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' : maintain the fast ML decoding and the full diversity of a space—time
block code, the orthonormality in the sense that the norms of all
column vectors are the same can be relaxed to a general orthogonality
where the norms of column vectors may not be necessarily the same

[3]. A complex orthogonal space—time block code with the generalized

orthonormality is called a generalized complex orthogonal space—time

block code. In [2], [3], it has been shown that the ré&e< 1 for

both real and complex orthogonal space-time block codes for any

number of transmit antennas. While the maximal datee., R = 1, is

reachable for real orthogonal space—time block codes as we previously
mentioned from the Hurwitz—Radon’s constructive theory, it has been
Abstract—in this correspondence, we derive some upper bounds of the recently shown in [8] that: < p — 1 whenn > 2,ie,R < 1

rates of (generalized) complex orthogonal space-time block codes. We firstand R = 1 is not reachable for (generalized) complex orthogonal

present some new properties of complex orthogonal designs and then showspace—time block codes no matter what the time delay unless

that the rates of complex orthogonal space—time block codes for more than the number of transmit antennas is two, i.e., the Alamouti's scheme.
two transmit antennas are upper-bounded by3 /4. We show that the rates

of generalized complex orthogonal space—time block codes for more than Notice that, if conditiorp =n is required, i.e.squarecpdes osquare
two transmit antennas are upper-bounded by4 /5, where the norms of complex orthogonal designs, thénh< 1 whenn > 2 directly follows
column vectors may not bg necessgrily the same. We also present anotherfrom the results on amicable designs [18], [21]-[23], [3], [5]-[7] that
upper bound under a certain condition. have small rates whem > 8. While both square and nonsquaeal

For a (generalized) complex orthogonal design, its variables are not re- th | desi iti f dratic f I
stricted to any alphabet sets but are on the whole complex plane. In this Orthogonal designs (or compositions of quadratic forms) are we

correspondence, a (generalized) complex orthogonal design with variables Understood, not much is known for nonsquammplexorthogonal
over some alphabet sets on the complex plane is also considered. We obtairdesigns (or Hermitian compositions of quadratic forms [26]), [3],
a condition on the alphabet sets such that a (generalized) complex orthog- [26], [27].

onal design with variables over these alphabet sets is also a conventional In this corresnondence. we derive some upber bounds on theates
(generalized) complex orthogonal design and, therefore, the above upper P ’ PP

bounds on its rate also hold. We show that commonly used quadrature am- Of (generalized) complex orthogonal space-time block codes (or com-
plitude modulation (QAM) constellations of sizes abovet satisfy this con-  plex orthogonal designs). We emphasize that the sizes of (generalized)
dition. complex orthogonal space—time block codes (or complex orthogonal

Index Terms—Complex orthogonal designs, complex orthogonal space— designs) here are general and they may not be square, irey not
time block codes, Hermitian compositions of quadratic forms, Hurwitz  be equal to:. We show that, when the number of transmit antennas is
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Space—Time Block Codes
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family, Hurwitz—Radon theory. more than two, i.en > 2, the rates of complex orthogonal space-time
block codes are upper-boundedy, i.e.,
|. INTRODUCTION R< 3
— 4

The first real/complex orthogonal space-time block code wagj the rates of generalized complex orthogonal space—time block
proposed by Alamouti [1] for two transmit antennas. It was then 9€Psdes are upper-bounded by5, i.e.

eralized to real/complex orthogonal space—time block codes for more 4
than two transmit antennas by Tarokh, Jafarkhani, and Calderbank R< -

=
[3]. There are two important properties of real/complex orthogonal 0

space—time block codes: 1) they have fast maximum-likelihood (ML’%Ote that rate3,/4 complex orthogonal space—time block codes for

decoding, namely, symbol-by-symbol decoding; 2) they have ifyree and four transmit antennas have appeared in [3]-[6]. There-
full diversity. These two properties make real/complex orthogongﬁre' thg above upper bound tells us that these compl_ex orthogonal
space—time block codes attractive in space—time code designs. sg?ce—tlme block codes have already reached the optimal rate. Also
utilizing the Hurwitz—Radon theory [17]-[19], [23], [26], Tarokh,noethat the above upper boubidt on the rates is not new faquare

