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Abstract

In this paper, we characterize all ana-
lytic signals with band-limited amplitudes and
polynomial phases. We show that a signal
with band-limited amplitude and polynomial
phase is analytic if and only if it has nonneg-
ative constant instantaneous frequency, i.e.,
the derivative of the phase is a nonnegative
constant, and the constant is greater than or
equal to the minimum bandwidth of the am-
plitude.

1 Introduction

Both concepts of analytic signals and in-
stantaneous frequencies play important roles
in many areas including communication sys-
tems, physics, and joint time-frequency analy-
sis in signal processing. They have been exten-
sively studied, see for example [1-13]. A sig-
nal is analytic if its Fourier spectrum vanishes
at negative frequencies. This implies that
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a nonzero analytic signal must be complex-
valued. The instantaneous frequency (IF) of
a complex-valued signal is commonly defined
as the derivative of the phase of the signal.
The IF is used as a generalization of the con-
ventional frequency from the global sense to
the local sense. With these two definitions,
it is not unusual to expect that the IF of an
analytic signal are nonnegative. Trivial exam-
ples of analytic signals with nonnegative IF
are single tone signals exp(jwgt) for nonnega-
tive constants wy. It is, however, not always
true for an analytic signal to have nonnegative
IF.

In this paper, we consider the class of sig-
nals with band-limited amplitudes and poly-
nomial phases. This class is quite broad in our
real applications, such as in communication
systems. We characterize all analytic signals
in the class as follows. Let f(t) be a signal
with polynomial phase and band-limited am-
plitude of minimal bandwidth B. It is shown
that the signal f(¢) is analytic if and only if it
has a constant nonnegative IF wy with wg > B
for all ¢ except possibly isolated points of .
Although this result looks simple, it turns out
that the proof is not trivial.

2 Main Results

Before going to the main results, let us re-
call a characterization for a general analytic
signal. In what follows, the letter z always
stands for a complex value with its real part
x and its imaginary part y, i.e., 2 = x + jy.

Let Q be a region of the complex plane. A



function f(z) of the complex variable z is said
holomorphict in € if its first derivative f’(z2)
exists for all the complex values z € (), see for
example [14]. Let f(¢) be a signal (or func-
tion) defined for the real variable ¢. Its com-
plex extension f(z) is obtained from the signal
f(t) by replacing the real variable ¢ with the
complex variable z.

The function f(z) with z = z + jy belongs
to the Hardy class H; if it is holomorphic in
the half-plane y > 0 and satisfies the following
inequality

M = sup

y>0 J—o0

f(z+ jy)Pde < co.  (2.1)

The following result gives a characterization
of an analytic signal, see for example [15], pg.
72-74.

Proposition 1 A finite energy signal f(t) is
analytic if and only if its complex extension
f(2) belongs to the Hardy class Hy .

This Proposition is used in the proof of the
following main result.

Theorem 1 Let a finite energy signal

f(t) = A(t) exp(5P(1))

where A(t) is real-valued and band-limited with
its minimal bandwidth B, and P(t) is a poly-
nomial of t with real coefficients. Then, signal
f(t) is analytic if and only if

P(t) = ¢ + wot, (2.2)

where ¢y and wy are two real constants with
Wo 2 B.

Proof: The sufficient part is straightfor-
ward. We only need to prove the necessary
part.

Tt is also called analytic in the mathematics lit-
erature although the word “analytic” has a different
meaning in the signal processing literature.

Since A(t) is band-limited with minimal
bandwidth B and has finite energy, we have

B
AR = [ a@)erde, (23)
where a(w) € L*[—B, B]. We first prove that,
if P(t) = bt" for n > 2 and a real nonzero
constant b, then f(¢) is not analytic. To do
so, we want to apply Prop. 1, i.e., we want
to prove that such an f(¢) is not in the Hardy
class Hy . The complex extension of f(#) is

flx+jy) = A(z + jy) exp[jb(x + jy)"] =

. [ n nk o\
Az + jy) exp lbz ( P )xky () kH] )
k=0
We claim that n < 4 if f(¢) is analytic.

When n > 4, there is a term in the expo-
nential:

bxn73y3 (7)4 — bxn73y3.

Since A(t) has the form (2.3), |A(x+ jy)|? has
the order at least

exp (—2BV3’,‘2 + y2> ) (2.4)

In the meantime, the exponential term has the
order at least

exp(bz™ 3y?). (2.5)

When b > 0, the order in (2.5), bx" 3y3,
is greater than the one in (2.4), 2B+y/x? + 32,
when y is large enough, where x is the variable.
Thus, the function f(z + jy) of the variable x
does not belong to L*(—oc,oc), i.e., f(z) ¢
Hy, or f(t) is not analytic.

