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Upper Bounds of Rates of Complex Orthogonal
Space–Time Block Codes

Haiquan Wang and Xiang-Gen Xia, Senior Member, IEEE

Abstract—In this correspondence, we derive some upper bounds of the
rates of (generalized) complex orthogonal space–time block codes. We first
present some new properties of complex orthogonal designs and then show
that the rates of complex orthogonal space–time block codes for more than
two transmit antennas are upper-bounded by3 4. We show that the rates
of generalized complex orthogonal space–time block codes for more than
two transmit antennas are upper-bounded by4 5, where the norms of
column vectors may not be necessarily the same. We also present another
upper bound under a certain condition.

For a (generalized) complex orthogonal design, its variables are not re-
stricted to any alphabet sets but are on the whole complex plane. In this
correspondence, a (generalized) complex orthogonal design with variables
over some alphabet sets on the complex plane is also considered. We obtain
a condition on the alphabet sets such that a (generalized) complex orthog-
onal design with variables over these alphabet sets is also a conventional
(generalized) complex orthogonal design and, therefore, the above upper
bounds on its rate also hold. We show that commonly used quadrature am-
plitude modulation (QAM) constellations of sizes above4 satisfy this con-
dition.

Index Terms—Complex orthogonal designs, complex orthogonal space–
time block codes, Hermitian compositions of quadratic forms, Hurwitz
family, Hurwitz–Radon theory.

I. INTRODUCTION

The first real/complex orthogonal space–time block code was
proposed by Alamouti [1] for two transmit antennas. It was then gen-
eralized to real/complex orthogonal space–time block codes for more
than two transmit antennas by Tarokh, Jafarkhani, and Calderbank
[3]. There are two important properties of real/complex orthogonal
space–time block codes: 1) they have fast maximum-likelihood (ML)
decoding, namely, symbol-by-symbol decoding; 2) they have the
full diversity. These two properties make real/complex orthogonal
space–time block codes attractive in space–time code designs. By
utilizing the Hurwitz–Radon theory [17]–[19], [23], [26], Tarokh,
Jafarkhani, and Calderbank [3] provided a systematic method to
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constructreal orthogonal space–time block codes of sizep � n and
rate1 for k pulse-amplitude modulation (PAM) symbols, wheren is
the number of transmit antennas,p is the time delay (or block size),
andR = k=p is the code rate. They also provided a construction of
rate1=2 complexorthogonal space–time block codes for phase-shift
keying (PSK) and quadrature amplitude modulation (QAM) symbols
using real orthogonal space–time block codes of rate1. In order to
maintain the fast ML decoding and the full diversity of a space–time
block code, the orthonormality in the sense that the norms of all
column vectors are the same can be relaxed to a general orthogonality
where the norms of column vectors may not be necessarily the same
[3]. A complex orthogonal space–time block code with the generalized
orthonormality is called a generalized complex orthogonal space–time
block code. In [2], [3], it has been shown that the rateR � 1 for
both real and complex orthogonal space–time block codes for any
number of transmit antennas. While the maximal rate1, i.e.,R = 1, is
reachable for real orthogonal space–time block codes as we previously
mentioned from the Hurwitz–Radon’s constructive theory, it has been
recently shown in [8] thatk � p � 1 whenn > 2, i.e.,R < 1

andR = 1 is not reachable for (generalized) complex orthogonal
space–time block codes no matter what the time delayp is unless
the number of transmit antennas is two, i.e., the Alamouti’s scheme.
Notice that, if conditionp = n is required, i.e.,squarecodes orsquare
complex orthogonal designs, thenR < 1 whenn > 2 directly follows
from the results on amicable designs [18], [21]–[23], [3], [5]–[7] that
have small rates whenn � 8. While both square and nonsquarereal
orthogonal designs (or compositions of quadratic forms) are well
understood, not much is known for nonsquarecomplexorthogonal
designs (or Hermitian compositions of quadratic forms [26]), [3],
[26], [27].

In this correspondence, we derive some upper bounds on the ratesR
of (generalized) complex orthogonal space–time block codes (or com-
plex orthogonal designs). We emphasize that the sizes of (generalized)
complex orthogonal space–time block codes (or complex orthogonal
designs) here are general and they may not be square, i.e.,p may not
be equal ton. We show that, when the number of transmit antennas is
more than two, i.e.,n > 2, the rates of complex orthogonal space–time
block codes are upper-bounded by3=4, i.e.,

R �
3

4

and the rates of generalized complex orthogonal space–time block
codes are upper-bounded by4=5, i.e.,

R �
4

5
:

Note that rate–3=4 complex orthogonal space–time block codes for
three and four transmit antennas have appeared in [3]–[6]. There-
fore, the above upper bound tells us that these complex orthogonal
space–time block codes have already reached the optimal rate. Also
note that the above upper bound3=4 on the rates is not new forsquare
complex orthogonal designs. In fact, it has been shown and reviewed
from amicable designs in [18], [21]–[23], [3], [5]–[7]. However, this
upper bound isnewfor nonsquare complex orthogonal designs. In the
meantime, it is known that to generate orthogonal space–time codes, a
square orthogonal design is not necessary [3].

