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Abstract—Differential space–time modulation has been re-
cently proposed in the literature for multiple-antenna systems
over Rayleigh-fading channels, where neither the transmitter
nor the receiver knows the fading coefficients. For the practical
success of differential space–time modulation, it has been shown
critical to design unitary space–time signal constellations with
large diversity product which is a primary property for the signal
constellations to have good performance in high signal-to-noise
ratio (SNR) scenarios.

In this paper, we focus on the design of unitary signal constella-
tions for differential space–time modulation with double transmit
antennas. By using the parametric form of a two-by-two unitary
matrix, we present a class of unitary space–time codes calledpara-
metric codesand show that this class of unitary space–time codes
leads to a five-signal constellation with the largest possible diversity
product and a 16-signal constellation with the largest known diver-
sity product. Although the parametric code of size16 is not a group
by itself, we show that it is a subset of a group of order32. Fur-
thermore, the unitary signal constellations of sizes32 64 128

and 256 obtained by taking the subsets of the parametric codes of
sizes37 75 135 and 273, respectively, have the largest known
diversity products.

We also use large diversity sum of unitary space–time signal
constellations as another significant property for the signal
constellations to have good performance in low-SNR scenarios.
The newly introduced unitary space–time codes can lead to signal
constellations with sizes of5 and 9 through 16 that have the
largest possible diversity sums. Subsequently, we construct a few
sporadic unitary signal constellations with the largest possible di-
versity product or diversity sum. A four-signal constellation which
has both the largest possible diversity product and the largest
possible diversity sum and three unitary signal constellations
with the largest possible diversity sums for sizes of6, 7, and 8

are constructed, respectively. Furthermore, by making use of the
existing results in sphere packing and spherical codes, we provide
several upper and lower bounds on the largest possible diversity
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product and the largest possible diversity sum that unitary signal
constellations of any size can achieve.

Index Terms—Differential space–time modulation, diversity
products, diversity sums, Rayleigh-fading channels, sphere
packing, spherical codes, transmitter diversity, unitary matrices,
unitary space–time codes, wireless communications.

I. INTRODUCTION

I N THE last several years, there has been considerable
interest in the wireless communication link using multiple

transmit antennas for the Rayleigh-fading channel models.
The basic information-theoretic results of transmit diversity
suggest that the capacity of a communication link with multiple
transmit antennas can remarkably exceed that of a single-an-
tenna link [36], [7], [8], [22], [45]. There have also been
several coding and modulation schemes proposed to exploit
the potential increase in the capacity through space diversity.
For the coherent multiple-antenna channel, several transmit
diversity methods have been presented in [35], [34], [25] and
references therein (see, e.g., [2], [9], [12], [26], [27], [30],
[38]–[41]). Specifically, Tarokh, Seshadri, and Calderbank [35]
proposed space–time codes which combine signal processing
at the receiver with coding techniques appropriate to multiple
transmit antennas. For the noncoherent multiple-antenna
channel, Marzetta and Hochwald [22] proposed a general
signaling scheme, called unitary space–time modulation, and
showed that this scheme can achieve a high ratio of channel
capacity in combination with channel coding. The design of
unitary space–time constellations was investigated in [15] and
[1].

In the recent literature [16], [18], [33], [37], differential mod-
ulation techniques for multiple transmit antennas have been pro-
posed, which can be regarded as a natural generalization of
the standard differential phase-shift keying (DPSK) used in the
single-antenna unknown-channel link. In this paper, we focus on
the differential unitary space–time modulation scheme indepen-
dently proposed by Hochwald and Sweldens in [16] and Hughes
in [18]. In differential unitary space–time modulation, the infor-
mation messages are transmitted through the unitary space–time
constellations. It has been shown in [16] and [18] by utilizing the
result in [13] that, in high signal-to-noise ratio (SNR) situations,
the performance of differential space–time modulation, in terms

0018-9448/02$17.00 © 2002 IEEE



2292 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

of the block error rate, is dominantly determined by the diver-
sity product of the unitary space–time constellations and hence
that the design of unitary space–time constellations with large
diversity products is crucial for the good performance of differ-
ential unitary modulation schemes. In [16] and [18], a diagonal
cyclic code was developed. A fast decoding algorithm for di-
agonal codes was proposed in [4]. In [31] and [19], the unitary
space–time group codes with positive diversity product were ex-
tensively investigated. When the constellation size is a power of
two, Hughes [19] obtained the characterization of space–time
group codes which are either diagonal cyclic codes or dicyclic
group codes. In a recent work [31], a thorough classification
of unitary space–time group codes of any finite order was pre-
sented. The best one among the space–time group codes can
therefore be found by an exhaustive computer search in a finite
set of unitary signal constellations. It is remarked that the group
code has the practical merit that every transmitted signal is still
a codeword in the group code and, consequently, can be deter-
mined by a simple group table lookup.

The primary purpose of the current paper is to design unitary
space–time codes for the differential modulation scheme with
double transmit antennas. By using the parameterization of uni-
tary groups, we construct a class of unitary signal constellations,
calledparametric codes, for two-transmit-antenna systems. The
parametric codes are demonstrated to have a significant per-
formance improvement over the cyclic group codes. Remark-
ably, the parametric codes lead to a five-signal constellation
with the largest possible diversity product and a 16-signal con-
stellation with the largest known diversity product. Compared
with the existing unitary space–time codes for two-transmit-an-
tenna systems, the above generated 16-signal constellation has
an improvement in terms of the block error rate up to 1 dB at
SNR 22 dB in the case of two receive antennas and at SNR
10 dB in the case of five receive antennas. We also show that
the unitary signal constellations of sizes and
obtained by taking the subsets of the parametric codes of sizes

and , respectively, have the largest known di-
versity products in the literature. Furthermore, for two-transmit-
antenna systems, we employ the diversity sum of unitary signal
constellations as another efficient metric for good performance
of the signal constellations in low-SNR situations. The para-
metric codes can also lead to unitary signal constellations with
the largest possible diversity sums for sizes ofand – . A
few sporadic unitary constellations with the largest possible di-
versity product and/or sum for sizes of and are also
presented. Finally, by making use of extensive results in sphere
packing and spherical codes, we present some upper and lower
bounds on the largest possible diversity product and the largest
possible diversity sum of unitary signal constellations with any
size. Thelargest possiblediversity product and sum are also
called theoptimaldiversity product and sum, respectively. No-
tice that the optimal diversity product is alwayssmaller than
or equal tothe optimal diversity sum for any constellation size,
as we shall see later. It will further be shown that, while the
two quantities are equal for constellation sizes ofthrough ,
the optimal diversity product of a unitary signal constellation is
strictly smaller thanthe optimal diversity sum for constellation
sizes of – . A main result for large-size signal constellations is

that for the unitary signal constellations, the optimal diver-
sity product and sum are of an order between and ,
where is the constellation size. For general
unitary signal constellations, the optimal diversity product and
sum are of an order not greater than for large constel-
lation size .

This paper is organized as follows. In Section II, some prelim-
inaries in differential unitary space–time modulation and a de-
sign criterion for unitary signal constellations with large diver-
sity product and/or diversity sum are presented. In Section III,
a novel class of unitary space–time signal constellations for
double transmit antennas, i.e., the parametric codes, are devel-
oped. Some numerical results in terms of the diversity product
and sum and the block error rate are also given for the com-
parison among the existing known unitary space–time codes. In
Section IV, we construct a four-signal constellation with the op-
timal diversity product and sum and three signal constellations
of sizes , , and with the optimal diversity sums, none of
which belongs to the class of parametric codes. In Section V,
some upper and lower bounds on the optimal diversity product
and the optimal diversity sum for unitary signal constellations
with any size are obtained. Some asymptotic upper and lower
bounds on the optimal diversity product and sum for large-size
signal constellations are also presented. In Section VI, we make
some concluding remarks.

II. DIFFERENTIAL UNITARY SPACE–TIME MODULATION AND A

CRITERION FORDESIGNINGUNITARY SIGNAL CONSTELLATIONS

In this section, we present some necessary preliminaries
about the differential unitary space–time modulation scheme
proposed by Hochwald and Sweldens in [16] and Hughes in
[18] for the Rayleigh-fading channel model, where the channel
fading coefficients are unknown to both the transmitter and the
receiver, an upper bound for the block probability of error and
a design criterion for unitary signal constellations.