When b < 0 and n — 3 is an odd number,
we consider

[ 1@+ jy)Pda,

where the variable x runs from —oo to oo.
Therefore, when x runs negative values, the
order in (2.5), bx"3y? is greater than the one



in (2.4), 2B+y/x? 4+ y?, when y is large enough.
Thus, f(z+jy) ¢ L?*(—o0,00) and f(t) is not
analytic.

When b < 0 and n — 3 is an even number,
we have n > 5. In this case, we consider the
term of the exponential:

exp(bz" "y (4)°) = exp(—ba""*y°).

Since b < 0, clearly either f(x + jy) ¢
L?*(—o0c,00) when n > 5, or

o

M =sup [ |f(z+jy)’de

y>0 J—o0

=sup [ |A(z+ jy)[*dw exp(~by") = oo,
y>0 J —oc
when n = 5. Thus, f(t) is not analytic by
Prop. 1.
Thus, we have proved the claim.
When n = 2,

exp(jb(z + jy)?) = exp(jbz® — 2bxy — jy*).
In this case,
o+ gyl = |A()Pe .

No mater what the sign of b is, similar to be-
fore, f(z + jy) ¢ L*(—o00,0), or f(t) is not
analytic.

When n = 3,

exp(jb(z+jy)?) = exp(jbz® —3bx’y—3jbzy*+by?).

When b > 0, similar to before,

M =sup [ |f(z+jy)’de
y>0 J—o0
= sup |A(a+jy)|? exp(—3bx”y)dz exp(by?)
y>0 J —o00

= oC.
Thus, f(t) is not analytic by Prop. 1. When
b < 0, similar to before, exp(—3bz?y) is un-

bounded in terms of x. Thus, f(z + jy) ¢
L?(—oc,0c) and f(t) is not analytic.

When the polynomial P(t) has mixed terms
of ", we only need to consider the highest
order term. It is because in the expansions of
(x 4+ jy)™ either the order x or the order of y
resulted from the highest order term is higher
than any one resulted from the lower order
terms in P(z + jy). Therefore, the highest
order term dominates the signal growth order.
Using the above result to the highest order
term, we have proved that P(t) = ¢ + wot.
Since A(t) has the minimal bandwidth B, for
f(t) to be analytic it is clear that wy > B. O

From Theorem 1, we immediately have the
following corollary.

Corollary 1 A finite energy signal with poly-
nomial phase and band-limited amplitude of
minimal bandwidth B is analytic if and only
if it has a nonnegative constant instantaneous
frequency with the constant greater than or
equal to B at all t but possibly isolated points.

Proof: By Theorem 1, we only need to
prove that the IF of f(t) is wy at all ¢ but
possibly isolated points. Since the amplitude
A(t) is band-limited, it is an entire function
[1]. Therefore, A(t) has only zeros at possibly
isolated points t,, for n € Z with |t,, —t,,| > s
for a positive constant s and n # m. In other
words, A(t) has the same sign in each time
interval (t,,%,41), which proves Corollary 1.
(Il

Consider a signal with the following form

b . .
£(1) = / Fw)e ! dpel@to0)  (2.6)

where 0 < a < b < 00, ¢¢ is a constant, wy >
0, and F(w) is complex conjugate symmetrical

around the center c:
F(c—w)=F"(c+w), forwéela,c),

where ¢ = (a + b)/2. Clearly, f(¢) is analytic.
Also,

f(t) = A(t) exp(j(wot + ¢)),



where wy = wy + ¢, and
d
Alt) = / F(w) exp(jowt)dw,
J—d

where d = (b —a)/2, and F(w) = F(w + c¢).
One can see that A(?) is real-valued and band-
limited. Similar to the proof of Corollary 1,
the IF of the above f(t) is @y = ¢+ wy > 0.
Thus, the above family of signals are ana-
lytic and have nonnegative IF. Furthermore,
by Corollary 1, this family is the only family
of signals with band-limited amplitudes and
polynomial phases that are analytic and have
nonnegative instantaneous frequencies.

In the above we discussed the class of signals
with band-limited amplitude and polynomial
phase. One might want to ask what happens
when the phase is not a polynomial. We have
the following result.

Theorem 2 Let A(t) be a non-zero real band-
limited signal, \ be a real constant, and

1(t) = Aye’”.
Then, f(t) is not analytic.

The proof is similar to before by using Prop.
1.

3 Conclusions

In this paper, we have characterized all sig-
nals with band-limited amplitudes and poly-
nomial phases that are analytic. It turns out
that such signals are analytic if and only if
they have nonnegative constant instantaneous
frequencies where the constants are greater
than or equal to the minimal bandwidths of
the amplitudes.
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