In a conventional (generalized) complex orthogonal design, its vari-
ables may take any values in the complex plane. However, as we shall
see later, to generate a space–time code, the variables only take values
in some finite subsets, called alphabet sets, on the complex plane. The
question then becomes whether it is helpful to produce more (gener-
alized) complex orthogonal designs of high rates when their variables
are restricted to some alphabet sets. This question has been partially
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studied lately in [13], [14], [16], and [15]. For square real orthogonal
designs, when their variables are restricted to finite or infinite subsets
of the real line (or field), they are called restricted orthogonal designs
in [13] and pseudo-orthogonal designs in [14]. It is shown in [13], [14]
that there does not exist new square real orthogonal designs even when
their variables are restricted to subsets of the real line, if the number of
the elements of the alphabet set is greater than two. For square complex
orthogonal designs, it is known that (also as mentioned previously) the
maximal rate of4� 4 complex orthogonal designs is3=4 when all the
variables can take any values on the complex plane. However, examples
of rate–1 complex orthogonal designs of size4�4 have been shown in
[16] when their variables take some alphabet sets on the complex plane,
where in the examples all the alphabet sets are PAM and a rotation of
PAM, i.e., all points in an alphabet set are collinear. In this correspon-
dence, we also consider this problem. We obtain a condition on the
alphabet sets such that a (generalized) complex orthogonal design with
variables over these alphabet sets is also a conventional (generalized)
complex orthogonal design and, therefore, the above upper bounds on
its rate also hold. We show that commonly used QAM signal constel-
lations of size above4 do satisfy this condition and, therefore, a (gen-
eralized) complex orthogonal design with their variables over QAM
constellations of size above4 is also a conventional (generalized) com-
plex orthogonal design. For convenience, in what follows, we adopt the
name “restricted(generalized) complex orthogonal design” as used in
[13] for real orthogonal designs, when their variables are restricted to
some alphabet sets.

This correspondence is organized as follows. In Section II, we pro-
vide some preparations and new properties on (generalized) complex
orthogonal designs. In Section III, we prove several upper bounds. In
Section IV, we study restricted (generalized) complex orthogonal de-
signs.

II. SOME PRELIMINARIES AND NEW PROPERTIES ONCOMPLEX

ORTHOGONAL DESIGNS

In this section, we present some properties of a (generalized) com-
plex orthogonal design used in a (generalized) complex orthogonal
space–time block code. In what follows,denotes the field of all com-
plex numbers and denotes the field of all real numbers. For conve-
nience, symbol0 means scalar0 or all 0 matrices of possibly different
sizes andI means the identity matrices of possibly different sizes un-
less specified otherwise. For two matricesA andB of the same number
of rows, (AB) denotes the concatenation matrix ofA andB, i.e.,
(AB) is a new matrix with the columns ofA as its first part columns
and the columns ofB as its second part columns.

A complex orthogonal designG(x1; x2; . . . ; xk) of sizep� n is a
p � n matrix satisfying the following conditions:

• the entries ofG(x1; x2; . . . ; xk) are complex linear combinations
of x1; x2; . . . ; xk and their complex conjugatesx�1; x

�

2; . . . ; x
�

k;

• the orthonormality

(G(x1; x2; . . . ; xk))
HG(x1; x2; . . . ; xk)

= (jx1j
2 + jx2j

2 + � � �+ jxkj
2)I

holds for any complex valuesxi, i = 1; 2; . . . ; k, whereH

stands for the complex conjugate transpose andI is then � n
identity matrix.

The orthonormality in the preceding definition can be generalized
to the orthogonality as follows for preserving the full-diversity and the
fast ML decoding [3].

A generalized complex orthogonal design

G(x1; x2; . . . ; xk)

of sizep� n is ap� n matrix satisfying the following conditions:

• the entries ofG(x1; x2; . . . ; xk) are complex linear combinations
of x1; x2; . . . ; xk and their complex conjugatesx�1; x

�

2; . . . ; x
�

k;

• the orthogonality

(G(x1; x2; . . . ; xk))
HG(x1; x2; . . . ; xk)

= (jx1j
2D1 + jx2j

2D2 + � � �+ jxkj
2Dk)

holds forany complex valuesxi, i = 1; 2; . . . ; k, whereDi,
i = 1; 2; . . . ; k; aren � n diagonal positive definite constant
matrices, i.e., their diagonal elements are all positive constants.

LetA denote a signal constellation alphabet set and

C = fG(x1; x2; . . . ; xk): xi 2 Ag:

Then,C is called a complex (or generalized) orthogonal space–time
block code. For this block code, everyp time slots carriesk informa-
tion symbols,x1; x2; . . . ; xk. The rate of this complex orthogonal
space–time (or generalized complex orthogonal space–time) block
code is defined ask=p and denoted byR, i.e.,R = k=p. Without
any confusion in understanding, in what follows we use com-
plex orthogonal space–time (or generalized orthogonal complex
space–time) block codeC and (generalized) complex orthogonal
designG(x1; x2; . . . ; xk) interchangeably.

For a real orthogonal design,xi are real valued in the above defini-
tion and the coefficients in the linear combinations ofxi of components
of G(x1; x2; . . . ; xk) are all real. It is known that there exist real or-
thogonal designs withR = 1 for any numbern of transmit antennas,
see [19], [23], [26], [3]. We refer the reader to [1], [3] for the prop-
erties of the fast ML decoding and the full diversity of a complex or-
thogonal space–time (or generalized complex orthogonal space–time)
block code, where the full diversity means that any difference matrix of
two different complex orthogonal space–time (or generalized complex
orthogonal space–time) block codewords (or code matrices) has full
rank. The main goal of this correspondence is to show that: 1) ifG =
G(x1; x2; . . . ; xk) of sizep� n is a complex orthogonal design and
n � 3, then its rateR = k=p � 3=4; 2) if G = G(x1; x2; . . . ; xk)
of sizep � n is a generalized complex orthogonal design andn � 3,
then its rateR = k=p � 4=5. To do so, we need some preparations.

Let G = G(x1; x2; . . . ; xk) be a matrix of sizep � n, where its
entries are complex linear combinations ofx1; x2; . . . ; xk and their
complex conjugatesx�1; x

�

2; . . . ; x
�

k. Then,G can be expressed in
terms of its column vectors as follows:

G = (A1xxx+B1xxx
� A2xxx+B2xxx

� � � � Anxxx+Bnxxx
�) (1)

whereAi, Bi, i = 1; . . . ; n; arep � k constant complex matrices,
xxx = (x1; . . . ; xk)

t, andt stands for the transpose while� stands for
the complex conjugate.

For then�n diagonal matricesDi given in the preceding definition
of a generalized complex orthogonal design, we denote

Di = diag(di1; d
i
2; . . . ; d

i
n):

For eachj, j = 1; . . . ; n; all the (j; j)-entriesdij of matricesDi,
i = 1; . . . ; k; form a newk � k diagonal matrixEj as follows:

Ej
�
= diag(d1j ; d

2

j ; . . . ; d
k
j ): (2)

Clearly, when allDi are positive definite, allEj are positive definite.
Using these matrices, we can transfer the orthogonal condition onG
into the conditions on the matricesAi; Bj , 1 � i; j � n.