A. Differential Unitary Space–Time Modulation

In what follows, we adopt the relevant notations used in [16].
An complex matrix is called unitary if

where is the identity matrix and the superscript
stands for the complex conjugate transpose or Hermitian trans-
pose of a complex matrix. An unitary signal constella-
tion of size means a subset of

where the index set of signals is

For an complex matrix , its Frobenius norm
or Euclidean norm is defined by [21]

where denotes the trace of the argument matrix.
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Consider a communication link with transmit antennas
and receive antennas operating in a Rayleigh flat-fading en-
vironment, which can be described by the following channel
model [16]:

(1)

where is the index of the time block within which

time samples are assembled in order, the trans-
mitted matrix-valued signal whose expected total power
at any time is normalized to be one, i.e.,

where denotes expectation, the received
matrix-valued signal, the channel fading-
coefficient matrix, the additive matrix-
valued noise, andis the expected SNR at each receive antenna,
which does not depend on the number of transmit antennas.
Here, the subscripts, , and satisfy

and

in the th time block. We assume that the additive noise at
time and receiving antenna is independent, with respect to
both and , identically zero-mean and unit-variance complex
Gaussian distributed and that the fading coefficients

are constant in theth time block, independently of the
time , and also independent
identically complex normal distributed with respect
to and . The fading-coefficient matrix indexed by is
assumed to be nearly equal to its adjacent fading-coefficient ma-
trices, i.e., for .

In a single time block of size there are channel uses, and
a transmission rate requires different signals. Each
signal is an unitary matrix from a signal constellation

consisting of such distinct unitary matrices. We assume
that the data to be transmitted is an integer sequence
with for . The transmitted signal sequence
is then determined by the followingfundamental differential en-
coding or transmitter equations[16]:

(2)

where the initial transmitted signal can be any given
unitary matrix. Therefore, the transmitted signal in time block
is a product of many unitary matrices as follows:

which is still an unitary matrix and therefore satisfies
the power normalization. If the initial transmitted signal matrix

, then the set of all possibly transmitted signals
for is a semigroup [20] which is finitely gen-
erated by the signal constellation. This conclusion is actually
true if only the initial transmitted signal matrix belongs to

the above semigroup. Here, the binary operation on the semi-
group is the usual matrix multiplication. In the following, for
simplicity we assume that the initial transmitted signal matrix

, although it is not necessary for the differential mod-
ulation scheme.

Substituting (2) into the channel model (1) and using the as-
sumption of for , we can obtain

(3)

We define

(4)

then we can rewrite (3) as the followingfundamental differential
receiver equations[16]:

where defined by (4) is an matrix with additive inde-
pendent distributed noise entries. The maximum-like-
lihood (ML) demodulator for differential space–time modula-
tion is given by [13], [16]

(5)

B. An Upper Bound on the Block Error Rate

The pairwise probability of mistaking for
or vice versafor the ML demodulator

(5) has a closed-form expression of [13], [16]

choose transmitted

choose transmitted

(6)

where represents the th singular value of
the difference matrix for
and the probability of a random event, and the function

is the signum function defined asif the argument vari-
able is zero and if the variable is larger than zero, and the last
equality in (6) utilizes the following coordinate transformation
[14]:

The pairwise probability of error has the Chernoff upper
bound [13], [16]

(7)
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Furthermore, it is clear that the pairwise probability of error
can generally be bounded from above by the following

summation of a finite integral and a positive number:

(8)

for all .
Let the right-hand side of (8) be denoted by , which is a

function in terms of . Clearly, is the Chernoff bound
(7). The function has the following properties.

Proposition 1: The function in terms of given
by the right-hand side of (8) satisfies the following conditions.

1) is monotonically decreasing for and tends to
as .

2) When is used to numerically evaluate the pairwise
error probability , the nonnegative relative error

for

which is less than when .

3) When the SNR is large, the pairwise error probability
and its Chernoff bound in the right-hand side of (7),

i.e., , decay at a rate of the same order. To be precise,
if is the number of nonzero singular values of the

difference matrix , then, for large SNR

where represents a variable in terms ofwhich
approaches zero astends to infinity.

Proof: See Appendix A.

We assume that the transmitted unitary signals are equally
probablea priori. Then, the performance of a general constel-
lation consisting of unitary space–time signals can be measured
by the following Chernoff union bound on the block probability
of error [15], [16]

error transmitted

(9)

We shall use the above first inequality and Property 2) in Propo-
sition 1 to evaluate numerically the block probability of error
in the subsequent section.

C. A Design Criterion for Unitary Signal Constellations

The Chernoff bound on the pairwise error probability ,
given by the right-hand side of (7), can be rewritten as

(10)

where

and

for . Moreover, the Chernoff union bound on
the block probability of error , given by the right-hand side
of (9), can also be represented by

We may give a geometrical interpretation of for
as follows. Let be a hy-

percube in the -dimensional Euclidean real space defined
by the set

where the superscript denotes the transpose of a vector. Then,
is a sum of the -dimensional volumes of those-dimen-

sional faces of each of which has the origin in as one of
its vertices. It is clear that there are

many such -dimensional faces having a vertex in the origin.
For example, in the case of , we have

and

Moreover, for the general case of

and

which are the sum and product of the squared singular values
for all , respectively.

It is seen from (10) that the Chernoff bound on the pairwise
probability of error is small when the terms for all

are large. The Chernoff bound (9) on the block
probability of error is small when the terms
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are large for all and for all
. Now, we want to introduce some quantities that are closely

related to the evaluation of the pairwise probability of error and
the block probability of error.

For any two unitary matrices and , we define
quantities that reflect the dissimilarity between the two matrices
as follows:

(11)

In the extreme cases of and , the quantities
are related to the Frobenius norm and determinant

of the difference matrix , respectively. We rewrite them
as

and

where denotes the determinant of the argument matrix.
In the following, the quantities and
are called the normalized Euclidean distance and normalized
determinant dissimilarity between the two matricesand ,
respectively. In addition, the quantity is called the
Euclidean distance between and .

For any given unitary signal constellation of size ,
namely, , we may define the
following quantities that reflect the minimum dissimilarity
between any two different unitary signals inas follows:

(12)

In the extreme cases of and , the quantities
are, respectively,

(13)

and

(14)

In [16], the quantity is called thediversity product
of the constellation , which is represented in terms of the min-
imum among theproductsof the squared singular values for all
difference signal matrices. Analogously, we may call
thediversity sumof the constellation , since it is represented
in terms of the minimum among thesumsof the squared singular
values for all difference signal matrices. The quantities de-
fined by (12) possess the following properties.

Proposition 2: For any given unitary signal constel-
lation of size , the nonnegative quantities given
by (12) for and satisfy the following
conditions.

1) For each

and for each

2) If , then

for all

(15)
In the case , the above inequality holds with
equality if and only if any two distinct matrices inhave
the same normalized Euclidean distance and that the sum
of all the signal matrices in is an all-zero
matrix.

3) If , then

for all

4) If , then

for all

Proof: See Appendix B.

According to (10) and (11), the Chernoff bound on the
pairwise probability of error is small when the dissim-
ilarity quantities for all are
large. Therefore, when the minimum-dissimilarity quantities

of the signal constellation , defined by (12), are
large for all , the Chernoff bound (9) on the
block probability of error becomes small correspondingly,
at any SNR . Moreover, it is easy to see that the diversity
product, i.e., , is crucial for the performance of the
unitary space–time constellations at high-SNR, while the
diversity sum, i.e., , is at low-SNR (see also [16],
[18]). For the sake of simplicity, we shall only consider to
design the unitary signal constellation with diversity sum
(13) and diversity product (14) as large as possible. If the
unitary signal constellation has thelargest possiblediversity
product (14) (respectively, diversity sum (13)), then we say that
the constellation has anoptimaldiversity product (respectively,
optimal diversity sum).

In the sequel, we shall focus on the design of unitary signal
constellations for differential space–time modulation with

transmit antennas while allowing any number of re-



2296 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

ceiving antennas . Then, a signal constellation we
shall consider consists of unitary matrices. Our design
objective is to find a unitary signal constellation with large
minimum normalized Euclidean distance and/or normalized
determinant dissimilarity, or equivalently, with large diversity
sum and/or diversity product. The diversity sum and diversity
product of a unitary signal constellation

of size are, respectively, given by

(16)

and

(17)

III. A C LASS OF UNITARY SPACE–TIME SIGNAL

CONSTELLATIONS

In this section, we use the parametric form of unitary
matrices to construct a class of unitary signal constellations. We
shall see that this construction method can lead to a five-signal
constellation with both the optimal diversity product and the
optimal diversity sum and a 16-signal constellation with the
largest known diversity product in addition to the optimal diver-
sity sum. Moreover, the unitary signal constellations for sizes of
– in the class have the optimal diversity sums.

