]. It is shown in [11] that a

rateR = 1 COD whenn > 2 does not exist no matter how largep is. In [7], it is shown that rate3=4 is

an upper bound for rates of CODs without linear processing of symbols0, �xi, or �x�i whenn > 2 for

anyp, wherexi or x�i is forced to appear at most once in each column of a COD. It is shown in [12] that

rate3=4 is an upper bound for rates of CODs whenn > 2 for anyp when the entries of CODs may have

linear processing of�xi and�x�i as in the definition of a COD used in this paper. Furthermore, in [12],

it is conjectured that the rateR of a COD is upper bounded by(k + 1)=(2k) for 2k � 1 or 2k transmit

antennas no matter how largep is. For n = 5 and n = 6, rates7=11 and 3=5 generalized CODs are

constructed in [6], respectively. In [8], a rate2=3 and size15�5 COD is reported for5 transmit antennas.

While individual discoveries for different numbers of antennas appear interestingand motivating, it is

highly desirable that a systematic method can be applied for the construction of CODs of rates above1=2 for arbitraryn. In [10], a systematic and computer-aided method (not with closed forms) is proposed

to design CODs for any numbern of transmit antennas. Although a computer algorithm for anyn and

CODs of rates(k + 1)=(2k) for n = 2k � 1; 2k � 18 are presented in [10], the computer algorithm is

prohibitive whenn is large and furthermore it is not proved that a COD generated from the algorithm

has its rate always above1=2. In addition, the algorithm may generate a block sizep that may be too
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large to be necessary for the givenn. For example, the sizep of the COD forn = 4 is 8 but not 4 as

existed and mentioned previously. So far, we have not seen any systematic closed form construction of

CODs with rates above1=2 for an arbitrary number of transmit antennas in any literature.

As a note, after we submitted this paper in the August of 2003, we came across a later published paper

[9]. In [9], a systematic construction of CODs with rates(k + 1)=(2k) for any numbern = 2k � 1 orn = 2k of transmit antennas is proposed. However, the design method in [9] does not have aclosed-form.

In [9], the definition of a COD does not allow the entries of a COD to have a linear processing of0,�xi, or �x�i and therefore, symbolsxi or x�i can not repeat in any column of a COD, which is different

with the definition of a COD used in [8] where linear processings are allowed. With the assumption of

no linear processing, it is shown in [9] that the maximum rate of a COD is(k + 1)=(2k) for 2k � 1 or2k transmit antennas no matter how largep is, which coincides with the conjecture presented in [12].

However, the conjecture for a COD with linear processing is stillopen for a generalk.

The goal of this correspondence is to present a systematic closed form constructionof CODs of rates(k + 1)=(2k) for n = 2k� 1 or n = 2k transmit antennas for any positive integerk. In this construction,

the entries of a CODBn are from the setf0;�x1;�x�1;�x2;�x�2; � � � ;�xu;�x�ug where for eachi, xi orx�i occurs once and only once in each column. Starting from a given CODBn for an oddn, we construct

CODs of closed forms forn + 1 and n + 2 with the above mentioned ratesR. Another closed form

construction is also presented whenn is a multiple of4, where the delay sizep is only half of the first

construction and the designs obtained in [9], [10]. It should be emphasized here that our constructions

are closed-form constructions while the ones in [9], [10] are not closed-form constructions.

This paper is organized as follows. In Section II, we present the COD constructions including the

orthogonality property. In Section III, we give the CODs result forn = 8 as a design example, where the

delay sizep is only half of the one in [9], [10] while their rates are the same.

II. CONSTRUCTIONS OFCOMPLEX ORTHOGONAL DESIGNS

In this section, we first present notations in Section II-A. The closed form CODs are proposed in

Section II-B. The rates and sizes of these CODs are discussed in Section II-C. In Section II-D we propose

another construction to achieve smaller sizes when the number of transmit antennas is a multiple of 4.