The following Lemma 1 is from [8].

Lemma 1 [8]: LetA; B; andC be threem�m complex constant
matrices. If for anyxxx 2 m

xxxHAxxx+ xxxHBxxx� + xxxtCxxx = 0
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then

A = B +B
t = C + C

t = 0:

This lemma is used to prove the following proposition.

Proposition 1: Matrix G in (1) is a generalized complex orthogonal
design, i.e.,

GHG = jx1j
2
D1 + jx2j

2
D2 + � � �+ jxkj

2
Dk

for somen � n diagonal positive definite constant matricesDi, 1 �
i � k, if and only if there exist diagonal positive definite matrices
Ei, i = 1; 2; . . . ; n; such that their associated matricesAi andBi,
i = 1; . . . ; n; in (1) satisfy the following conditions:

AH
i Aj +Bt

jB
�

i = �ijEi

AH
i Bj +Bt

jA
�

i = 0; BH
i Aj +At

jB
�

i = 0
(3)

or equivalently

Ai Bi

B�

j A�

j

H
Aj Bj

B�

i A�

i

= �ij
Ei 0

0 Ej

(4)

for all i; j = 1; . . . ; n; where�ij = 1 wheni = j and�ij = 0 when
i 6= j.

In particular,G is a complex orthogonal design if and only if (3) or
(4) holds forEi = I for 1 � i � n.

Proof: By the orthogonality of a generalized complex orthogonal
design in terms of its column vectors, we have

(Aixxx+Bixxx
�)H(Ajxxx+Bjxxx

�) = xxx
H
�ijEixxx

i.e.,

xxx
H
A
H
i Ajxxx+xxx

H
A
H
i Bjxxx

�+xxxtBH
i Ajxxx+xxx

t
B
H
i Bjxxx

�=xxx
H
�ijEixxx

whereEj are fromDi as in (2) and, therefore, they are positive definite.
Note that

xxx
t
B
H
i Bjxxx

� = (xxxtBH
i Bjxxx

�)t = xxx
H
B
t
jB

�

i xxx

the above equation can be rewritten as

xxx
H(AH

i Aj +B
t
jB

�

i � �ijEi)xxx+ xxx
H
A
H
i Bjxxx

� + xxx
t
B
H
i Ajxxx = 0;

for anyxxx 2 k
:

By Lemma 1, we obtain

A
H
i Aj +B

t
jB

�

i = �ijEi

A
H
i Bj + (AH

i Bj)
t = 0

and

B
H
i Aj + (BH

i Aj)
t = 0:

The sufficiency part is easy to verify. QED

As a remark, equationAH
i Bj + (AH

i Bj)
t = 0 holds is equivalent

to matrixAH
i Bj is skew symmetry,1 which are used interchangeably

in what follows.
We next investigate some properties of a generalized complex or-

thogonal designG under a unitary transformation. LetU be a unitary
matrix andG(xxx) be a generalized complex orthogonal design, then
G(Uxxx) may not be a generalized complex orthogonal design due to
the fact thatUHEiU may not be diagonal, i.e., a unitary transform
on variablesxi does not preserve a generalized complex orthogonal
design. On the other hand, ifG(xxx) is a complex orthogonal design,
thenG(Uxxx) is also a complex orthogonal design due toEi = I and
UHEiU = I , i.e., a unitary transform on variablesxi preserves a com-
plex orthogonal design.

1A matrix = ( ) is called skew symmetric if = . For a
skew-symmetric matrix = ( ), we always have = 0 for

any 1 vector .

In order to implement unitary transformations on variables of a gen-
eralized complex orthogonal design to simplify its corresponding ma-
trices, we introduce the following concept of Hurwitz families, which
is preserved by a unitary transformation as we can see later.

Definition 1: A set ofp � 2k matrices

f(A1 B1); (A2 B2); . . . ; (An Bn)g

is called a Hurwitz family if there existn positive definite matricesEi,
i = 1; 2; . . . ; n; such that

A
H
i Aj +B

t
jB

�

i = �ijEi; 1 � i; j � n (5)

and

A
H
i Bj +B

t
jA

�

i =0

B
H
i Aj + A

t
jB

�

i =0; 1 � i 6= j � n: (6)

In the preceding definition of a Hurwitz family, the diagonality of
the matricesEi is not required. Clearly, by Proposition 1, the matrices

f(A1 B1); (A2 B2); . . . ; (An Bn)g

of a generalized complex orthogonal designG(xxx) form a Hurwitz
family, and

f(A1U B1U
�); (A2U B2U

�); . . . ; (AnU BnU
�)g

of G(Uxxx) for a unitary transformU also form a Hurwitz family.
Note that in (6), we have the restrictioni 6= j due to the fact that it

cannot be deduced fori = j whenEi is not the identity matrix when
a unitary transform is applied to a generalized complex orthogonal de-
sign as we shall see after the proof of Lemma 4. Thus, the condition
for a Hurwitz family is weaker than the one for a generalized complex
orthogonal design. Also note that the above definition coincides with
the one in [23] whenBi = 0, Ai are real andEi = I , i.e., the real
case.

For a Hurwitz family

f(A1 B1); (A2 B2); . . . ; (An Bn)g

by using some proper unitary transformations, we can diagonalize the
first matrix(A1 B1) as follows, which plays a key role in the proof of
our main theorem in next section.