A. A Class of Unitary Signal Constellations for Double
Transmit Antennas

Let the positive integer denote the size of a uni-
tary signal constellation, , and being the
imaginary unit in the complex plane. For any given three in-
tegers , we define the unitary matrix

as a product of three unitary matrices as
follows:

and then construct the following unitary signal constellation of
size :

(18)

where the unitary matrix is defined by the
following product of three powers of unitary matrices:

(19)

For any given constellation size, we select a unitary signal
constellation from the following constellation class:

(20)

such that the unitary signal constellation has the largest diversity
product and/or the largest diversity sum in the constellation class
(20). We call the found signal constellation for
some asparametric code, since every signal
matrix in the constellation possesses theparametric formof

unitary matrices, as shown in (19). It is seen that when the
condition is imposed in the constellation class
(20), the parametric code (18) is exactly thediagonal cyclic code
in the case [16], [18], [19].

For the signal constellation class given by (20), we have
the following result.

Theorem 1: Let , where and is the set of all
positive integers. The signal constellation in the
constellation class given by (20) has a positive diversity sum
(16) if and only if none of the following three cases occurs.

1) , , and odd odd .

2) and odd even odd .

3) and odd odd even, where
odd and even for represent that
is an odd and even number, respectively.

Proof: See Appendix C.

In the case of the constellation size being a power of
, Theorem 1 can be utilized to reduce the search range of

such that the signal constellation
has the largest diversity sum and/or product in the constellation
class given by (20), especially for large constellation size

. Moreover, Theorem 1 implies that the diagonal signal
constellation, which is in the form of (18) with and

always has a positive diversity sum.

B. Comparison With Previous Unitary Space–Time Codes and
Numerical Simulation Results

There have been several classes of unitary space–time
constellations proposed in the previous works. In [16] and [18],
a diagonal code or cyclic group code was introduced. The gen-
eral diagonal code is the first that appeared in the
literature as a unitary space–time code for the-antenna dif-
ferential modulation scheme. The diagonal code can be
thought of as the above parametric code imposed by the con-
straints and . In other words, the para-
metric code is an extension to the three-param-
eter case of the diagonal code with a single
parameter . A main difference between the diagonal
cyclic code and the parametric code is that the diagonal code
has an algebraic group structure while the parametric code is in
general a nongroup signal constellation.

Another class of codes, called generalized quaternion codes
or dicyclic group codes, was developed in [18] and [19]. The
signal constellation is of size , where , and, in
the case , can be described by
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for . The quaternion code is the signal constellation
with the largest diversity product in the following constellation
class:

By a simple calculation, we can see that the diversity sum of a
quaternion code is identical to its diversity product.

In [33], a two-antenna differential detection scheme has been
proposed, which is based on the well-tailored orthogonal design
of unitary matrices [2]. The signal constellation in the
orthogonal design is of size , where and ,
and can be described by

and

where , and are both the th roots of unit , and
and denote the complex conjugate ofand , respectively.

The diversity sum and diversity product of this signal constella-
tion are the following:

Like the parametric codes, the signal constellations in the
orthogonal design are generally nongroup matrix-valued signal
sets. Therefore, when these signal constellations are used for
differential space–time modulation, the transmitted symbols
generated from the fundamental differential encoding equation
(2) are possibly arbitrary unitary signals.

In [31], theauthorspresentedathoroughclassificationof fixed-
point free (FPF) unitary group codes of any finite order. An FPF
unitarygroupcode itself isagroupconsistingof theunitarysignal
matrices in which the difference matrix of any two different uni-
tary signals has a nonzero determinant. The FPF group code is
also called afull-diversitygroup code [31]. The group code has
the practical merit that every transmitted signal in the differential
modulation scheme is still a codeword in the group code and can
thus be determined by a simple group table lookup. Moreover, in
[31], the authors also investigated the construction methodology
of general unitary space–time codes, which may or may not be
group codes, inspired by the FPF group codes.

The diversity products and diversity sums of the above uni-
tary space–time codes for some constellation sizes are presented
in Tables I and II, respectively. We observe that the FPF group
codes can provide better diversity products than the other codes
in Table I for relatively large constellation sizes. Parametric
codes possess comparable diversity products with those of FPF
group codes, as shown in Table I. It is seen from Tables I and II
that the parametric codes have equal or better diversity products
and sums than those of the cyclic codes, quaternion codes, and
the signal constellations in orthogonal design.

According to Property 2) in Proposition 2 and Tables I
and II, we can see that the parametric codes can lead to a
five-signal constellation with the largest possible

diversity product and sum of and a nine-signal constel-
lation achieving the largest possible diversity sum of . By
using Property 3) in Proposition 2, the 16-signal constellation

in the class of parametric codes also has the largest
possible diversity sum of in addition to the largest known
diversity product of . This also implies that the unitary
signal constellations with sizes – , as any of thesubsets
of the above 16-signal constellation , can also attain
the largest possible diversity sum of . It is worth noting
that, although the above parametric code of size, ,
itself is not a group, its finitely generated semigroup is actually
a finite group of order , i.e., it is a subset of a group of order

. Thus, like other group codes, when the parametric code
is used for differential modulation, every transmitted

signal can also be determined by a simple table lookup in the
above finite group. More precisely, the 16-signal constellation
of parametric code

as shown in Table III, has the following property.

Proposition 3: When the 16-signal constellation

given in Table III is used for differential modulation, the set of
all possibly transmitted signals for encoded
by (2) in which the initial transmitted signal , is a finite
group given by

and

The above conclusion remains true if only the initial transmitted
signal in (2) belongs to the above finite group.

Proof: See Appendix D.

From Proposition 3, we know that, when the parametric code
of size , , given in Table III is used for differen-
tial modulation with double transmit antennas, each transmitted

unitary signal is a diagonal matrix or a matrix with zero
diagonal entries. Hence, only one of the two transmit antennas
is activated at each time when the signals are transmitted. The
computer-simulated performance in terms of the block error
rate of the parametric code , quaternion code, and the
signal constellations in orthogonal design, each of size, is
shown in Figs. 1 and 2. The union bound on the block error
probability in Figs. 1 and 2 is obtained by summing all the pair-
wise error probability divided by and the pairwise error prob-
ability is numerically evaluated by using the right-hand side of
(8), where we take . We can see from Figs. 1 and 2
that the union bound and the simulation result of the block error
probability fit each other quite well. As shown in Fig. 1, in the
case of two receive antennas, the parametric code has an im-
provement in block error rate of about 1 dB over the existing
codes at SNR 22 dB. In the case of five receive antennas, the
improvement is over 1 dB at SNR 10 dB as seen from Fig. 2.

Furthermore, from Table I, one can see that, the unitary
space–time codes of sizes and as the subsets
taken from the parametric codes of sizes and ,
respectively, have the largest known diversity products.
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TABLE I
DIVERSITY PRODUCTS�(L; V) OF UNITARY SPACE–TIME CODES FORTWO TRANSMIT ANTENNAS

IV. UNITARY SIGNAL CONSTELLATIONS WITH OPTIMAL

DIVERSITY SUM AND PRODUCT FOR AND WITH

OPTIMAL DIVERSITY SUMS FOR

In the preceding section, we have shown that the unitary signal
constellations in the class of parametric codes for sizes of– ,
except for and , can attain theoptimaldiversity sums.
Thus, a natural question that arises is what are the unitary signal
constellationsforsizesof and whichachievetheoptimal
diversity sums. The question can well be answered by providing
several examples of unitary signal constellations, as shown later.

A. Unitary Signal Constellation With Optimal Diversity Sum
and Product for

The following result indicates that there is a unitary signal
constellation of size which has both the optimal diversity sum
and the optimal diversity product.

Proposition 4: Let for satisfy
. If , then the four-signal constellation

of unitary matrices given by

has the optimal diversity sum and product of the same value
.
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TABLE II
DIVERSITY SUMS �(L; V) OF UNITARY SPACE–TIME CODES FORTWO TRANSMIT ANTENNAS

Proof: Let for . By a
simple calculation, we have

and

According to (17), the above four-signal constellationhas a
diversity product of

Furthermore, it follows from Properties 1) and 2) in Proposi-
tion 2 that

Therefore, the diversity sum of the above four-signal constella-
tion is also . The optimality of the diversity
product and sum of value for is seen from in-
equality (15) in Proposition 2.

