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An Elementary Condition for Non-Norm Elements
Xiaoyong Guo and Xiang-Gen Xia, Fellow, IEEE

Abstract—Cyclic division algebra (CDA) has recently become a
major technique to construct space–time block codes with nonvan-
ishing determinant (NVD). One of the key steps in this technique is
the determination of non-norm elements and a sufficient condition
for the determination has been given by Kiran and Rajan lately
based on algebraic number theory. In this paper, based on Kiran
and Rajan’s condition, we present a more elementary condition for
non-norm elements when signals are QAM or HEX, which is easier
to check. With this elementary condition, non-norm elements with
smaller absolute values than the existing ones can be found.

Index Terms—Algebraic number theory, cyclic division algebra,
non-norm elements, nonvanishing determinant, space–time block
codes.

I. INTRODUCTION

S PACE–TIME block codes (STBC) with nonvanishing de-
terminant (NVD) have attracted much attention lately, see

for example [1]–[14]. In particular, Elia et al. [6] have shown
that full rate STBC with NVD achieve the diversity-mul-
tiplexing tradeoff obtained by Zheng-Tse [15]. Systematic
methods to construct STBC with NVD have been presented
in [5], [6], [8], [11] based on cyclic division algebra (CDA).
In these constructions, one of the key steps is the non-norm
element determination and a sufficient condition for a non-norm
element has been obtained by Kiran and Rajan in [5] based on
algebraic number theory.

In this paper, based on Kiran and Rajan’s sufficient condition,
we present a more elementary condition for non-norm elements

, when signals are QAM, i.e., in , where , or HEX,
i.e., , where , which is easier to check so that
smaller absolute valued non-norm elements than the existing
ones can be found. For example, in [6], the non-norm element

with the smallest absolute value is , while if our newly
proposed condition is used, we may show that in many cases,

is also a non-norm element. Since the absolute value of a
non-norm element may affect the mean signal power and the
smaller the absolute value of is, the less the mean signal power
usually is, non-norm elements with smaller absolute values may
be desired. Using simulations, it is illustrated that the STBC
with our newly determined non-norm elements indeed perform
better than those in [6].
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This paper is organized as follows. In Section II, we briefly
describe/recall a general construction of full rate NVD STBC
based on the CDA approach. In Section III, we present an
elementary sufficient condition on non-norm elements . In
Section IV, we compare the codes with new non-norm ele-
ments with the codes proposed in [6]. Throughout this paper,
we use and to denote the integer ring and the rational field,
respectively.

II. STBC BASED ON CYCLIC DIVISION ALGEBRA

A cyclic algebra over a number field is determined by
• a degree- cyclic extension , i.e., Galois group

is cyclic;
• a .

Every element in can be represented by a matrix in the fol-
lowing form:

...
...

...
. . .

...

(1)
where . If , i.e.,

for any , for , then
the cyclic algebra is a division algebra, i.e., every non-zero
element in has a multiplicative inverse. The above condition
imposed on is called norm condition. A satisfying the norm
condition is said to be a non-norm element [16], [17]. We al-
ways have and a concise proof is given in [6].
We also have that if and only if for all
, i.e., code has full diversity. If we choose

and , to be algebraic integers in with
, and we choose a which satisfies the

norm condition, then is clearly a nonzero algebraic in-
teger in , i.e., . Therefore, we have

. This division algebra property gives us a way to
construct NVD STBC [5], [6]. Let ,
be a relative integer basis of , where is the integer
ring of the field , and let in (1) be

(2)

for , then we can embed variables
into the code matrix , and the resulting STBC is a rate- (full
rate) NVD code.
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III. DESIGN OF NON-NORM ELEMENTS

In this section, we discuss how to find a non-norm element
of a cyclic extension . Although the following discus-

sions are for the case when the cyclic extension over is
a composition of a real cyclic extension over and the field

, i.e., , (note that all the cyclic extensions over
constructed in [6] belong to this case), they can be easily

generalized to if is replaced by .
We first present a theorem below.

Theorem 1: Let and be a degree- Galois
extension. Let be the minimal polynomial of and re-
main irreducible in . Let be a prime in and remain
prime in . Then

• if is also a prime in and is odd, then
, i.e., is

a non-norm element in ;
• if is not a prime in , then for some prime

in , and ,
i.e., is a non-norm element in .

In order to prove the above theorem, let us introduce the fol-
lowing theorem by Kiran and Rajan.

Theorem 2 (Kiran and Rajan [5]): Let be a degree- Galois
extension of a number field . Let be a prime ideal in . Let
prime ideal be one of the factors of in and the
inertial degree of over be . If is any element
of , then for any .

Let . We know that is a principal
ideal domain. Thus, every prime ideal in can be written
as for some prime in . Let be a prime ideal in

and be inert in , i.e., is a prime ideal,
then . Since , according to
Theorem 2, , namely,
is a non-norm element in . This leads to the following
lemma, which will be used in the Proof of Theorem 1.

Lemma 1: Let be a degree- Galois extension of the field
and let be a prime in . If is a prime ideal in ,

then , i.e., is a non-norm
element.

Now we give a Proof of Theorem 1.
Proof: Since is a prime ideal, we have

. Due to the fact that is irreducible in
, we have . Since

(3)

we obtain . Let be the prime ideal above
in , let be the prime ideal above in . Let

. The fol-
lowing diagram shows the relationship of these fields, prime
ideals and the corresponding extension degrees and inertial de-
grees:

Since inertial degree is multiplicative in tower [18], we must
have

(4)

i.e.,

(5)

and since inertial degree must be smaller than or equal to the
extension degree, we also have

(6)

For the case when remains prime in and is odd,
. . Since is an

odd number, by (6) and (5), , i.e.,
remains prime in . According to Lemma 1, we

have , i.e., is a non-norm
element in .