A. Notation

To construct CODs, we define the following matrices:� For any matrixA, its all entries are of forms0, or �xi, or �x�i for i = �; � � � ; � + u� 1 for some

positive integersu and�, where for eachi, xi or x�i occurs once and only once in each column;
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� Bn is a pn � n COD for n antennas and the number of nonzero complex variables inBn is un;� Bn is a pn� 1 column vector that contains the same set of complex variables asBn and the number

of nonzero complex variables isun;� bBn is aq1;n�1 column vector that contains the same set of complex variables asBn and the number

of nonzero complex variables isun;� Qm;n is a qm;n � n COD for n antennas, where we letm � n andQ0;n = Bn, and the number of

nonzero complex variables isvm;n � un;� Qm;n is a qm�1;n � 1 column vector that contains the same set of complex variables asQm;n, andQ0;n = Bn, and the number of nonzero complex variables isvm;n;� bQm;n is a qm+1;n � 1 column vector that contains the same set of complex variables asQm;n, andbQ0;n = bBn, and the number of nonzero complex variables isvm;n,

where the parameters are specified later. In the rest of this paper, we usedifferent indices in brackets to

distinguish different sets of nonzero complex variables, which is specified and explained as follows:� For any matrixA, matrix A(i) has the same structure but different variables asA when i > 1 andA(1) = A;� Consider anyw submatricesA1(1); � � � ; Aw(w) appearing in a bigger matrix simultaneously, whereAl has nonzero complex variablesx1; � � � ; xul for l = 1; � � � ; w. Then, the nonzero complex variables

in these submatrices appear consecutively in the bigger matrix without any overlaps, i.e., the indices

of the nonzero complex variables inAl(l) are fromu1 + � � �+ ul�1 + 1 to u1 + � � �+ ul�1 + ul forl = 2; � � � ; w.

As an example, considerB3 of the following formB3 = 26664 x1 x�2 x�3x2 �x�1 0x3 0 �x�10 x3 �x2 37775 : (3)

In the above matrix,u3 = 3, and the indices of the nonzero complex variables inB3 are from1 to 3.

Consider a bigger matrix 2664 B3(1)
...B3(i) 3775 :

Then, the indices of the nonzero complex variables inB3(i) are from3(i� 1) + 1 to 3i andB3(i) is as

follows: B3(i) = 26664 x3(i�1)+1 x�3(i�1)+2 x�3(i�1)+3x3(i�1)+2 �x�3(i�1)+1 0x3(i�1)+3 0 �x�3(i�1)+10 x3(i�1)+3 �x3(i�1)+2 37775 : (4)
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Note that, the structure ofB3(i) is the same as that ofB3, but the subscripts of the variables in the

matrices are different. For example, the subscript of the term in the first row and the first column inB3
is 1, while that ofB3(i) is 3(i� 1) + 1.

B. Closed Form Construction of CODs

The main idea of our method is to construct CODs inductively. Specifically, given a set of CODs forn
antennas, wheren is an odd integer, we can construct codesBn+1 andBn+2 for n+1 andn+2 antennas.

Based on the definitions in Section II-A, we provide the following method to construct CODs forn + 1
andn+ 2 antennas throughBn, Bn, bBn, Q1;n, andQ1;n wheren = 2k � 1, k = 1; 2; � � �:Bn+1 = " Bn(1) Bn(2)Bn(2) (�1)kBn(1) # ; (5)

and Bn+2 = 26664 Bn(1) Bn(2) Bn(3)Bn(2) (�1)kBn(1) Q1;n(4)Bn(3) �Q1;n(4) (�1)kBn(1)Q1;n(4) bBn(3) � bBn(2) 37775 : (6)

Therefore, through inductive construction ofBn, Bn, bBn, Q1;n, andQ1;n we can construct CODs for anyn+ 1 andn+ 2 antennas.

The inductive construction starts with the following initial settings:� B1 = [x1];� B1 = [x�1];� bB1 = [x1];� Q1;1 = [0];� Q1;1 = [0];� Q2;1 = [0];� bQ0;1 = [0];� bQm;1 = �, i.e., empty (does not appear), form > 0;� Qm;1 = �, i.e., empty (does not appear), form > 1;� Qm;1 = �, i.e., empty (does not appear), form > 2.

To complete the inductive method, we also provide the construction scheme forBn+2, bBn+2, Qm;n+2,Qm;n+2, and bQm;n+2 as follows: Bn+2 = 26664 (�1)kQ1;n(4)Bn(3)�Bn(2)bBn(1) 37775 ; (7)
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bBn+2 = 266664 (�1)kBn(1)bBn(2)bBn(3)� bQ1;n(4) 377775 ; (8)

Qm;n+2 = 266664 Qm�1;n(1) Qm;n(2) Qm;n(3)Qm;n(2) � bQm�1;n(1) Qm+1;n(4)Qm;n(3) �Qm+1;n(4) � bQm�1;n(1)Qm+1;n(4) bQm;n(3) � bQm;n(2) 377775 ; (9)

Qm;n+2 = 26664 �Qm�1;n(1)Qm;n(2)Qm;n(3)�Qm+1;n(4) 37775 ; (10)

and bQm;n+2 = 266664 bQm�1;n(1)� bQm;n(2)� bQm;n(3)bQm+1;n(4) 377775 ; (11)

wherem > 0, Q0;n = Bn, Q0;n = Bn, and bQ0;n = bBn as described in the definitions in the beginning of

this section.