The proof of Proposition 4 is thus completed.

In Figs. 3 and 4, we present computer simulation results of
the block error rate of the above four-signal constellation, where
we take , compared with the cyclic code
of size . It is seen from Fig. 3 that, in the case of two receive
antennas, the code given in Proposition 4 has an improvement of

1dB over cyclic code at SNR 14 dB. In the case of five receive
antennas, the improvement is 1 dB at SNR 8 dB as shown in
Fig. 4.

B. Unitary Signal Constellations With Optimal Diversity Sums
for

The signal constellations of sizes, , and with the largest
possible diversity sums given as follows are constructed mainly
through a computer search. According to inequality (15) in
Proposition 2, we can verify the following two results through
direct numerical evaluation.

Proposition 5: Let , ,
, , ,
. Then, the six-signal constellationcom-

posed of the following unitary matrices

has the optimal diversity sum of
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TABLE III
THE SIGNAL CONSTELLATION OF PARAMETRIC CODE V(3; 4; 2) OF

SIZE 16 FOR TWO TRANSMIT ANTENNAS

Proposition 6: We construct a seven-signal constellation
as follows.

1) The first unitary matrix is

2) Let and . We define three real
numbers of

, and

and three complex numbers of , ,
and . The second and third unitary matrices
are given by

3) Let and . We define the three
real numbers of

, and

and the three complex numbers of ,
, and . The fourth and fifth unitary

matrices are given by

4) Let , , and the complex
matrix

We define the four real numbers of ,

and

and the two complex numbers of and
, where and stand for the real and

imaginary parts of a complex number, respectively. The
sixth and seventh matrices are given by

Then, the seven-signal constellation
defined in the above consists of unitary matrices and has
the optimal diversity sum of
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Fig. 1. Simulation results and union bounds on the block error rates for signal constellations of sizeL = 16 withM = 2 andN = 2.

Fig. 2. Simulation results and union bounds on the block error rates for signal constellations of sizeL = 16 withM = 2 andN = 5.
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Fig. 3. Simulation results of the block error rates for signal constellations of sizeL = 4 withM = 2 andN = 2.

Fig. 4. Simulation results of the block error rates for signal constellations of sizeL = 4 withM = 2 andN = 5.
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In Propositions 5 and 6, the unitary signal constellations are
presented directly. Contrary to this, the eight-signal constella-
tion described in what follows is somewhat complicated and
determined by three parameters which satisfy a system ofnon-
linear equations in order that the eight-signal constellation has
an optimal diversity sum.

Proposition 7: We define and

Let be three free parameters and
an auxiliary function in terms of given by

Let

and

For we define the following four numbers of
:

and . We introduce the following eight matrices:

Then, for any satisfying
and , i.e., that

the eight-signal constellation defined by

consists of unitary matrices and satisfies

for

and and
for . Therefore, if the following system of
nonlinear equations in terms of for

(21)

admits a solution satisfying

for , then the above eight-signal constellation
possesses the optimal diversity sum of

Proof: See Appendix E.

We are not able to find an analytical proof of the existence of
solutions to the nonlinear equation (21) in terms of
for . However, we find two numerical solutions of
(21), namely

and

satisfying

for . The resultant unitary signal constellation
of size has a diversity sum of

which is approximate to the analytical value of optimal
diversity sum within the precision of . It
is remarked that the above three unitary signal constellations of
sizes , , and with the optimal diversity sums possess the
diversity products of

and

respectively.

V. UPPER ANDLOWER BOUNDS ON THEOPTIMAL DIVERSITY

SUM AND OPTIMAL DIVERSITY PRODUCT OFUNITARY SIGNAL

CONSTELLATIONS

It is known that a unitary signal constellation can achieve
good performance in terms of block error rate if it has large
minimum normalized Euclidean distance and/or large minimum
normalized determinant dissimilarity. Thus, it is meaningful to
examine the largest possible minimum normalized Euclidean
distance and the largest possible minimum normalized deter-
minant dissimilarity that a unitary signal constellation of any
size can attain. Theoptimal diversity sum and product
of order are, respectively, the above largest possible minimum
normalized Euclidean distance and normalized determinant dis-
similarity. Clearly, the optimal diversity sum and product for
unitary signal constellations of size also provide the funda-
mental limits on how well we can separateelements in the
space of unitary matrices. In what follows, we shall
investigate the exact values of the optimal diversity sum and
product that can be achieved by unitary signal constellations and
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TABLE IV
EXACT VALUES OF OPTIMAL DIVERSITY SUMS �(L) AND PRODUCTS�(L) FOR TWO TRANSMIT ANTENNAS

provide some upper and lower bounds on the optimal diversity
sum and product in the case that the exact values are not avail-
able.

Let be an unitary
signal constellation of size . The optimal diversity sum and
the optimal diversity product of order for the unitary signal
constellation are, respectively, given by

(22)

and

(23)

It is emphasized that each of the optimal values defined in (22)
and (23) must be attained at some unitary signal constellation,
since the optimization in (22) and (23) is essentially performed
over a compact subset of parameters of the unitary matrices in

[24].
By Property 1) in Proposition 2 and definitions of (13) and

(14), the diversity product of a unitary signal constellation
cannot exceed its diversity sum. Therefore, we have

for all and for all . Specifically, it is clear that

for all .
For the general case , let the unitary signal

constellation be composed of for all ,
we can know that

(24)

Moreover, by using Properties 2)–4) in Proposition 2, we have,
for any

if

if

if .

(25)

Therefore, it follows from (24) and (25) that

for , and any .
In the following, we want to find some exact values of optimal

diversity sum and optimal diversity product in

the case and present some upper and lower bounds on
and in case their exact values are not available.

For simplicity, in the following we denote and
for in the case .

A. The Known Exact Values of Optimal Diversity Sum and
Product

The known exact values of optimal diversity sum for
and optimal diversity product for

are summarized in Table IV. For and , the op-
timal diversity product and sum are derived from (24) and (25).
Proposition 4 presented a unitary code of sizewith the op-
timal diversity product and sum. The parametric code of size
attains the optimal diversity product and sum. The unitary codes
of sizes and with the optimal diversity sums are shown,
respectively, in Propositions 5–7. The unitary codes of sizes
through with the optimal diversity sums are the parametric
code of size and the parametric code of
size and its subsets with the corresponding sizes of– ,
respectively.

We do not know the exact values of optimal diversity sum
for and optimal diversity product for .

In what follows, we shall present some upper and lower bounds
on for and for and some asymptotic
upper and lower bounds on and when is large. It
is obvious that the largest known diversity sum and product are
also lower bounds on the optimal diversity sum and product, re-
spectively. We shall use the notation to represent a vari-
able in terms of which approaches when . It is
noted that for any fixed , the function in terms of

is strictly monotonically decreasing.

B. Upper and Lower Bounds on the Optimal Diversity Product
for Through

We see from (25) that the optimal diversity product

for

for

and

for

For the cases of from to , the following result indicates
that the optimal diversity product is actuallysmallerthan

. That is, there do not exist unitary signal constella-
tions with sizes of through whosediversity productscan
reach , while there are indeed unitary signal constel-
lations whosediversity sumscan attain the upper bound as seen
from Table IV.
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TABLE V
BOUNDS ON THEOPTIMAL DIVERSITY PRODUCTS�(L) FOR6 � L � 16 FOR TWO TRANSMIT ANTENNAS

Theorem 2: The optimal diversity product in the case
has the following property:

for

Proof: From Table IV, it is known that the optimal diver-
sity sum

for

Therefore, to prove Theorem 2, we need only to prove that

for

which is shown in Appendix F.

Theorem 2 says that, the optimal diversity product is
strictly smaller than the optimal diversity sum for the unitary
space–time codes of sizes ofthrough in the case .
Contrary to this, the optimal diversity product and the optimal
diversity sum in the case are equal for orders of
through , as shown in Table IV. The upper and lower bounds
on the optimal diversity products for are
given in Table V, where the upper bounds for
are unattainable from Theorem 2 and the lower bounds are
the largest known diversity products the parametric codes can
attain.

C. Bounds on the Optimal Diversity Product and Sum
for

The subsequent results about the upper and lower bounds on
the optimal diversity product and sum of unitary signal constel-
lations will resort to the arguments in the areas of sphere packing
and spherical codes (see, [5] and [10]). Actually, we can regard
the design problem of unitary signal constellations as the con-
struction of “spherical codes” in the following complex Stiefel
manifold:

which is simply the unit-radius circle in or in the case
. In the following, we give some preliminaries in sphere

packing and spherical codes, which are particularly relevant to
our need.