If is reducible in , according to the algebraic number
theory, can be factorized as , and is a prime
in . In this case or . Without loss
of generality, we assume . Since , the
inertial degree . The only solution for
satisfying both (5) and (6) is . i.e.,

remains prime in . Thus, by Lemma 1,
, i.e., is a non-norm

element in .
In order to use Theorem 1 to find a non-norm element ,

we have to check whether a prime number is inert in , i.e.,
whether remains prime. The following theorem is the
prime ideal factorization theorem [19], which tells us the rela-
tionship between the factorization of and the factorization
of over the finite field , where and is
a prime ideal in .

Theorem 3 (Prime Ideal Factorization Theorem): Let
be a number field extension, and . Let

denote the minimal polynomial of over . Suppose
that is a prime ideal in and the characteristic of the finite
field is , which can not divide . If
can be factorized over the finite field as follows:

(7)

where are distinct irreducible polynomials over ,
then

(8)

where .We next only consider the case when
. As a consequence of the prime ideal factorization the-

orem, we have the following corollary.
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TABLE I
NON-NORM ELEMENTS � FOR SIGNALS IN ���

Corollary 1: Let be a degree-
Galois extension. Let be the minimal polynomial of
over . Let be a prime number in , which cannot
divide . If is irreducible over the finite field

, then is a prime ideal in .

In the above corollary, is the discriminant of the
minimal polynomial [20]. Write ,
then is defined as

(9)

Proof: From algebraic number theory, we know
[21], where

is the discriminant of the field . If is not a factor of
, then cannot divide . By Theorem

3, since is irreducible over the finite field
is also reducible, i.e., remains prime in .

By combining Corollary 1 and Theorem 1, we immediately
have the following theorem on a sufficient condition for a non-
norm element, which is more elementary and easier to under-
stand than the existing ones.
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Theorem 4: Let be a degree-
Galois extension. Let be the minimal polynomial of
and it remains irreducible in . Let be a prime in , which
cannot divide . If is irreducible over ,
then

• if is also a prime in and is odd, then
, i.e., is

a non-norm element in ;
• if is not a prime in , then for some prime

in , and ,
i.e., is a non-norm element in .

Although all the above discussions are based on the QAM
signals in , the result in Theorem 1 holds when is replaced
by , i.e., for HEX signals in . In fact, from the proof of The-
orem 1, one can see that if is replaced by where satisfies
two conditions: is a degree-2 field extension over and

is a principal ideal domain (when , these two condi-
tions are certainly satisfied), then the above theorem holds.

In Table I, we list non-norm elements from to
, where the second column indicates the cyclotomic fields

which contain the real cyclic extensions. We use to denote
the -th root of unity, i.e., . Most of the re-
sulting cyclic extensions over are the same as in [6]
as listed in Table I except for and the
second example of case.

For , so , where
. The minimal polynomial for is .

is irreducible over the finite field , and
, since is not a factor of . By applying the

second case in Theorem 4, we know that is a non-norm
element.

For , the
minimal polynomial for is , and

. is irreducible over the finite field
. Noting that is not a factor of , by Theorem 4, is

a non-norm element. By a similar procedure we can also show
that is a non-norm element since 5 cannot divide 49 too.

For the remaining of the non-norm in Table I, we briefly
discuss as follows. For the second example of and

, the discriminants
of the minimal polynomials are all odd numbers, see Table I,
which cannot be divided by . We check whether can
be factorized over the finite field . It turns out that in all
these cases are irreducible over . In addition, all
these minimal polynomials are irreducible over . Since

in , by using Theorem 4, we conclude that
satisfies the norm condition for all these cases.

For the first example of and , the discrim-
inants of the minimal polynomials are coprime with ,
and are irreducible over the finite field (note that
they are reducible over ), and are also irreducible
over . Since , by Theorem 4,
is a non-norm element for these three cases.

Note that the last column in Table I has some of the non-
norm elements presented in [6] and the empty spaces mean that
the cyclotomic fields in the corresponding rows in Table I are
different from those in [6].

IV. COMPARISON WITH AN EXISTING CODE

In this section, we show an example to compare the normal-
ized diversity product between the code we constructed and the
code constructed in [6] for QAM signals. The normalized diver-
sity product is defined as

(10)

where is the minimum determinant as defined in [2], [8].
is the total energy of the generator matrices of all layers.
Consider and let be the relative integer

basis. The code matrix in (1) can be written as

(11)

where

We call the generator matrices of the code matrix. The
generator matrices of the code constructed in [6] are

(12)

(13)

(14)

the total energy of the generator matrices of all three layers is
, the minimum determinant , so the nor-

malized diversity product is .
The generator matrices of the code constructed using our

method are

(15)

(16)

(17)
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Fig. 1. Comparison of the codes with � � � � � and � � � � �.

the total energy of the generator matrices of all three layers is
, the minimum determinant , so the normal-

ized diversity product is . We can see that by using our
new , the normalized diversity product is much larger. The
reason for this is that the new has a smaller absolute value
than the presented in [6] does. The simulation results in Fig. 1
show that for 4-QAM and 16-QAM constellations, the code with

is about 2 and 1.5 dB better than the code with
, respectively.

V. CONCLUSION

In this paper, we have obtained a more elementary sufficient
condition for a non-norm element when signals are QAM, i.e.,
in , or HEX, i.e., . Using the newly proposed sufficient
condition, non-norm elements with smaller absolute values
than the existing ones have been found.
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