Jafarkhani, and Calderbank [3] provided a systematic method q8mplex_orthogona_1l des_igns. In fact, it has been shown and revie_wed
from amicable designs in [18], [21]-[23], [3], [5]-[7]. However, this
upper bound imewfor nonsquare complex orthogonal designs. In the

Manuscript ere_ceived ﬁepthemz_ef F2 ZOOé%reViS?dSAPr” ?7 5003- Tf;]is ngeantime, it is known that to generate orthogonal space—time codes, a
was supported in part by the Air Force Office of Scientific Research un C
Grant F49620-02-1-0157 and the National Science Foundation under Graen Jare orthog(?nal design IS.nOt necessary [3]. . . .
MIP-9703377, CCR-0097240, and CCR-0325180. The material in this corre-IN & conventional (generalized) complex orthogonal design, its vari-
spondence was presented in part at the IEEE International Symposium onahles may take any values in the complex plane. However, as we shall
formation Theory, Lausanne, Switzerland, June/July 2002. ~ see later, to generate a space—time code, the variables only take values
The a,“thc;rs alre withthe DeF’ka”me”; ofsElegtmzal andl Chomp“tg E”Q:j”eler('j'ﬂg'some finite subsets, called alphabet sets, on the complex plane. The
University of Delaware, Newark, DE 19716 USA (e-mail: hwang@ee.udel.edy; . o
xxia@ee.udel.edu). HQestlon then becomes Whethe_r it is he!pful to produce more (gener-
Communicated by T. L. Marzetta, Guest Editor. alized) complex orthogonal designs of high rates when their variables

Digital Object Identifier 10.1109/TIT.2003.817830 are restricted to some alphabet sets. This question has been partially

0018-9448/03$17.00 © 2003 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003 2789

studied lately in [13], [14], [16], and [15]. For square real orthogonalf sizep x n is ap x n matrix satisfying the following conditions:
designs, when their variables are restricted to finite or infinite subsets
of the real line (or field), they are called restricted orthogonal designs
in [13] and pseudo-orthogonal designs in [14]. It is shown in [13], [14]

that there does not exist new square real orthogonal designs even whem the orthogonality
their variables are restricted to subsets of the real line, if the number of

the elements of the alphabet set is greater than two. For square complex

« the entries off (x1, x2, . .., x)) are complex linear combinations
of 1, x2, ...,z and their complex conjugate§, =5, ..., x};

(G(z1, @2, ..., u))Hg(zl, Ty ooy Th)

. o . . 2 2 2
orthogonal designs, it is known that (also as mentioned previously) the = (|z1|" D1 + |22|" D2 + - -+ + |v&|" Dx)
maximal rate oft x 4 complex orthogonal designs3dg4 when all the holds forany complex valuess;, i = 1, 2, ..., k, whereD;,
variables can take any values on the complex plane. However, examples ; — 1, 2 ..., k, aren x n diagonal pbsitive definite constant
of rate-1 complex orthogonal designs of size« 4 have been shown in matrices, i.e., their diagonal elements are all positive constants.