Before the proof of the construction, we have a general property on the orthogonality.

Theorem 1: Let A be a complex orthogonal design and has the formA = " A11 A12A21 A22 # ;
where

(i) A11 andA22 have the same set of nonzero complex variables;

(ii) A21 andA12 have the same set of nonzero complex variables;

(iii) A11 andA12 do not share any common nonzero complex variable.

Then, the followingA A = " (�1)kA11 (�1)lA12(�1)mA21 (�1)nA22 #
is also a complex orthogonal design ifk + l +m + n is even.

Proof: See Appendix I.

From Theorem 1, the following corollary is immediate.

Corollary 1: Let A = " (�1)kA11 (�1)lA12(�1)mA21 (�1)nA22 #
be a COD and conditions (i)-(iii) in Theorem 1 hold. Then,bA = " (�1)pA11 (�1)qA12(�1)rA21 (�1)sA22 #
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is also a COD ifk + l +m + n+ p+ q + r + s is even.

To validate our method, we also have following theorem.

Theorem 2: For n = 2k � 1, k = 1; 2; � � �, if Bn, Bn, bBn, Qm;n, Qm;n, and bQm;n are inductively

constructed from (6)-(11), then the following matrices are complex orthogonal designs:Bn+1 = " Bn(i) Bn(j)Bn(j) (�1)kBn(i) # ; (12)" Bn(i) Bn(j)bBn(j) � bBn(i) # ; (13)" Bn(i) Q1;n(j)Q1;n(j) � bBn(i) # ; (14)" Bn(i) Q1;n(j)Q1;n(j) �Bn(i) # ; (15)" Qm;n(i) Qm;n(j)bQm;n(j) � bQm;n(i) # ; (16)" Qm;n(i) Qm+1;n(j)Qm+1;n(j) � bQm;n(i) # ; (17)" bBn(i) Q2;n(j)Q2;n(j) � bBn(i) # ; (18)" bQm�1;n(i) Qm+1;n(j)Qm+1;n(j) � bQm�1;n(i) # : (19)

Proof: We can easily see that when the initial set of codes is used, all matrices in (12)-(19) are CODs.

Now we show that if the matrices in (12)-(19) are CODs for somen = 2k � 1, k = 1; 2; � � �, they are

still CODs for n + 2 given the construction scheme in (6)-(11) by using Theorem 1 and Corollary 1 as

follows.

For (12), we have Bn+3 = � Bn+2(i) Bn+2(j)Bn+2(j) (�1)k+1Bn+2(i) � =266666666666664
Bn(1) Bn(2) Bn(3) (�1)kQ1;n(8)Bn(2) (�1)kBn(1) Q1;n(4) Bn(7)Bn(3) �Q1;n(4) (�1)kBn(1) �Bn(6)Q1;n(4) bBn(3) � bBn(2) bBn(5)Bn(5) Bn(6) Bn(7) �Q1;n(4)Bn(6) (�1)kBn(5) Q1;n(8) (�1)k+1Bn(3)Bn(7) �Q1;n(8) (�1)kBn(5) (�1)kBn(2)Q1;n(8) bBn(7) � bBn(6) (�1)k+1 bBn(1)

377777777777775 : (20)
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To show (20) is a COD, we need to prove that any column in (20) is orthogonal to all the other columns

in (20). For simplicity, we only show that the first column of (20) is orthogonal to the last column. From

(14) we know that " Bn(1) Q1;n(8)Q1;n(8) � bBn(1) #
is a COD. Combining with Corollary 1, we have that" Bn(1) (�1)kQ1;n(8)Q1;n(8) (�1)k+1 bBn(1) #
is also a COD. From (12) we know that" Bn(2) Bn(7)Bn(7) (�1)kBn(2) #
is a COD. From (12) and Corollary 1, we have that" Bn(3) �Bn(6)Bn(6) (�1)k+1Bn(3) #
is a COD. And from (14) and Corollary 1 we have that" Bn(5) �Q1;n(4)Q1;n(4) bBn(5) #
is also a COD. Thus the first column in (20) is orthogonal to the last column in (20). Similarly, we can

verify that any column in (20) is orthogonal to all the other columns, which, thus, shows that (20) is a