Lemma 2: Let

G = (A1xxx +B1xxx
�

A2xxx +B2xxx
� . . . Anxxx+Bnxxx

�)

be a generalized complex orthogonal design. Then,G can be reduced
to a new generalized complex orthogonal design~G with the same pa-
rametersp; k; n as inG as follows:

~G = ( ~A1yyy + ~B1yyy
� ~A2yyy + ~B2yyy

� . . . ~Anyyy + ~Bnyyy
�)

with ~AH
1
~A1+ ~Bt

1
~B�

1 = I , that is,E1 = I in (3) for ~A1 and ~B1, where
yyy = (y1 y2 � � � yk)

t.
Proof: By Proposition 1,E1 is diagonal positive definite. Let

U = E�1

1

and thenU is also diagonal positive definite. Make the transformation
xxx = Uyyy and let ~Ai = AiU , ~Bi = BiU , and ~Ei = UEiU , then ~Ai and
~Bi satisfy (3) and~Ei are all diagonal positive definite. Furthermore,
~AH
1
~A1 + ~Bt

1
~B�

1 = UE1U = I . QED

The following lemma can be also thought of as an independent result
in linear algebra on special singular value decomposition (SVD) forms
of special matrices.

Lemma 3: LetA andB be twop�k matrices and satisfy conditions
AHA +BtB� = I , andAHB andBHA are skew symmetric. Then,
there exist a unitary matrixV of sizep� p and a unitary matrixU of
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size2k � 2k such that thep � 2k matrix (AB) can be diagonalized
as follows:

V (AB)U = �
�
=

D� 0 0 0

0 Ik�s 0 0

0 0 D� 0

0 0 0 0
p�2k

(7)

wherek � s � 2k � p, D� = diag(�1; �2; . . . ; �s), D� =
diag(�1; �2; . . . ; �s) and�2i +�2i = 1, 1 > �i � 1=2 � �j > 0,
i; j = 1; 2; . . . ; s, k + s = �, and� = rank(AB) � k, and,
furthermore, the2k � 2k unitary matrixU has the following form:

U =
W1 W2

W �

2 W �

1

; (8)

whereWi, i = 1; 2; arek � k matrices.
The proof of Lemma 3 is included in the longer version of this cor-

respondence [12] (it corresponds to [12, Lemma 6]).

Note that the speciality of the above SVD of matrix(AB) comes
from the special form ofU in (8) that may not hold for an SVD of a
general matrix.

As a consequence of Lemma 3, if the rank of(AB) in Lemma 3 is
k, thens = 0 in (7) and, therefore, all the diagonal elements are1,
i.e., all singular values of(AB) are1. Another remark is that, when
p = k, i.e.,A andB are square, then the above proof can be simplified
as follows. Whenp = k, the matrix A

B

B

A
is square. Then, the

condition in this lemma implies

A B

B� A�
A B

B� A�

H

= I2k:

In this case, if we takeU = A

B

B

A

H

that certainly has the form of
(8), then (7) is proved.

We next want to make a transformation to the variables of a gener-
alized complex orthogonal design.

Lemma 4: Let

G = (A1xxx+B1xxx
� A2xxx+B2xxx

� � � � Anxxx+Bnxxx
�)

be a generalized complex orthogonal design and matrixW

W

W

W
and

matrixV be unitary. Make the transformationxxx = W1yyy +W2yyy
� and

let ~Ai = V AiW1 + V BiW
�

2 and ~Bi = V AiW2 + V BiW
�

1 , then

~AHi ~Aj + ~Bt
j
~B�i = �ij ~Ei; 1 � i; j � n

and

~AHi ~Bj + ~Bt
j
~A�i =0

~BH
i

~Aj + ~Atj ~B
�

i =0; 1 � i 6= j � n (9)

where ~Ei = WH
1 EiW1 + W t

2EiW
�

2 are positive definite. In other
words,f( ~A1

~B1); . . . ; ( ~An ~Bn)g form a Hurwitz family. In par-
ticular, if G is a complex orthogonal design, then its transformation
~G = ( ~A1xxx + ~B1xxx

� ~A2xxx + ~B2xxx
� � � � ~Anxxx + ~Bnxxx

�) is also a com-
plex orthogonal design.

Proof: It is enough to notice that

~Ai ~Bi

~B�j ~A�j
=

V 0

0 V

Ai Bi

B�j A�j

W1 W2

W �

2 W �

1

: QED

As a remark, ifEi 6= I , then ~AHi ~Bi + ~Bt
i
~A�i may not be0, which

is the reason why conditioni 6= j in (6) in Definition 1 for a Hur-
witz family is required. On the other hand, by reviewing Proposition 1,
condition ~AHi ~Bi + ~Bt

i
~A�i = 0 is crucial for a generalized complex

orthogonal design as in (3).

Proposition 2: Let

G = (A1xxx+B1xxx
� A2xxx+B2xxx

� � � �Anxxx+Bnxxx
�)

be a generalized complex orthogonal design. Then, there exists a Hur-
witz family

f( ~A1
~B1); ( ~A2

~B2); . . . ; ( ~An ~Bn)g (10)

with the same parametersp; n; k asG and

~AH1 ~A1 + ~Bt
1
~B�1 = I

~AH1 ~B1 + ~Bt
1
~A�1 =0; ~BH

1
~A1 + ~At1 ~B

�

1 = 0 (11)

and, furthermore,~A1 and ~B1 have the following forms:

~A1 =

D� 0

0 Ik�s
0 0

0 0

; ~B1 =

0s�s 0

0(k�s)�s 0

D� 0

0 0

(12)

wherek � s � 2k � p, D� = diag(�1; �2; . . . ; �s), D� =
diag(�1; �2; . . . ; �s) and�2i +�2i = 1, 1 > �i � 1=2 � �j > 0,

i; j = 1; 2; . . . ; s, k + s = �, and�
�
= rank((A B)) � k. In

particular, if G is a complex orthogonal design, then there exists a
complex orthogonal design~G with the same parametersp; n; k asG
such that its corresponding matrices~A1 and ~B1 have the forms in (12).

Proof: Proposition 2 is a direct consequence of Lemmas 2–4.
QED.

In the proof of the main theorem in the next section, we need the
following rank inequalities.