A -dimensionalspherical code is a finite set of distinct
points in that lie on the surface of the unit radius-dimen-
sional Euclidean sphere defined by

(26)

Let denote the number of code points in the spherical
code , i.e., the code size of the spherical code. Theminimum
distanceof a -dimensional spherical code is defined
as

where is the Euclidean norm in defined by
for . The minimum angular separationof

spherical code is defined as

Equivalently, we have

It is obvious that for any spherical code with ,
there must be , or equivalently, .
For a given space-dimension, a minimum distance ,
and code size , we define

there is a spherical code

with code points and (27)

which denotes the largest number of code points of a-dimen-
sional spherical code with minimum distance not less than,
and

there is a spherical code

with code points and (28)

which is the largest possible minimum distancethat a -di-
mensional spherical code of given size can achieve.
It is clear that, for any given space dimension , de-
fined in (27) is a monotonically decreasing staircase-like func-
tion in terms of , and defined in (28) is a
monotonically decreasing sequence in terms of . Further-
more, for each , we have

and

On the other hand, for any fixed and ,
and are both monotonically increasing sequences in
terms of , since any -dimensional spherical code
is also a -dimensional spherical code in .

The two metrics defined above, namely, and
, for evaluating the quality of a spherical code are

essentially equivalent. In the current application situation, we
are more interested in the quantity than ,
since we can employ to get the upper and lower
bounds on the optimal diversity product and sum of unitary
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signal constellations with any code size through the following
approach.

Theorem 3: For any constellation size , the optimal
diversity product and sum have the following bounds.

1) In the case , we have

2) In the case , we have

3) In the case , we have

4) For all , we have

where the equality holds in the case , i.e.,

Proof: See Appendix G.

It is noted that the lower bound in Property 1) of Theorem
3 for the optimal diversity product of unitary constella-
tions, i.e., , is actually the maximal possible diversity
product of Hamiltonian constellations [31], which form the
group of Hamiltonian quaternions of norm, with size .

We emphasize that most studies in the earlier works on spher-
ical codes have used as the figure of merit for a spher-
ical code. As a result, there have been extensive upper and lower
bounds on , while few ones on , in the litera-
ture, as shown in the seminal book of Conway and Sloane [5].
Moreover, the upper and lower bounds on were gen-
erally given in terms of [5], where
satisfying , or equivalently, satis-
fying . The notation means the maximal size
of a spherical code with minimum angular separation larger
than or equal to , i.e., with the property that for
any satisfying .

In order to make Theorem 3 useful in practice, we have to
establish the upper and lower bounds on from the ex-
isting ones on in the literature. It is clear that

(29)

and

(30)

From the above relationship between and ,
namely, (29) and (30), we have immediately the following.

Proposition 8: Let and be, respectively,
the upper and lower bounds on for all and

, i.e.,

Then, for all and for all , we have

and

By applying the preceding method, we can give the following
result based on which the upper bound on the optimal diversity
product and sum given in Proposition 2 can be derived.

Proposition 9: The quantity satisfies

1) for all ;

2) for all and for all , we have

if

if

if .

(31)

The above proposition is essentially Rankin’s result on the
precise values of when , or equivalently,

when , which can be stated as follows (see,
[28, p. 139] and [5, p. 27]).

Lemma 1: For each , we have

1) , for , where
denotes the integer part of a nonnegative real number;

2) , for ;

3) .

From Lemma 1, it is known that cannot take a value
between and .

Proof of Proposition 9:

1) The quantity means the largest possible
minimum distance of a spherical code consisting
of distinct code points in the unit circle in the
two-dimensional plane . From this, it follows that

.
2) From Properties 1) and 2) in Lemma 1, it follows that

for
and and that for

. By using

where , we can have that for
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From the definition of

for satisfying , we know that

for

satisfying . By virtue of these facts and making
use of

for

we obtain that for

When , by Lemma 1, it holds that

If , then

where the last strict inequality is implied by Property 3)
in Lemma 1.

The proof of Proposition 9 is thus completed.

By using the result (31), we can see that the strict inequality
in (29) can hold in some case such as

It is interesting to note that we also have
and for any , , and ,
where the strict inequality may hold in some cases such as

for

and

Now, we want to present Yaglom’s lower bound on the op-
timal diversity product and sum of unitary signal con-
stellations. We need some knowledge in sphere packing (see [5]
and [10]). Asphere packing(or simplypacking) is a set of mu-
tually disjoint, equal radius, open spheres. Thepacking radius
is the radius of the spheres in a packing. The packing radius is
normally as large as possible such that there are tangent spheres
in the packing but no overlapping spheres. As defined in [29], a
packing is said to havedensity if the ratio of the volume of the
part of a hypercube covered by the spheres of the packing to the
volume of the whole hypercube tends to the limit, as the side
length of the hypercube tends to infinity. That is, the density is
the fraction of space occupied by the spheres of the packing. The

highest density of any sphere packing in, denoted by ,
is the density of the densest-dimensional sphere packing. It is
known that and . They are the only two

known and provably precise values among for [5].
A long-standing conjecture, the so-called “Kepler conjecture,”
stated that no packing of three-dimensional spheres can have a
greater density than that of the face-centered cubic lattice. The
density of the three-dimensional face-centered cubic lattice is

. The current status of Kepler conjecture
has been examined in [5] and [32]. Moreover, Muder [23] ob-
tained the upper bound of on the density .

Yaglom’s lower bound on for can be
stated as follows (see [44], [5, p. 265]).

Lemma 2: For all and , we have

where .

Therefore, according to (30) and Proposition 8, we have, for
all and for all

(32)

From (32) and Property 1) in Theorem 3, we get the following
corollary.

Corollary 1: In the case , we have

for (33)

where the notation means that the numberis greater
than but similar to .

It is noted that the lower bound on the optimal diversity
product and sum given in Corollary 1 is representedexplicitly
for all . That is, the lower bound given in Corollary 1 is
a function of the constellation size in anexplicit form. More
available bounds on the optimal diversity product and sum can
only be obtained generally through animplicit method in the
sense that the bounds are written as theimplicit functions, in
terms of the constellation size, which can be determined by
an optimization procedure.

We can derive Coxeter’s upper bound on the optimal diversity
product and sum by using Coxeter’s upper bound on
for , which employs the Schläfli’s function defined
recursively by

where and the initial conditions are
. Coxeter [6] conjectured and Böröczky

[3] proved the following result.
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Lemma 3: For all and , we have

where is determined by

Then, according to Properties 2)–4) in Theorem 3 and Propo-
sition 8, we can obtain

for (34)

for (35)

and

for

(36)

where the functions for and are
defined in Lemma 3 and .

We emphasize that, by applying Lemma 3 and Proposition 8,
we can provide an upper bound on the maximal possible diver-
sity product of Hamiltonian constellations [31] with any
size , namely, , given by

for (37)

where the function is defined in Lemma 3. With
the help of inequality (37), we can obtain, by using a com-
puter program, an upper bound on the maximal possible diver-
sity product of Hamiltonian constellations with16unitary
signals being , which issmaller thanthe diver-
sity product of the parametric code of size , given
in Table III, being . This indicates that the para-
metric code of size has a diversity product better than that
of any Hamiltonian constellation of the same sizegenerated
from a spherical code lying on defined in (26).

In a similar way as for obtaining Coxeter’s upper bound
in the inequalities (34)–(36), we can also derive the Rankin’s
upper bound on the optimal diversity product and sum by using
Rankin’s upper bound on for [28] as
stated in the following lemma.

Lemma 4: For all and , we have

where and is the usual gamma
function defined by

for and

It is remarked that when lying in is very close to
, the above function tends to infinity. In fact

where the positive constant does not depend on and .
Therefore, the preceding Rankin’s upper bound on
is not effective in estimating in practice when

and is very close to . Rankin’s upper bound
can apply to the unitary signal constellations with size
and be given by

for (38)

for (39)

and

for

(40)

where the functions for and are
defined in Lemma 1 and .

It can be shown by asymptotic analysis that, for large constel-
lation size , the above Coxeter’s upper bounds of (34)–(36) on
the optimal diversity product and sum are better than Rankin’s
upper bounds of (38)–(40), respectively, the details of which are
omitted here due to the limitation of space. For ,
the comparison between them can be made through numerical
evaluation, as shown in Fig. 5. It is seen from Fig. 5 that Coxeter
and Rankin’s upper bounds on satisfy

for and and for . Hence, for
, Coxeter’s upper bounds of (34)–(36) on the

optimal diversity product and sum are, respectively, better than
Rankin’s upper bounds of (38)–(40).