COD. With the same approach we can show that the matrices in (13)-(19) are also CODs forn + 2 by

using our construction scheme as follows." Bn+2(i) Bn+2(j)bBn+2(j) � bBn+2(i) # =266666666666666664
(�1)kQ1;n(4) (�1)kQ1;n(8)Bn(3) Bn(7)�Bn(2) �Bn(6)bBn(1) bBn(5)(�1)kBn(5) (�1)k+1Bn(1)bBn(6) � bBn(2)bBn(7) � bBn(3)� bQ1;n(8) bQ1;n(4)

377777777777777775 :
(21)
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� Bn+2(i) Q1;n+2(j)Q1;n+2(j) � bBn+2(i) � =266666666666664
Bn(1) Bn(2) Bn(3) �Bn(5)Bn(2) (�1)kBn(1) Q1;n(4) Q1;n(6)Bn(3) �Q1;n(4) (�1)kBn(1) Q1;n(7)Q1;n(4) bBn(3) � bBn(2) � bQ2;n(8)Bn(5) Q1;n(6) Q1;n(7) (�1)k+1Bn(1)Q1;n(6) � bBn(5) Q2;n(8) � bBn(2)Q1;n(7) �Q2;n(8) � bBn(5) � bBn(3)Q2;n(8) bQ1;n(7) � bQ1;n(6) bQ1;n(4)

377777777777775 : (22)

" Bn+2(i) Q1;n+2(j)Q1;n+2(j) �Bn+2(i) # =266666666666666664
(�1)kQ1;n(4) �Bn(5)Bn(3) Q1;n(6)�Bn(2) Q1;n(7)bBn(1) �Q2;n(8)�Bn(5) (�1)k+1Q1;n(4)Q1;n(6) �Bn(3)Q1;n(7) Bn(2)�Q2;n(8) � bBn(1)

377777777777777775 :
(23)

" Qm;n+2(i) Qm;n+2(j)bQm;n+2(j) � bQm;n+2(i) # =266666666666666664
�Qm�1;n(1) �Qm�1;n(5)Qm;n(2) Qm;n(6)Qm;n(3) Qm;n(7)�Qm+1;n(4) �Qm+1;n(8)� bQm�1;n(5) bQm�1;n(1)bQm;n(6) � bQm;n(2)bQm;n(7) � bQm;n(3)� bQm+1;n(8) bQm+1;n(4)

377777777777777775 :
(24)
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� Qm;n+2(i) Qm+1;n+2(j)Qm+1;n+2(j) � bQm;n+2(i) � =2666666666666664
Qm�1;n(1) Qm;n(2) Qm;n(3) �Qm;n(5)Qm;n(2) � bQm�1;n(1) Qm+1;n(4) Qm+1;n(6)Qm;n(3) �Qm+1;n(4) � bQm�1;n(1) Qm+1;n(7)Qm+1;n(4) bQm;n(3) � bQm;n(2) �Qm+2;n(8)Qm;n(5) Qm+1;n(6) Qm+1;n(7) bQm�1;n(1)Qm+1;n(6) � bQm;n(5) Qm+2;n(8) � bQm;n(2)Qm+1;n(7) �Qm+2;n(8) � bQm;n(5) � bQm;n(3)Qm+2;n(8) bQm+1;n(7) � bQm+1;n(6) bQm+1;n(4)

3777777777777775 : (25)

" bBn+2(i) Q2;n+2(j)Q2;n+2(j) � bBn+2(i) # =266666666666666664
(�1)kBn(1) �Q1;n(5)bBn(2) Q2;n(6)bBn(3) Q2;n(7)� bQ1;n(4) �Q3;n(8)�Q1;n(5) (�1)k+1Bn(1)Q2;n(6) � bBn(2)Q2;n(7) � bBn(3)�Q3;n(8) bQ1;n(4)

377777777777777775 :
(26)

" bQm�1;n+2(i) Qm+1;n+2(j)Qm+1;n+2(j) � bQm�1;n+2(i) # =2666666666666666664
bQm�2;n(1) �Qm;n(5)� bQm�1;n(2) Qm+1;n(6)� bQm�1;n(3) Qm+1;n(7)bQm;n(4) �Qm+2;n(8)�Qm;n(5) � bQm�2;n(1)Qm+1;n(6) bQm�1;n(2)Qm+1;n(7) bQm�1;n(3)�Qm+2;n(8) � bQm;n(4)

3777777777777777775 :
(27)

As a conclusion, Theorem 2 is proved inductively.q.e.d.