1) (Sylvester’s Inequality) LetA be ak�p matrix andB be ap�n
matrix. Then

rank(A) + rank(B)� p � rank(AB):

2) LetA be ak � p matrix andB be ap� n matrix. Then

rank(AB) � minfrank(A); rank(B)g:

3) LetA; B be twon �m matrices andE be anm �m positive
definite matrix. IfAHA + BHB = E, then

rank(A) + rank(B) � m:

The above rank inequalities 1) and 2) are fundamental and can be found
in linear algebra books, e.g., see [25]. Rank inequality 3) can be ob-
tained from

rank(A) + rank(B) = rank(AHA) + rank(BHB)

� rank(AHA+BHB) = m:

III. U PPERBOUNDS OFRATES FORTHREE ORMOREANTENNAS

In this section, we present several upper bounds of the rates for both
complex orthogonal designs and generalized complex orthogonal de-
signs.

Theorem 1: LetG = G(x1; x2; . . . ; xk) be a generalized complex
orthogonal design of sizep�n. If n � 3, then, its rate is upper-bounded
by 4=5, i.e.,

R =
k

p
�

4

5
: (13)

If G is a complex orthogonal design andn � 3, then its rate is upper-
bounded by3=4, i.e.,

R =
k

p
�

3

4
: (14)

Proof: We first want to prove the first part of this theorem. Let

G = (A1xxx+B1x
�x�x� A2xxx+B2x

�x�x� � � � Anxxx +Bnx
�x�x�):
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By Proposition 2, we can assume thatA1 andB1 have the following
forms:

A1 =

D� 0

0 Ik�s

0 0

0 0

; B1 =

0s�s 0

0(k�s)�s 0

D� 0

0 0

whereD� = diag(�1; . . . ; �s), D� = diag(�1; . . . ; �s), Ik�s is the
identity matrix of sizek�s, and1 > �i � �j > 0, i; j = 1; . . . ; s,
andf(A1 B1); (A2 B2); . . . ; (An Bn)g is a Hurwitz family with
AH
1 A1+Bt

1B
�

1= I .
Divide p� k matricesAi andBi into block matrices as follows:

Ai =

Ai1 Ai2

Ai3 Ai4

Ai5 Ai6

Ai7 Ai8

; Bi =

Bi1 Bi2

Bi3 Bi4

Bi5 Bi6

Bi7 Bi8

whereAi1 andBi1 ares � s matrices,Ai3 andBi3 are(k�s) � s

matrices,Ai5 andBi5 ares�s matrices,Ai7 andBi7 are(p�k�s)�s
matrices,Ai2 andBi2 ares�(k�s) matrices,Ai4 andBi4 are(k �
s)�(k�s) matrices,Ai6 andBi6 ares�(k�s) matrices, andAi8 and
Bi8 are(p�k�s)�(k�s) matrices.

SinceAH
1 Ai + Bt

iB
�

1 = 0 for i > 1, we have

D� 0 0 0

0 Ik�s 0 0

Ai1 Ai2

Ai3 Ai4

Ai5 Ai6

Ai7 Ai8

+
Bt
i1 Bt

i3 Bt
i5 Bt

i7

Bt
i2 Bt

i4 Bt
i6 Bt

i8

0 0

0 0

D� 0

0 0

= 0:

This matrix equation implies

Ai2 = 0; Ai4 = 0; i = 2; . . . ; n:

From the skew symmetry ofBH
1 Ai, we obtainAi6 = 0 for i =

2; . . . ; n.
Definef(Â2 B̂2); (Â3 B̂3); . . . ; (Ân B̂n)g as follows:

Âi =

0

0

0

Ai8

; B̂i =

Bi2

Bi4

Bi6

Bi8

i.e.,Âi andB̂i are the second columns of the block matrices inAi and
Bi, respectively.

SinceAH
i Aj + Bt

jB
�

i = �ijEi for i; j � 2, we have

AH
i1 AH

i3 AH
i5 AH

i7

0 0 0 AH
i8

Aj1 0

Aj3 0

Aj5 0

Aj7 Aj8

+
Bt
j1 Bt

j3 Bt
j5 Bt

j7

Bt
j2 Bt

j4 Bt
j6 Bt

j8

B�i1 B�i2

B�i3 B�i4

B�i5 B�i6

B�i7 B�i8

= �ijEi;

whereEi are positive definite. By noting the second row and the second
column in the above products, we obtain

Â
H
i Âj + B̂

t
jB̂

�

i = �ijÊi; i; j � 2 (15)

whereÊi are the(k�s)�(k�s)matrix taken from the lastk�s rows and
the lastk�s columns ofEi, and therefore,̂Ei are also positive definite.
By similarly, showing that other conditionsf(Â2 B̂2); . . . ; (Ân B̂n)g
are also a Hurwitz family of size(k�s)� p matrices.

By the rank inequality 3) at the end of Section II, (15) implies

rank(Ai8) + rank(B̂i) � k � s; i = 2; . . . ; n: (16)

Sincen � 3, there exists a pairi and j with i 6= j � 2. When
i 6= j � 2, we haveÂH

i Âj+B̂t
jB̂

�

i = 0, that is,AH
i8Aj8+B̂t

jB̂
�

i = 0,
which implies

rank(B̂i) + rank(B̂j)� p � rank (B̂t
jB̂

�

i )

= rank (AH
i8Aj8) � p� k � s (17)

where the first inequality is due to Sylvester’s inequality and the row
size ofB̂i andB̂j is p, and the last inequality is becauseAi8 andAj8

are all of size(p� k � s)� (k � s) and the rank inequality 2) at the
end of Section II. Hence, from (17) and (16), rank(Aj8) � p� k � s

and rank(Ai8) � p � k � s, we have

p� k � s � rank(B̂i) + rank(B̂j)� p

� k � s� rank(Ai8) + k � s� rank(Aj8)� p

� k � s� (p� k � s) + k � s� (p� k � s)� p

=4k � 3p

which implies

4p� 5k � s � 0:

Therefore, the first half of the theorem is proved.
We next want to show the second half of the theorem and assume

thatG is a complex orthogonal design. All the above derivations still
hold forG and are adopted in the following proof. SinceG is a complex
orthogonal design, by Proposition 2

f(A2 B2); (A3 B3); . . . ; (An Bn)g

satisfies (3) Proposition 1 withEi = I . Therefore, it is not hard to see
that

f(Â2 B̂2); (Â3 B̂3); . . . ; (Ân B̂n)g

also satisfies (3) in Proposition 1 witĥEi = I .
Consider matrixA28 in Â2, which has size(p�k�s)�(k�s).There

exist a(p�k�s)�(p�k�s) unitary matrixU and a(k�s)�(k�s)
unitary matrixR such that

UA28R =
0 0

D� 0

whereD� = diag(�1; �2; . . . ; �r), r is the rank of the matrixA28,
and�i > 0, i = 1; 2; . . . ; r, are the positive square roots of the
eigenvalues ofA28A

H
28. Clearly

r � p� k � s:

Using these unitary matricesU andR, we rewrite the matrix pairs
f(Â2 B̂2); . . . ; (Ân B̂n)g as follows.