[16] when their variables take some alphabet sets on the complex plane,

where in the examples all the alphabet sets are PAM and a rotation oket A denote a signal constellation alphabet set and

PAM, i.e., all points in_ an alp_habet set are coIIine_ar. In this correspon- C={G(x1, x2, ..., x1): ;i € A}.

dence, we also consider this problem. We obtain a condition on the . ) .
alphabet sets such that a (generalized) complex orthogonal design Wiggh:C is called a complex (or generalized) orthogonal space-time
variables over these alphabet sets is also a conventional (generaliz§k code. For this block code, everytime slots carries: informa-
complex orthogonal design and, therefore, the above upper bounddiBH SYmboIs,z1, a2, ... w;. Therate of this complex orthogonal

its rate also hold. We show that commonly used QAM signal const&iPace-time (or generalized complex orthogonal space-time) block

lations of size above do satisfy this condition and, therefore, a (genc0de i defined aé/p and denoted by?, i.e., R = k/p. Without

eralized) complex orthogonal design with their variables over QAR confusion in understanding, in what follows we use com-
constellations of size abovés also a conventional (generalized) comPI€x orthogonal space-time (or generalized orthogonal complex
plex orthogonal design. For convenience, in what follows, we adopt tiR2ce~time) block cod€ and (generalized) complex orthogonal

name 'festricted(generalized) complex orthogonal design” as used fi€SiGNG (21, @2, ..., k) interchangeably.

[13] for real orthogonal designs, when their variables are restricted torOF @ real orthogonal design; are real valued in the above defini-

some alphabet sets. tion and the coefficients in the linear combinationgpbf components
This correspondence is organized as follows. In Section II, we prBf-g(‘“‘ T2, ..y “) are all real. Itis known that there_eX|st real or-

vide some preparations and new properties on (generalized) comgf§gonal designs witli? = 1 for any number. of transmit antennas,

orthogonal designs. In Section Ill, we prove several upper bounds. Sf€ [19]: [23], [26], [3]. We refer the reader to [1], [3] for the prop-

Section IV, we study restricted (generalized) complex orthogonal dfgies of the fast ML decoding and the full diversity of a complex or-
signs. thogonal space—time (or generalized complex orthogonal space—time)

block code, where the full diversity means that any difference matrix of
two different complex orthogonal space—time (or generalized complex
orthogonal space—time) block codewords (or code matrices) has full
rank. The main goal of this correspondence is to show that: d)=f
In this section, we present some properties of a (generalized) cofitz1, x2, ..., zi) of sizep x n is a complex orthogonal design and

plex orthogonal design used in a (generalized) complex orthogomal> 3, thenits rateR = k/p < 3/4;2)if G = G(x1, 22, ..., 2f)
space—time block code. In what follows denotes the field of all com- of sizep x n is a generalized complex orthogonal design and 3,

plex numbers an& denotes the field of all real numbers. For convethen its rateR = k/p < 4/5. To do so, we need some preparations.

Il. SOME PRELIMINARIES AND NEW PROPERTIES ONCOMPLEX
ORTHOGONAL DESIGNS

nience, symbod means scaldr or all 0 matrices of possibly different  LetG = G(x1, 22, ..., 24) be a matrix of size x n, where its
sizes and means the identity matrices of possibly different sizes urentries are complex linear combinationsaf w2, ..., z; and their
less specified otherwise. For two matriceandB of the same number complex conjugates?, =5, ..., 7. Then,G can be expressed in
of rows, (A B) denotes the concatenation matrix .4fand B, i.e., terms of its column vectors as follows:
(A B) is a new matrix w_|th the columns of as its first part columns G= (Aiz + Bie* Asa+ Baz™ - Auz+Buz®) (1)
and the columns oB as its second part columns.
A complex orthogonal desigh(1, =, ..., =) of sizep x nisa Whered;, B;,i = 1, ..., n, arep x k constant complex matrices,
p x n matrix satisfying the following conditions: z = (x1,..., 7)", and’ stands for the transpose whilestands for
) . o the complex conjugate.
- the entries of (x1, 22, . . - wy) are comp!ex Ilrl(?ar c*omblnail.ons For then x » diagonal matrice®; given in the preceding definition
of 1, x2,..., 2 and their complex conjugates. x5..... 7k} of 5 generalized complex orthogonal design, we denote
* the orthonormality D, = diag(di, db, ..., d).
(G, 22y ooy i) G(ar, 22y oo, ) For eachj, j = 1, ..., n, all the (j, j)-entriesd; of matricesD;,
= (|1 > + |ao]? + -+ |ze|H)T ¢ =1..... k. formanewk x k diagonal matrixE; as follows:
A . 41 42 k
holds forany complex valuese;, i = 1,2, ..., k, where E; = diag(d;. dj, ..., dj). 2
stands for the complex conjugate transpose Afglthen x n  Clearly, when allD; are positive definite, alE; are positive definite.
identity matrix. Using these matrices, we can transfer the orthogonal conditiah on