Thus, by the induction, for any odd numbern, we can inductively constructBn, Bn, bBn, Q1;n, andQ1;n.

Because of the orthogonalities in (12)-(19),Bn+1, Bn+2 in (5) and (6) are also CODs, which completes

the proof of our construction.
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C. Rate Formula

For the sizes of matricesBl andQl1;l2, we have following partial difference equations from (6) and

(9)1: ( q0;n+2 = 3q0;n + q1;n;qm;n+2 = qm�1;n + 2qm;n + qm+1;n; m > 0; (28)

with initial conditions 8><>: q0;1 = 1;q1;1 = 1;qm;1 = 0; m > 1:
Similarly, we have the following partial difference equations for numbers of the complex variables inBl
andQl1;l2: ( v0;n+2 = 3v0;n + v1;n;vm;n+2 = vm�1;n + 2vm;n + vm+1;n; m > 0; (29)

with initial conditions ( v0;1 = 1;vm;1 = 0; m > 0:
The solutions of the above two partial difference equations are given as follows:8<: qm;2k�1 = 0 m > kqm;2k�1 = (2k)!�[k+m(m+1)k ](k+m+1)!(k�m)! 0 � m � k (30)

and ( vm;2k�1 = 0 m > k � 1vm;2k�1 = (2k�1)!(k+m)!(k�m�1)! 0 � m � k � 1 (31)

Both (30) and (31) can be shown by induction. Therefore, whenm = 0, we have the rate formulaR2k�1 = v0;2k�1q0;2k�1 = k + 12k > 12 : (32)

It is interesting to note that it is conjectured in [12] that the rate of a COD for 2k � 1 or 2k antennas is

upper bounded by(k + 1)=(2k). And in [9] Liang showed that when there is no linear processing in a

COD, the rate upper bound for2k � 1 or 2k transmit antennas is(k + 1)=(2k). However, it is still open

for a COD with linear processing.

D. Construction of Smaller Size COD for 4l Transmit Antennas

Let us consider the case ofn = 2k � 1, wheren is the number of transmit antennas andk is an odd

integer. Based on the construction procedure in Section II-B, we can constructa CODBn+2 from (6).

FromBn+2 we can construct a CODBn+3 from (5), which is rewritten as follows:Bn+3 = " Bn+2(1) Bn+2(2)Bn+2(2) (�1)kBn+2(1) # : (33)

1Note thatQ0;n = Bn by definition, we useq0;n = pn andv0;n = un.
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To compute the rate of the CODBn+3, we havepn+3 = 2q0;n+2 = 2q0;2(k+1)�1 = 2(2(k + 1))!� (k + 1)(k + 2)!(k + 1)! (34)

and un+3 = 2v0;n+2 = 2v0;2(k+1)�1 = 2(2(k + 1)� 1)!(k + 1)!(k)! : (35)

Therefore, the rate is: Rn+3 = un+3pn+3 = k + 22(k + 1) : (36)

However, we find that whenk is odd, there exists one smaller size CODB0n+3 than Bn+3, which is

constructed directly fromBn:B0n+3 = 266664 Bn(1) Bn(2) Bn(3) �Q1;n(4)Bn(2) �Bn(1) Q1;n(4) Bn(3)Bn(3) �Q1;n(4) �Bn(1) �Bn(2)Q1;n(4) bBn(3) � bBn(2) bBn(1) 377775 (37)

Based on the COD assumptions in (12)-(19) and Theorem 1, we can see thatB0n+3 is a COD. Sincep0n+3 = 3q0;n + q1;n = 3 (2k)!� k(k + 1)!(k)! + (2k)!� hk + 2k i(k + 2)!(k � 1)! (38)

and u0n+3 = 3v0;n + v1;n = 3 (2k � 1)!k!(k � 1)! + (2k � 1)!(k + 1)!(k � 2)! ; (39)

we have that the rate ofB0n+3 is: R0n+3 = u0n+3p0n+3 = k + 22(k + 1) ; (40)

while B0n+3 has a smaller size: p0n+3 = 12pn+3:
Note that in this case, sincek is an odd number, the number of antennasn+3 = 2(k+1) is in the form

of 4l, l = 1; 2; � � �. This shows that the COD construction (37) forn + 3 = 4l for any positive integerl
has only half delay of the delay of CODBn+3 in the first construction and also the one in the literature

[9], [10].