Let

P =
I

0

0

U

whereI is the identity matrix of sizek + s. ThenP is ap� p unitary
matrix and

f(PÂ2R PB̂2R
�); . . . ; (PÂnR PB̂nR

�)g
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also satisfies (3) in Proposition 1 withEi = I . Furthermore,
fPÂ2R; PB̂2R

�; P Â3R; PB̂3R
�g can be written as follows:

0 0

0 0

0 0

0 0

D� 0

;

~B22 B22

~B24 B24

~B26 B26

~B281 B282

~B283 B284

;

0 0

0 0

0 0
~A381 A382

~A383 A384

;

~B32 B32

~B34 B34

~B36 B36

~B381 B382

~B383 B384

(19)

where the sizes of~Bi2; ~Bi4; ~Bi6 ares � r; (k � s) � r; s � r, re-
spectively, the sizes ofBi2; Bi4; Bi6 ares� (k� s� r); (k� s)�
(k�s�r); s�(k�s�r), respectively, the sizes of~B281; ~A381; ~B381

are(p� k� s� r)� r, the sizes of~B283; ~A383; ~B383 arer� r, the
sizes ofB282; A382; B382 are(p� k� s� r)� (k� s� r), and the
sizes ofB284; A384; B384 arer � (k � s � r).

We next want to show thatB284 = 0 andB384 = 0. From (3) in
Proposition 1, the matrix(PÂ2R)

H(PB̂2R
�) is skew symmetry, i.e.,

0 0 0 0 D�

0 0 0 0 0

~B22 B22

~B24 B24

~B26 B26

~B281 B282

~B283 B284

is skew symmetry, which impliesD�B284 = 0, therefore,B284 = 0
becauseD� is invertible. Similarly, the matrix(PÂ2R)

H(PB̂3R
�) is

also skew symmetry, which impliesB384 = 0.
Again by (3) in Proposition 1, we have

(PÂ2R)
H(PÂ3R) + (PB̂3R

�)t(PB̂2R
�)� = 0

i.e.,

0 0 0 0 D�

0 0 0 0 0

0 0

0 0

0 0
~A381 A382

~A383 A384

+
~Bt
32

~Bt
34

~Bt
36

~Bt
381

~Bt
383

B t
32 B t

34 B t
36 B t

382 0

~B�

22 B
�

22

~B�

24 B
�

24

~B�

26 B
�

26

~B�

281 B
�

282

~B�

283 0

= 0:

From the second row and the second column, the above equation im-
plies

B t
3B

�

2 = 0 (20)

whereBi = (B t
i2 B t

i4 B t
i6 B t

i82)
t for i = 2; 3. By Sylvester’s

inequality, and noting that the size of matricesB2 andB3 is (p� r)�
(k � s � r), (20) implies

rank(B2) + rank(B3) � p� r: (21)

We next want to determine the ranks ofB2 andB3.
Because

(PÂ2R)
H(PÂ2R) + (PB̂2R

�)t(PB̂2R
�)� = I

we have

0 0 0 0 D�

0 0 0 0 0

0 0

0 0

0 0

0 0

D� 0

+
~Bt
22

~Bt
24

~Bt
26

~Bt
281

~Bt
283

B
t

22 B
t

24 B
t

26 B
t

282 0

~B�

22 B
�

22

~B�

24 B
�

24

~B�

26 B
�

26

~B�

281 B
�

282

~B�

283 0

= I:

Therefore, by noting the second row and the second column, we have
B t

2B
�

2 = I , hence,

rank(B2) = k � s� r: (22)

For the rank ofB3, we first use the fact that

(PÂ3R)
H(PÂ3R) + (PB̂3R

�)t(PB̂3R
�)� = I

and we then use the forms ofPÂ3R andPB̂3R
� in (19) and expand the

summation. We then conclude thatAH
382A382+A

H
384A384+B

t
3B

�

3=I:
Finally, from the rank inequality 3) at the end of Section II, we have

rank(B3) � k � s� r � r1 (23)

wherer1 is the rank of matrix(A t
382 A t

384)
t that hasp� k� s rows

from (19). Thus, we also have

r1 � p� k � s: (24)

Combining (18) and (21)–(24), we have

2k� p � 2s+ r+ r1 � 2s+ (p� k� s) + (p� k� s) = 2p� 2k

i.e.,

k

p
�

3

4
:

This proves Theorem 1. QED

From the above proof, one can see that the difference between
the above upper bounds that we obtained on the rates of complex
orthogonal designs and the generalized orthogonal designs depends
on whether the property

ÂH
i B̂i + B̂t

i Â
�

i = 0 (25)

holds. It holds for the complex orthogonal designs due to the orthonor-
mality but may not hold for generalized complex orthogonal designs.