The orthonormality in the preceding definition can be generalizdgt© the conditions on the matrices, B;,1 < i, j < n.
to the orthogonality as follows for preserving the full-diversity and the The following Lemma 1 is from [8].

fast ML decoding [3]. Lemma 1[8]: Let A, B, andC be threen x m complex constant
A generalized complex orthogonal design matrices. If for anye € C™

G(x1, 2y o0y k) 2 Az + 2" Ba” +2'Cx =0
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then In order to implement unitary transformations on variables of a gen-
eralized complex orthogonal design to simplify its corresponding ma-
A=B+B' =C+C'=0. trices, we introduce the following concept of Hurwitz families, which
is preserved by a unitary transformation as we can see later.

This lemma is used to prove the following proposition. Definition 1: A set ofp x 2k matrices

Proposition 1: Matrix G in (1) is a generalized complex orthogonal (A1 Bi), (As Ba),.... (A, Bu)}
design, i.e., ’ 9 d n n
G"G = |x1°D1 + |22[° D2 + -+ - + | |* Dy,
for somen x n diagonal positive definite constant matricBs, 1 <
i < k, if and only if there exist diagonal positive definite matrices

is called a Hurwitz family if there exist positive definite matrice&’;,
i=1,2,...,n,suchthat

Al"A; + BIB; = 6, E,, 1<i,j<n (5)

E;,i = 1,2, ..., n, such that their associated matricésandB;, and
i=1,...,n,in (1) satisfy the following conditions: A?B]» + B§A§ -0
A Aj+ BiB! = &, E; 3 BI'A; + A'Bf =0, 1<i#j<n. (6)
Al'B; + BiAT =0, BI'A; + A\Bf =0
. In the preceding definition of a Hurwitz family, the diagonality of
or equivalently . - . o .
P the matrices; is notrequired. Clearly, by Proposition 1, the matrices
A B; A; Bj\_ . (E O (0 /
foralli, j =1, ..., n, wheres;; = 1 wheni = j ands;; = 0 when of a generalized complex orthogonal desigfx:) form a Hurwitz
i # | - ’ family, and
In particular,G is a complex orthogonal design if and only if (3) or {(AU BiU), (AU ByUY), ..., (AU B, U™)}

(4) holds forE; = I'forl <i < m.

Proof: By the orthogonality of a generalized complex orthogondlf 9(U'2) for a unitary transfornd’ also form a Hurwitz family.
design in terms of its column vectors, we have Note that in (6), we have the restrictiorz j due to the fact that it

i . o cannot be deduced fér= j when E; is not the identity matrix when
(Adiz + Bix")" (Ajz + Byja”) =2 6 Eix a unitary transform is applied to a generalized complex orthogonal de-
ie. sign as we shall see after the proof of Lemma 4. Thus, the condition
VN H AT B o 1o B A ‘BB g —as B for a Hurwitz family is weaker than the one for a generalized complex
oA Ajptr A; Bix +a B Ajptae B Bix =2 0ij BT gihogonal design. Also note that the above definition coincides with
whereF; are fromD; asin (2) and, therefore, they are positive definitethe one in [23] whemB; = 0, A; are real andt; = I, i.e., the real
Note that case.
2 B Bz = (a?thi Bjz")' = 1 B}B;;*:r For a Hurwitz family
the above equation can be rewritten as {(Ar B1). (42 Bo). ... (An Bn)}
mH(A?AJ + B}Bi* ~SEDT + mHA;HBj‘T* n mth{A]_I =0, py using some proper unitary tran§format|ons, we can diagonalize the
. firstmatrix(A: By ) as follows, which plays a key role in the proof of
foranyz € C*. 4yr main theorem in next section.
By Lemma 1, we obtain
Al'A; + BiB} = 6,,E,
AYB; 4+ (APB) =0