The numerical values of Coxeter’s upper bounds of (34)–(36)
for are plotted in Fig. 6, which shows that
the upper bound (36) is the best among the above three upper
bounds. However, for large, the upper bounds of (34) and (35)
should be better than (36), since the former two bounds can be
shown to be of the order of while the upper bound (36)
is of the order of for large constellation size.

Besides Yaglom’s lower bound given in Corollary 1, another
lower bound on the optimal diversity product and sum can be de-
duced by using the following Wyner’s lower bound on
for [42].

Lemma 5: For all and , we have
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Fig. 5. Comparison of Coxeter and Rankin’s upper bounds onD(6; L) andD(8; L).

Fig. 6. Comparison of Coxeter’s three upper bounds on�(L) and�(L), where the first, second, and third bounds are, respectively, given by (34)–(36).
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Fig. 7. Comparison of Yaglom’s and Wyner’s lower bounds on the optimal diversity products�(L).

Wyner’s lower bound can apply to the unitary signal constel-
lations with size and be given by

for (41)

where defined in Lemma 5 can be written as
.

For , the numerical simulation results of Ya-
glom’s lower bound given by (33) and Wyner’s lower bound
given by (41) are presented in Fig. 7, which shows that Yaglom’s
lower bound on the optimal diversity product and sum is better
than Wyner’s lower bound. Furthermore, we can prove analyti-
cally that Yaglom’s lower bound given by (33) is actually better
than Wyner’s lower bound in (41) for all . The fol-
lowing lemma is needed for our proof.

Lemma 6: For and , we have

Proof: Let the functions

and

for

Then, the first-order derivative of is

Therefore, for . By applying Taylor’s theorem,
we know that for .

The first- to fourth-order derivatives of are, respec-
tively

and

which is larger than zero for . By applying Taylor’s the-
orem again, we obtain for as well. The proof
is completed.

Proposition 10: For all , we have

Proof: Let , which satisfies

Then, for , we have
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From this and Lemma 6, we can obtain, for

Therefore, by

On the other hand, by Lemma 6, we have, for

Then, by , we obtain, for

The proof of Proposition 10 is thus completed.

According to Proposition 10 and Fig. 7, Yaglom’s lower
bound on the optimal diversity product and sum, given by
(33), is better than Wyner’s lower bound given by (41) for all

.
Now, we give some asymptotic bounds on the optimal diver-

sity product and sum or their decaying rates for unitary signal
constellations with large code sizes. A notation in asymptotic
analysis is needed and described in what follows. For any two
nonnegative real-number sequences and in terms of

, the notation means that there exist
a positive constant independent of and some positive
integer such that for all .

Theorem 4: For large constellation size, the optimal diver-
sity product and sum satisfy the following conditions.

1) In the case , we have

2) For all , we have

Proof: See Appendix H.

The numerical values of the diversity product and sum of the
parametric codes and cyclic codes are plotted in Fig. 8 for

. The best known Coxeter’s upper bound given by

(36) for and the best known Yaglom’s lower
bound in ananalytical form given by (33) are also shown in
Fig. 8. It can be seen from Fig. 8 that the parametric codes have
a large improvement in both diversity product and diversity sum
over the cyclic codes. The numerical values of Coxeter’s upper
bounds on the optimal diversity product and sum in the case

for some constellation sizesare listed in Table VI.

VI. CONCLUSION

In this paper, by making use of the parameterization of uni-
tary groups, we have proposed a new class of unitary space–time
codes, called parametric codes, for the differential modulation
with double transmit antennas across a Rayleigh-fading channel
whosefadingcoefficientsareunknowntoboththetransmitterand
thereceiver.Theparametriccodeshavebeenshowntohavealarge
improvement indiversityproductanddiversitysumover thediag-
onal cyclic codes. It has been shown that the parametric codescan
leadtoafive-signalconstellationwhichhasthelargestpossibledi-
versity product and sum and a 16-signal constellation which pos-
sesses the largestknowndiversityproductandthe largestpossible
diversity sum. Although the parametric code of sizeis not a
groupbyitself, it isasubsetofagroupoforder.Computersimu-
lation results have demonstrated that, compared with the existing
unitary space–time codes, the above 16-signal constellation has
an improvement in terms of the block error rate up to 1 dB at SNR
22 dB in the case of two receive antennas and at SNR 10 dB in the
caseoffivereceiveantennas.Furthermore,theunitaryspace–time
codes of sizes and as the subsets taken from the
parametriccodesofsizes and ,respectively,have
the largest known diversity products in the literature. These
unitaryspace–timecodesmaybeusefulnotonly in two-transmit-
antennasystemsbutalso insingle-transmit-antennasystemswith
frequency-selective fading as described in [43] where a precoded
and vector orthogonal frequency-division multiplexing (OFDM)
was introduced.

For the differential modulation with double transmit antennas,
we have presented unitary signal constellations with the optimal
diversity products for sizes up toand the unitary signal constel-
lations with the optimal diversity sums for sizes up to. Consid-
ering the theoretical and practical significance of the upper and
lower bounds on the optimal diversity product and sum that uni-
tary signal constellations of any given size can achieve, we have
investigated these bounds by resorting to the existing numerous
results in sphere packing and spherical codes. A main conclusion
is that for the unitarysignalconstellations, theoptimaldiver-
sityproductandsumareofanorderbetween and for
large constellation size. For the general uni-
tary signal constellations, the optimal diversity product and sum
are of an order of for a large constellation size.

APPENDIX A
PROOF OFPROPOSITION1

We define the function
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Fig. 8. Diversity products and sums of parametric and cyclic codes with lower and upper bounds.

TABLE VI
COXETER’S UPPERBOUNDS ON THEOPTIMAL DIVERSITY PRODUCTS ANDSUMS FORTWO TRANSMIT ANTENNAS

which is even and monotonically decreasing with respect to
. Then the right-hand side of (8) is

for .
1) Let , then we have

which means that is monotonically decreasing with re-
spect to . Moreover, if and there is at least one sin-
gular value of which is nonzero (i.e., ), then the
above function is strictly monotonically decreasing with

respect to . Hence, the function in term of is
strictly monotonically decreasing as well.

It is clear that approaches as tends to infinity.
That is,

2) Now, we derive an upper bound on the nonnegative relative
error of for when used to numerically evaluate the
pairwise error probability as follows:

3) Let be the number of nonzero singular values of the
matrix . We want to prove that, for large-SNR,

the pairwise error probability and its Chernoff bound
decay at a rate of the same order. Without loss of generality, we
assume in the sequel.
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By use of the relation when
, we can see that for large

where is the th singular value of the
difference matrix for . Then,

for large

On the other hand, for large, the Chernoff bound of the
pairwise error probability is

Therefore, for large

The proof of Proposition 1 is thus completed.

APPENDIX B
PROOF OFPROPOSITION2

We first introduce two inequalities which play a key role in
our subsequent proof.

Let be positive-real numbers and

We define theelementary symmetric functionof degree of the
elements as follows:

For the th elementary symmetric function , we call

the th weighted elementary symmetric functionof the ele-
ments . Then, for the weighted elementary sym-
metric functions , we have the following two
inequalities [21, p. 106]:

and for . By (11), we have

where for . By virtue of
the above two inequalities, we obtain

(42)

and

for . Therefore, according to the definition of
given in (12), the conclusions in Propoerty 1) can im-

mediately be derived. In the sequel, we give a proof of Properties
2)–4). By Property 1), it suffices to prove these inequalities in
the case .

For any unitary matrix , the many complex
numbers in the complex matrix can be regarded
as many real numbers whose squared sum is unity. Hence,
a finite set of the matrices for is
equivalent to a spherical code lying on the surface of the unit-
radius sphere defined by (26). Therefore, in (13)
cannot exceed half of the largest possible minimum distance of
a spherical code with code points on the surface of .
That is,

where is defined in (28). According to (31) in Proposi-
tion 9, the three inequalities about given in Properties
2)–4) are true.

We now prove that the equality in (15) holds in the case
if and only if the Euclidean distance between any two

distinct matrices in is the same and the sum of all thema-
trices in is an all-zero matrix.

We define

It is easy to see that
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Therefore, by a simple calculation, we obtain

On the other hand, we have

with equality if and only if the Euclidean distance between any
two distinct matrices in is the same.