As another application of Proposition 2, we have another upper
bound for the rates of a complex orthogonal space–time block code,
which sharpens the result in Theorem 1 if an additional condition is
satisfied. LetG = (A1xxx+B1xxx

� . . . Anxxx+Bnxxx
�) be a generalized

complex orthogonal design. Define

�
�
= max

i=1; 2; ...;n
rank((Ai Bi)): (26)

Theorem 2: LetG = (A1xxx+B1xxx
� A2xxx+B2xxx

� � � �Anxxx+Bnxxx
�)

be a generalized complex orthogonal design. If� = p andn � 2, then
the rate ofG is upper-bounded byn=(2n� 2), i.e.,

R =
k

p
�

n

2n� 2
:
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Proof: If 2k � p, then, the theorem is proved. So, in what fol-
lows, we assume2k > p. Without loss of generality, we assume rank
((A1 B1)) = p. By Proposition 2, we may assumeA1 andB1 have
the following forms:

A1 =

D� 0

0 Ik�s
0 0

; B1 =

0s�s 0

0(k�s)�s 0

D� 0

where s = p � k, D� = diag(�1; . . . ; �s), D� =
diag(�1; . . . ; �s); Ik�s is the identity matrix of sizek � s;
and 1 > �i > �j > 0, i; j = 1; . . . ; s, and
f(A1 B1); (A2 B2); . . . ; (An Bn)g is a Hurwitz family.

Divide matricesAi andBi into block matrices as follows:

Ai =

Ai1 Ai2

Ai3 Ai4

Ai5 Ai6

; Bi =

Bi1 Bi2

Bi3 Bi4

Bi5 Bi6

where the sizes ofAi1 andBi1 ares � s, the sizes ofAi3 andBi3

are (k � s) � s, and the sizes of the remaining submatrices can be
determined accordingly. By the properties of a Hurwitz family in Def-
inition 1, we haveAH

1 Ai + Bt
iB

�

1 = 0 for i > 1, that is,

D� 0 0

0 I 0

Ai1 Ai2

Ai3 Ai4

Ai5 Ai6

+
Bt
i1 Bt

i3 Bt
i5

Bt
i2 Bt

i4 Bt
i6

0 0

0 0

D� 0

= 0

which impliesAi2 = Ai4 = 0 for i > 1. Similarly,Ai6 = 0 can been
obtained from the skew symmetry ofAH

i B1.
Define

Âi =

0

0

0

; B̂i =

Bi2

Bi4

Bi6

:

Then, by the same method as that used in the proof of Theorem 1,
f(Â2 B̂2); . . . ; (Ân B̂n)g is also a Hurwitz family.

By applying the properties of a Hurwitz family, it is not hard to verify
that the(n� 1)(k� s) column vectors of the following matrix:

B22 B32 � � � Bn2

B24 B34 � � � Bn4

B26 B36 � � � Bn6

are linearly independent inp. Therefore, by noticings = p � k, we
have

(n� 1)(k� s) = (n� 1)(k� (p� k)) � p

which establishes the theorem. QED

It is not hard to check that the rate–3=4 complex orthogonal
space–time block codes in [3], [4]–[6] for three and four transmit
antennas do not satisfy the condition in Theorem 2 and, therefore, the
upper bound in Theorem 2 does not apply to them.

IV. RESTRICTED(GENERALIZED) COMPLEX ORTHOGONAL DESIGNS

In the previous sections, we consider the conventional (generalized)
complex orthogonal designs in the sense that all the variables in the
designs may take any values on the complex plane. In this section, we
consider restricted (generalized) complex orthogonal designs where the
variables only take values from subsets of the complex plane. To do so,
we first introduce some necessary notations and concepts.

LetA be a subset (finite or infinite) of the complex plane, which is
called the alphabet set. Thedifferenceset ofA, denoted�A, is defined
by

�A �
= fz1 � z2 j for anyz1; z2 2 Ag: (27)

Note that for any alphabet setA, we have0 2 �A.
An alphabet setA is calledadmissibleif it contains at least three

distinct points such that they arenotcollinear, i.e., they do not lie on a
straight line on the complex plane, or more precisely, there existzj =
pj + jjjqj 2 A, j = 1; 2; 3, such that

det
p1 � p2 q1 � q2
p1 � p3 q1 � q3

6= 0 (28)

wherejjj =
p�1. We next want to see the admissibility condition (28)

on the difference set�A. It is clear that condition (28) is equivalent to
any one of the following:

det
p2 � p1 q2 � q1
p2 � p3 q2 � q3

6=0 (29)

det
p3 � p1 q3 � q1
p3 � p2 q3 � q3

6=0: (30)

Let x1 = z1 � z2; x2 = z2 � z3; x3 = z3 � z1. Thenxj 2 �A,
furthermore, condition (28) can be rewritten as

det
Re(x1) Im(x1)

�Re(x3) �Im(x3)
6= 0 (31)

whereRe(x) andIm(x) are the real and image parts ofx, respectively.
By some simple calculations, we may find that condition (31) or (28)
is equivalent to

det
x1 x�1
x3 x�3

6= 0: (32)

Similarly, (29) and (30) are equivalent to, respectively,

det
x1 x�1
x2 x�2

6= 0; det
x3 x�3
x2 x�2

6= 0: (33)

In summary, an alphabet setA is admissible if and only if there exist
at least three pointsfx1; x2; x3g in �A such that condition (32) or
any one of the two in (33) holds. Note that a constellation setM -PSK
(M > 2) or M -QAM (M > 2) is admissible.

We next give the definition of arestrictedgeneralized complex or-
thogonal design. Let

G = (A1zzz +B1zzz
� � � � Anzzz +Bnzzz

�)

be ap � n matrix, wherezzz = (z1; z2; . . . ; zk)
t 2 k, andAi; Bi,

i = 1; . . . ; n, arep � k complex constant matrices.

Definition 2: Let A1; A2; . . . ; Ak be k complex point sets.
fG; A1; A2; . . . ; Akg is called a restricted orthogonal space–time
design if for any

zzz = (z1; z2; . . . ; zk)
t 2 (A1 �A2 � � � � � Ak)

t

the following orthogonality holds:

GHG =(A1zzz +B1zzz
� � � �Anzzz +Bnzzz

�)H

� (A1zzz +B1zzz
� � � �Anzzz +Bnzzz

�)

= jzzz1j2D1 + jzzz2j2D2 + � � �+ jzzzkj2Dk (34)

whereDi, i = 1; 2; . . . ; k, are somen� n diagonal positive definite
constant matrices.
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For a restricted generalized complex orthogonal design, we have the
following theorem.