III. D ESIGN EXAMPLES

In this section, we will give some design examples. From the initial settingswith n = 2k� 1 = 1 andk = 1, B2 andB3 can be easily constructed from (5), (6) and have the form in (2), (3), respectively. We

can also construct the following matrices:� Q2;1 Q2;1 = [0] (41)

12



From the definition ofQm;n, we can see thatQ2;1 is a q1;1 � 1 column vector, which contains the

same set of nonzero complex variables asQ2;1. SinceQ2;1 = � (initial setting) andq1;1 = 1, there is

no nonzero complex variables in bothQ2;1 andQ2;1. As a result the only entry ofQ2;1 is zero.� Q1;3 Q1;3 = 264 x1 0 00 �x1 00 0 �x1 375 (42)

Note that in matrix (42), we eliminate the last row in matrix (9) since all the terms of this row are�, i.e., do not appear.� B3 B3 = 26664 0x�3�x�2x1 37775 (43)� bB3 bB3 = 264 �x�1x2x3 375 (44)

In (44), we eliminate the last row for the same reason as that of (42).� Q1;3 Q1;3 = 26664 �x�1000 37775 (45)� bQ1;3 bQ1;3 = h x1 i (46)� Q2;3 Q2;3 = h 0 0 0 i
(47)� Q2;3 Q2;3 = 264 000 375 (48)

With all matrices above, we can construct a COD for 4 antennas as:

B4 = 26666666666664
x1 x�2 x�3 0x2 �x�1 0 x�6x3 0 �x�1 �x�50 x3 �x2 x4x4 x�5 x�6 0x5 �x�4 0 x�3x6 0 �x�4 �x�20 x6 �x5 x1

37777777777775 ; (49)
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which has the same rateR = 3=4 and delayp = 8 as the ones constructed in [9], [10]. However, from

(37), the COD for4 antennas can be constructed as:B04 = 26664 x1 x�2 x�3 0x2 �x�1 0 x�3x3 0 �x�1 �x�20 x3 �x2 x1 37775 ; (50)

which coincides with the existing one for4 antennas and has only half delay as that in [9], [10].

Also we can construct a COD for 5 antennas as:

B5 =
2666666666666666666666666666664

x1 x�2 x�3 0 0x2 �x�1 0 x�6 x�9x3 0 �x�1 �x�5 �x�80 x3 �x2 x4 x7x4 x�5 x�6 0 �x�10x5 �x�4 0 x�3 0x6 0 �x�4 �x�2 00 x6 �x5 x1 0x7 x�8 x�9 x�10 0x8 �x�7 0 0 x�3x9 0 �x�7 0 �x�20 x9 �x8 0 x1x10 0 0 �x�7 x�40 �x10 0 x8 �x50 0 �x10 x9 �x6

3777777777777777777777777777775
; (51)

which has the same parameters as the one constructed by Liang in [8]. To construct a COD for8 antennas,

we have following CODs:� Q1;5
Q1;5 =

266666666666666666664
x1 x�2 x�3 �x�4 �x�5x2 �x�1 0 0 0x3 0 �x�1 0 00 x3 �x2 0 0x4 0 0 x�1 00 �x4 0 �x2 00 0 �x4 �x3 0x5 0 0 0 x�10 �x5 0 0 �x20 0 �x5 0 �x30 0 0 x5 �x4

377777777777777777775 (52)

� B5, bB5, andQ1;5
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B5 =
2666666666666666666666666666664

�x�100000x�9�x�8x70�x�6x�5�x4�x�1x2x3

3777777777777777777777777777775
; bB5 =

266666666666666666664
0x�3�x�2x1�x�4x5x6�x�7x8x9�x10
377777777777777777775 ; Q1;5 =

2666666666666666666666666666664

0�x�3x�2�x1�x�4000�x�5000000

3777777777777777777777777777775
Sincek = 3 whenn = 2k � 1 = 5, we can construct a CODB08 shown at the end of the paper forn+ 3 = 8 antennas based on (37). The delay size and the number of variables in the above COD are 56

and35, respectively. These values can be predicted through the solutions of the difference equations (30)

and (31), wherem = 0 andk = 4: p8 = p7 = q0;7 = 8!� 45!� 4! = 56
and u8 = u7 = v0;7 = 7!4!� 3! = 35:
Note that the block length or delay sizep is 56, while in [9], [10], it is 112.