Thus, we can get

From this, it is clear that

if and only if the Euclidean distance between any two distinct
matrices in is the same and

Hence, the proof of Proposition 2 is completed.

APPENDIX C
PROOF OFTHEOREM 1

The signal constellation for
has a positive diversity sum if and only if any two signal matrices
in the constellation are mutually different.

We first give two lemmas upon which our proof of Theorem
1 is established.

Lemma 7: For any fixed ,
, and , the equality

holds if and only if the following two conditions of A) and B)
are met.

A) .
B) At least one of the following twelve conditions is sat-

isfied:
B1) , , and

.
B2) , , and

.
B3) , , and

.
B4) , , and

.

B5) , , and
.

B6) , , and
.

B7) , , and
.

B8) , , and
.

B9) , , and
.

B10) , ,
and .

B11) , ,
and .

B12) , ,
and .

For compactness, the proof of Lemma 7 will be given at the
end of the Appendix, following the proof of Theorem 1.

For any , we define two nonnegative integers
and which satisfy

It is apparent that and with the above
property are uniquely determined by . In addition, when

, we define and .
According to the above definition, we know that if

is odd, and that for any two nonnegative integersand

The following lemma can be easily verified.

Lemma 8: Let , , , and

Then, we have

1) ;

2) if and only if .

According to Lemma 8, we obtain the following three rules
which play an important role in the ensuing proof.

Under the notations and assumptions in Lemma 8, we have

Rule 1) If , then is even.

Rule 2) and
cannot hold simultaneously.

Rule 3) and
cannot hold simultaneously.

Now, we can give the proof of Theorem 1. According to
Lemma 7, for any fixed , the signal constel-
lation has a positive diversity sum if and only
if for all and for all

, eithercondition A) in Lemma 7 is not
satisfiedor none of the 12 conditions of B1)–B12) in Lemma 7
are met. Equivalently, for any fixed , the signal
constellation has a diversity sum of zero if and
only if there aresome andsome

which satisfy condition A)andat least
one of the 12 conditions of B1)–B12) in Lemma 7.
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If , i.e., , then the constellation has
exactly two matrices one of which is the identity matrix
for and the other one for is which
equals the identity matrix if and only if

or . That is, in the case ,
the constellation has a diversity sum of zero if and
only if or .

In the sequel, we set , i.e., .
If is even, then, by virtue of Rule 1), condition A) in

Lemma 7 cannot be satisfied for all
where is any number belonging to . Hence, the signal
constellation has a positive diversity sum.

Now, we assume that is odd and make the discussion
in the following four mutually exclusive cases.

1) odd even even.
According to the previously mentioned Rules 1)–3), we
can see that forall
and forall , none of the 12
conditions of B1)–B12) in Lemma 7 is met. Hence, the
constellation has apositivediversity sum.

2) odd even odd .
We take and which satisfy condition
A) of in Lemma 7. In the case of

, condition B5) in Lemma 7 is met, while
in the case of , condition B8) in Lemma
7 is satisfied. Hence, the constellation has
a diversity sum ofzero.

3) odd odd even.
We still take and , then condition A)
of in Lemma 7 is met and that in
the case of condition B2) in Lemma 7 is
satisfied while in the case of condition
B3) in Lemma 7 is met. Therefore, the signal constellation

has a diversity sum ofzero.

4) odd odd odd .
According to the preceding Rules 1)–3), it can be seen

that forall

and forall

conditions of B1)–B9) and condition B12) in Lemma 7
cannot be satisfied. Therefore, we can focus on conditions
of B10) and B11) and condition A) in Lemma 7.

If condition B10)or B11) in Lemma 7 is met, then there
should be which means that

or

Recall that we have assumed

and

If , then, in order to satisfy condition B10)
or B11), there are only two possibilities of
and . Then, the equivalence relations of

in condition B10) and
in condition B11) in

Lemma 7 cannot hold, since oddodd even
is impossible. Hence, none of the 12 conditions of
B1)–B12) in Lemma 7 can be met, which implies that
the signal constellation of size has
a positivediversity sum.

Now, we assume that , i.e., .
In the case of , if condition B10)

or B11) in Lemma 7 is met, then
or , and consequently, condition A)
of in Lemma 7 cannot hold.
On the other hand, if neither conditions B10) nor B11) is
met, then, combining with the above results, we know that
none of the 12 conditions B1)–B12) in Lemma 7 can be
satisfied. Therefore, in the case of , the
signal constellation always has apositive
diversity sum.

In the case of , if ,
then we can take and which satisfy
conditions A) and B11) in Lemma 7. If ,
then we can take and which satisfy
conditions A) and B10) in Lemma 7. Hence, in the case
of , the signal constellation
always has a diversity sum ofzero.

Integrating the preceding results in all situations, we see that
all the cases in which the signal constellation has
a diversity sum of zero are exactly those stated in Theorem 1.
The proof of Theorem 1 is thus completed.

At the end of the Appendix, we briefly present a proof of
Lemma 7.

We can expand the matrix equation

into the following equivalent system of four equations:

which can be reduced to the three equations of

(43)

In the derivation of the conditions in Lemma 7, the following
two facts are frequently used.

1) We have if and only if or
, which corresponds to

and , respectively. Equivalently,
if and only if , and that

if and only if .

2) We have if and only if or
, which corresponds to

and , respectively. Equivalently,
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if and only if , and that if
and only if .

The first equation in (43) is equivalent to condition A) in
Lemma 7, i.e., . The second and third
equations in (43) can be handled in the following three mutually
exclusive cases.

1) .
2) .
3) .
Each of the preceding three cases can be further discussed

separately in the four situations as described in the following.
For case 1), we have that or

and that or
. Therefore, there are exactly four situ-

ations in which the second and third equations in (43) can be
equivalently reduced to conditions B1)–B4) in Lemma 7. For
example, in the case that and

are satisfied, the third equation in (43) is equiva-
lent to . Therefore, condition B1) in Lemma 7
is deduced.

For case 2), we have that or
and that or
. The second and third equations in (43) in the cor-

responding four situations are equivalent to conditions B5)–B8)
in Lemma 7. For example, in the case that
and are satisfied, the second equation
in (43) is equivalent to . Therefore, condition
B5) in Lemma 7 is derived.

For case 3), we have

and

where . Thus, there are also four situations
in which the equivalent conditions B9) to B12) in Lemma 7
can be deduced from the second and third equations in (43).
For example, in the case that , the second
and third equations in (43) are equivalent to ,

, and . Therefore, con-
dition B9) in Lemma 7 is obtained.

The proof of Lemma 7 is thus completed.

APPENDIX D
PROOF OFPROPOSITION3

Let and . Then, it is easy to verify that the
signal constellation given in Table III can
be written as

Since , the constellation itself is not a
group.

By a simple calculation, we have the following relations in
terms of and :

(44)

Hence,

and

(45)

By (44), it is easy to verify that the set given by (45) is a
group on which the binary operation is the usual matrix multipli-
cation [20]. Moreover, every element in can be factorized
as a product of some matrices in. Hence, the conclusion in
Proposition 3 is true.

APPENDIX E
PROOF OFPROPOSITION7

The equivalence between the condition that and
and the condition that

for can be easily checked by some trigonometric
and algebraic manipulation.

The unitarity of the matrices of and for
follows from their parametric forms of unitary matrices.

Now, we examine the claimed identical relations in terms of
the Frobenius norms. It is easy to verify that

and

for

Moreover, the check of the equality is of
a simple calculation.

In what follows, we prove that

for

The proof of for
can then be obtained in a similar fashion. Therefore, it

suffices to give an examination of the following three equalities.

1) for .
In fact, we have

2) for .
In fact, we have

3) for .
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By a simple calculation, we have

and

Then, by noting that and

we can obtain

as required.

APPENDIX F
PROOF OFTHEOREM 2

In the sequel, the proof is established by the contradiction
method.

We assume that there exists a unitary signal constellation
with size which has a diversity

product of

(46)

It is apparent that any unitary signal constellation remains the
unitarity and the same diversity product and sum under the left
or right multiplication by a single same unitary matrix and under
the transpose or the complex conjugate operation.

Since any unitary matrix can be diagonalized by a unitary
similarity transformation [21], without loss of generality, we can
assume that the signal constellationhas the first two matrices
with the form of

where .
According to (42), we have for all

with equality if and only if the two singular values of
are equal. Moreover, by Proposition 2, from (46) we have for all

Consequently,

(47)

From the above facts, under the assumption of (46), we can con-
clude that for all

(48)
where

By taking in (48), we know that the unitary signals for
all in the constellation can be written in
the form

where is a unitary matrix and the subscriptis omitted
for simplicity.