Theorem 3: Let fG; A1; A2; . . . ; Akg be a restricted generalized
complex orthogonal design. If for eachi with 1 � i � k, the following
conditions hold for alphabet setAi:

i) Ai is admissible, i.e.,Ai does not contain only collinear points;

ii) there existsz = p+ qjjj 2 Ai with pq 6= 0 such thatz 6= z� and
z� 2 Ai;

iii) there existzj = pj + qjjjj 2 Ai, j = 1; 2; 3, such that

det
p21 � p22 q21 � q22
p21 � p23 q21 � q23

6= 0 (35)

thenG is also a generalized complex orthogonal design.

Proof: By Proposition 1, it is enough to prove that under the con-
ditions of this theorem, the following matrix equations hold:

AH
i Aj +Bt

jB
�

i = �ijEi; i; j = 1; 2; . . . ; n (36)

AH
i Bj +Bt

jA
�

i =0; i; j = 1; 2; . . . ; n (37)

whereEi are positive definite diagonal matrices, which can be proved
by using Lemma 5 stated below similar to the proof of Proposition 1
by using Lemma 1. We omit the details. QED

Lemma 5: Let A1; A2; . . . ; Ak bek complex alphabet sets. Let
A, B, andC be threek � k complex matrices such that, for anyzzz =
(z1; z2; . . . ; zk)

t 2 (A1 �A2 � � � � � Ak)
t, the following holds:

zzzHAzzz + zzzHBzzz� + zzztCzzz = 0: (38)

i) If for any 1 � i � k,Ai satisfies condition i) in Theorem 3, i.e.,
none of the alphabet sets contains only collinear points, then matrices
A, B + Bt, andC + Ct are all diagonal.

ii) If for any 1 � i � k, Ai satisfies conditions i)–iii) in Theorem
3, then

A = B +Bt = C + Ct = 0: (39)

iii) If for any 1 � i � k,Ai satisfies condition i) in Theorem 3 with
three nonzero points and0 2 Ai, then, (39) holds.

Lemma 5 sharpens Lemma 1. Its proof is included in the longer ver-
sion of this paper [12] (it corresponds to [12, Lemma 8]).

The result in Theorem 3 can be thought of a generalization of the
results in [13], [14] in the sense that the size of an orthogonal design is
not necessarily square, i.e.,p does not have to be equal ton, and it is
in the complex field instead of the real field, and the orthonormality is
generalized to the orthogonality. One can see that PSK constellations
do not satisfy condition iii) of Theorem 3. However, it is not difficult
to check that the commonly used QAM signal constellations of sizes
above4 located on a square lattice satisfy conditions i)–iii) in the above
theorem. Therefore, we have the following corollary.

Corollary 1: A restricted generalized complex orthogonal design
with its variables restricted to QAM constellations of sizes above4 on
square lattices is also a generalized complex orthogonal design and,
therefore, the upper bounds on its rate in Section III hold.

The fact that PSK constellations do not satisfy condition iii) in The-
orem 3 shows that the admissibility (28) does not imply condition iii)
in Theorem 3. On the other hand, by considering points on a straight
line (it is neither thex-axis nor they-axis), condition iii) in Theorem 3
may hold. This shows that condition iii) in Theorem 3 does not imply
the admissibility (28) in general.

V. CONCLUSION

In this correspondence, we have shown that the rates of complex
orthogonal space–time block codes for three or more transmit an-
tennas are upper-bounded by3=4 and the rates of generalized complex
orthogonal space–time codes for three or more transmit antennas are
upper-bounded by4=5. We have presented another sharper upper
bound for the rates under a certain condition. Notice that the maximal
rate of real orthogonal space–time codes is1 for any number of
transmit antennas, which is achievable using the Hurwitz–Radon
constructive proof. For complex orthogonal space–time block codes or
generalized complex orthogonal space–time block codes, the maximal
rate 1 is reached only for two transmit antennas. For generalized
complex orthogonal space–time block codes, rate7=11 and 3=5
generalized complex orthogonal designs forn = 5 andn = 6 have
been constructed in [9], which are9=55 and1=5 away from the upper
bound4=5 we derived in this correspondence for generalized com-
plex orthogonal space–time block codes, respectively. For complex
orthogonal space–time codes, rate–2=3 complex orthogonal design
for n = 5 has been constructed in [11], which is1=12 away from the
upper bound3=4. For a generaln, we conjecture that the upper bound
3=4 of the rate of complex orthogonal designs can be sharpened as

R �
dn
2
e+ 1

2dn
2
e

which can be achieved forn = 1; 2; 3; 4; 5:
Note that the upper bound of the ratesR � 3=4 whenn > 2 was

proved in [10] for a special family of complex orthogonal space–time
block codes from the complex orthogonal designsG, where the en-
tries ofG do not consist of any linear processing ofxxxi andxxx�i , i =
1; 2; . . . ; k, and can only be0 or single variables�xxxi or �xxx�i , i =
1; 2; . . . ; k, and these variables do not repeat in any column ofG. The
method used in [10] was based more on a combinatorial argument that
is different from what was used in this work.

In the last part of this correspondence, we have considered the re-
stricted generalized complex orthogonal designs by restricting the vari-
ables to subsets of the complex plane. We have obtained a condition on
the alphabet sets such that a restricted generalized complex orthogonal
design is a generalized complex orthogonal design. The commonly
used QAM constellations of size above4 on square lattices do satisfy
the condition. Thus, the upper bounds on the rates presented in this
correspondence also apply to restricted generalized complex orthog-
onal designs for commonly used QAM signal constellations of sizes
above4. This result can be thought of as a generalization of the re-
sults in [13], [14] from square real orthogonal designs to (not necessary
square) generalized complex orthogonal designs.

Due to the lengthy proofs of some of the main lemmas in this
correspondence, Lemmas 3 and 5, these proofs have been omitted in
the text but can be found online through our website http://www.ee.
udel.edu/�xxia/Pub.html. We would like to mention here that Lemma
3 presents a new SVD factorization of a special structure for a
particular family of matrices, which does not exist in the mathematics
literature.
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