To further compare our construction schemes with that of [9], [10], we list the design examples from1
to 16 antennas in Table I where “Liang” and “Su-Xia-Liu” are for the schemes in [9] and [10], respectively,

and “Lu-Fu-Xia” is for our new closed form designs. One can clearly see that all the three constructions

have the same rate. However, when the number of transmit antennas is any multiple of 4, the CODs in

our scheme have only half delays of that of [9], [10].

IV. CONCLUSION

In this correspondence, a novel inductive and closed-form method has been proposed to systematically

construct a complex orthogonal design (COD) of rate(k + 1)=(2k) for 2k � 1 or 2k transmit antennas

for any positive integerk. These rates are conjectured optimal in [12] with or without linear processing.

Although it is shown in [9] that when there is no linear processing the upper bound of the rate for 2k� 1
or 2k transmit antennas is(2k� 1)=(2k), it is still open for CODs with linear processing. Another closed

form COD construction for4l transmit antennas has also been presented with smaller delay sizes that
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TABLE I

COMPARISON OFDESIGN EXAMPLES

# of Tx Liang & Su-Xia-Liu Lu-Fu-Xia Raten u p u p u=p
1 1 1 1 1 1
2 2 2 2 2 1
3 3 4 3 4 3/4
4 6 8 3 4 3/4
5 10 15 10 15 2/3
6 20 30 20 30 2/3
7 35 56 35 56 5/8
8 70 112 35 56 5/8
9 126 210 126 210 6/10
10 252 420 252 420 6/10
11 462 792 462 792 7/12
12 924 1584 462 792 7/12
13 1716 3003 1716 3003 8/14
14 3432 6006 3432 6006 8/14
15 6435 11440 6435 11440 9/16
16 12870 22880 6435 11440 9/16

are only half of the ones of the first construction and the ones appeared in [9], [10] whiletheir rates are

the same. However, the optimal delay for any number of transmit antennas is also an open question for

future research.

As we mentioned in Introduction, after we submitted this correspondence in the Augustof 2003, we

came across with [9] where also a systematic construction of CODs of rate(k + 1)=(2k) for 2k � 1
or 2k transmit antennas for any positive integerk was proposed. Comparing to [9], our designs have

closed-forms while the method in [9] is not a closed-form method, and furthermore, ourdesigns have

only half of the delays of the ones in [9] when the number of transmit antennas is any multiple of 4, such

as4; 8; 12; 16; 20; � � �.
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APPENDIX I

PROOF OFTHEOREM 1

DefineA1, A2, A1, andA2 as: A1 = " A11A21 # ;A2 = " A12A22 # ;A1 = " (�1)kA11(�1)mA21 # ;A2 = " (�1)lA12(�1)nA22 # :
SinceA is a COD, we can see thatA1 andA2 are both CODs. Also, sinceA11 andA21 have disjoint sets

of nonzero complex variables, matrixA1 is a COD too regardless of the numbersk andm. Similarly,

matrix A2 is a COD for any values ofl andn. Thus, we see thatA is a COD if and only if any column

in A1 is orthogonal to all columns inA2. Without lose of generality, we consider two columnsi andj in

matrix A, where columni belongs toA1 and columnj belongs toA2.
Write matrixA = [a��]. For any rowp in A, we letx = api. According to the definition in the theorem,

if x 6= 0, we can find another rowq such that:jaqjj = jxj:
Now let bx = aqj, y = apj, andz = aqi. Since matrixA is a COD, we havep 6= q andxy� + zbx� = 0;
which is because the remaining of the inner product of theith and thejth column ofA do not contain

variablex due to the assumption in beginning of this section that each complex variable or itsconjugate

appears once and only once in each column ofA.

In matrix A, the left hand side of the above equation becomes(�1)kx� (�1)ly� + (�1)mz � (�1)nbx�
Note that ifk + l +m + n is even, then(�1)k+l = (�1)m+n. Therefore,(�1)kx� (�1)ly� + (�1)mz � (�1)nbx� = 0;
which proves that theith column is orthogonal to thejth column and thereforeA is a COD.q.e.d.
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B08 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@
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