Let , i.e., and are the real and imaginary
parts of , respectively. From the two equalities of
and , we can deduce the following relations for which

and must satisfy:

and

(49)

It follows from the preceding two relations thatis a real sym-
metric matrix and has the form of

(50)

where is a real number. By the relation in
(49), we know that satisfies

and that the matrix satisfies

Therefore, the imaginary part of, i.e., , can be represented
in the form of

(51)

where is a real symmetric and orthogonal matrix; i.e.,
that has three possible forms of , , and the
following reflection matrix:

(52)

with .
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In particular, for the second matrix in , which is assumed
to be diagonal, it is seen from the relation

that and are both diagonal; i.e., that and
in the representation of and , namely, (50)–(52). Therefore,

should have the form of

(53)

where .
The remaining matrices rather than and in can

be written as

(54)

where is a real symmetric and orthogonal matrix with one of
the above-mentioned three forms; i.e., that , ,
and , given by (52), with .

In the case that , if or , then
the matrix , given by (51), is anonzeroscalar matrix. From
this and the relation in (49), we know that is
real symmetric. Hence, in the representation (50) of.
Therefore, the remaining matrices, given by (54), should
have three possible forms of

(55)

(56)

and

(57)

with and .
Now, we can claim that in the representation of (53) for the

second matrix , the numbers and cannot be equal toor
simultaneously. Hence, there should be

or in (53).
In fact, since under the assumption ,

there is at least one of the remaining matrices which has
the form of (57). If or
in (53), by letting

and

and noting that is currently in the form of (57), we can com-
pute that

which contradicts (47).
Based on the fact that there should be

or in the representation (53) of the second
matrix in , we can further show that, for those re-
maining matrices rather than and in , the matrix in
the representation (54) of cannot take the forms of
and in the case that ; i.e., that the
remaining matrices can only take the form of (57) rather than
(55) and (56).

In fact, if the matrix takes the form of (55) or (56), by
a simple calculation and noting that or

in (53), we can get

which is in contradiction to (47). The symbol “” in the pre-
ceding expression takes “” and “ ” when takes the form of
(56) or (55), respectively.

Therefore, all the remaining matrices rather than
and in should take the form of (57). By some algebraic
manipulation, we can verify that the reflection matrix

in (57) and (52) satisfies

(58)

for .
By the invariance property of the diversity product and the

sum of a unitary signal constellation under the operation of com-
plex conjugate and the fact the negative of a reflection
matrix is also a reflection matrix, we need only handle only
one case of either or
in the representation (53) of the second matrixin . In the
following, we take in (53) as an example. In
this case, the signal constellation with size

has the following form:

and

(59)

with and
for . It is noted that
can also be considered with the form of (59) in the case that

.
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Then, by using the equalities (48) and (58), we can obtain for
all

That is,

for (60)

We can divide the index set of

into the following two index subsets:

and

If the index subset contains at least four elements, then
there should be two indexes such that

Then, for and , the left-hand side of (60) is less than or
equal to , which is smaller
than half. Hence, the two indexesand cannot satisfy the
equality (60). Therefore, there are at most three entries in.
By a similar argument, we can conclude that has at most
three indexes as well. Note that the index of belongs to

. Therefore, has at most
five indexes. Considering the assumption , we
know that we must have .

Now, we want to prove that the equality (60) cannot hold for
some even in the case of . This is
stated as follows.

Lemma 9: There should not exist five pairs of real numbers
for , where , such that

for (61)

where and that and
for .

Therefore, by the contradiction method, the equality (46)
cannot hold. Hence, the proof of Theorem 2 is completed.

In the sequel, we present a proof of Lemma 9 by the contra-
diction method. We assume the existence of a solution to (61).

According to the preceding discussion, among
and there should be two positives and the other two nega-
tives. Without loss of generality, we assume that

By letting in (61), we obtain that

for (62)

This implies that for . It has been
shown that, in order to satisfy (61), there should be

provided that and are nonpositive or nonnegative
simultaneously. Therefore, we can assume that without loss of
generality

Moreover, from (62) we get

for (63)

By virtue of the equalities of (61)–(63) and noting the ranges
of parameters for , we can derive several new
equations in terms of for . For example, for the
cases of and , it follows from (62) that

and

Then, in the case of , the equality (61) can yield

From this, it holds that

(64)

In a similar manner, we can actually get the following equa-
tions:

for (65)

If , then from (64) we can obtain the
solution . Furthermore, by solving the equations of
(65) for the cases of and , we can
get the result . On the other hand, by
using the above identical relation and solving (65) for
the case , we have another result of

. Thus, a contradiction results.
If , by the subtraction operation between two equa-

tions of (65) in the cases of and ,
we can get . Substituting for
and repeating the above procedure, we can also obtain

Thus, . From this identical relation, by solving (65) for
the case , we have

Then, by solving (65) for the cases of and
, we get

which contradicts the above assumption . Therefore,
the proof of Lemma 9 is completed.
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APPENDIX G
PROOF OFTHEOREM 3

The proof is as follows.
1) We consider two special classes of unitary matrices.

Let the signal constellation consist of finitely many unitary
matrices all of which are in the form of

or of

where satisfying . It is easily seen that
a set of finitely many matrices, all of which are in the form of

or of , is equivalent to a spherical code on the
surface of the four-dimensional unit-radius sphere. For the
above two classes of signal constellations, it can be verified that
the diversity product and the diversity sum of the signal constel-
lations are identical and that their values are both equal to the
half of the minimum distance of the above equivalent spherical
code. Therefore, the lower bound in 1) can be obtained.

2) For any two unitary matrices of

and

where

their difference matrix has an absolute determinant given by

where the inequality

is employed.
Let

and

Then, we have

Clearly, a finite set of three-dimensional complex vectors
can be reduced to a spherical code on the surface

of the six-dimensional unit-radius sphere . Therefore, by
virtue of (23) in the case , the upper bound in 2) is
achieved.

3) The squared Frobenius norm of the difference matrix in the
above satisfies

Let . Then, we have

By the fact that a finite set of three-dimensional complex
vector can be reduced to a spherical code on the
surface of the six-dimensional unit-radius sphereand (22) in
the case , the upper bound in 3) is derived.

4) In the proof of Proposition 2 given in Appendix B, we have
shown that . Therefore, by noting
(13) and (22), we have

The proof of Theorem 3 is thus completed.

APPENDIX H
PROOF OFTHEOREM 4

The proof is as follows.
1) We need a fundamental result in sphere packing. Hamkins

and Zeger [10], [11] have essentially proved that, for

(66)

where the notation denotes a variable in terms ofap-
proaching zero as , is the -dimensional content, or
“volume,” of the -dimensional unit-radius sphere defined
in (26), given by

and the -dimensional content, or “surface area,” of
, given by

By applying Proposition 8, it follows from (66) that for each
, we have, for large code size
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By taking in the preceding equality and making use of
Property 1) in Theorem 3 and the fact that ,
we can see that 1) is true.

2) Let be an arbitrary unitary matrix.
The unitary matrix can be written as the form of

where are real orthogonal matrices andis a diagonal
unitary matrix [17]. Therefore, any element in is a sum of
finitely many complex-number terms whose real and imaginary
parts are in the form of

where for are the parameters
of the unitary matrix belonging to a compact subset, such
as , and that the functions for

have three possible forms of , ,
and the constant function [24]. The following lemma is
needed in our proof.

Lemma 10: Let be one of the three functions ,
, and the constant function, for and
. Then

Proof: By the mean value theorem, it is obvious that the
above second inequality holds.

We can prove the above first inequality by using a simple
induction procedure in terms of . That the above first
inequality holds in the case is self-evident. We assume
that the above first inequality holds for some and want to
show that it also holds for . In fact, noting that
for , we can obtain

as required.

We can partition each side of the compact hypercubic subset
of parameters for unitary matrices into

equal sections from to . That is,

Then, the above hypercubic subset, namely, , is par-
titioned into equal sections each of which is a hypercube
with equal side length of . For large , we can take

which satisfies . Then, for any unitary signal constel-
lation with size there must be two signal matrices whose pa-
rameters belong to a single same hypercubic section. Then, ac-
cording to Lemma 10, the absolute value of each element of the
difference matrix between the above two signal matrices should
be of the order

Consequently, for large, the Frobenius norm of the above dif-
ference matrix is of the order . From this, the upper
bound in 2) can be achieved.

The proof of Theorem 4 is thus completed.
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