Lemma 2: Let
G =(4A1z+ Biz" Asx+ Box™ ... A,z + B,z")

be a generalized complex orthogonal design. Tidecan be reduced

and to a new generalized complex orthogonal desigwith the same pa-
B"A; +(B'A)) =o0. rameterg, k, n as ing as follows:
The sufficiency part is easy to verify. QED G=(Aiy+Biy" Asy+ Boy® ... A,y + B.y")

As a remark, equatiod? B, + (4% B;)' = 0 holds is equivalent with A A, + B{ By = I, thatis,E; = I in (3) for A, andB;, where
to matrix AX B; is skew symmetry, which are used interchangeablyy = (y1 a2 ---ys)".

in what follows. Proof: By Proposition 1,E; is diagonal positive definite. Let
We next investigate some properties of a generalized complex or- i -
thogonal desigy under a unitary transformation. LBt be a unitary U= V E;

matrix andG(z) be a generalized complex orthogonal design, theghd then’ is also diagonal positive definite. Make the transformation
G(U=z) may not be a generalized complex orthogonal design due o= {7y and letd; = 4,U, B, = B;U, andE; = UE;U, then4; and
the fact thatl’"’ E;U may not be diagonal, i.e., a unitary transformg; satisfy (3) andE; are all diagonal positive definite. Furthermore,
on variablesr; does not preserve a generalized complex orthogond¥ 4, + B!p* = UE,U = I. QED
design. On the other hand, é(z) is a complex orthogonal design, ) )
theng(Uz) is also a complex orthogonal design duetfo= 7 and 'I_'hefollowmg lemma can b_e also thought of as an |r_1c_1|ependent result
U B,U = I,i.e., aunitary transform on variablespreserves a com- In I|near' algebrg on special singular value decomposition (SVD) forms
plex orthogonal design. of special matrices.

1A matrix S = (s.,) is called skew symmetric is;, = —s,.. For a Lemma 3: Let A andB be twop x k matrices and satisfy conditions

k X k skew-symmetric matris§ = (s, ), we always havee' Se = 0 for A" A+ B'B* = I, andA" B and B" A are skew symmetric. Then,
anyk X 1 vectore € C*. there exist a unitary matriX of sizep x p and a unitary matrix/ of
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size2k x 2k such that the x 2k matrix (A B) can be diagonalized  Proposition 2: Let

as follows: G=(Aiz+ Biz" Asx+ Box™--- A,z + B,z")
D 0 0 0
R ()A I 0 0 be a generalized complex orthogonal design. Then, there exists a Hur-
, k—s H H
/(£ =% = witz famil
V(AB)U =X 0 0 D, 0 ) y o L _
00 0 0/, {(Ai B1), (A2 Bo). ... (Au Bu)) (10)
wherek — s > 2k — p, Dy = diag(A1, Ao, ..., As), p, = Withthe same parametessn. k asg and
diag(pu,s pros «.on ps)andA? +p2 =1,1> X\ > /1/2> pj > 0, AT 4+ BB =1
g =12 ...,8,k+s =k, ands = rank(AB) > k, and, AR, + BtAT =0, BfA +A'Br =0 (11)

furthermore, th&k x 2k unitary matrixU has the following form: . . )
and, furthermored; and B have the following forms:

(W W
- : Dy 0 Ooie 0
¢ ( W Wy ) | (®) ' )

~ 0 Ti_s ~ Ok—s)xs O
whereW,,i = 1, 2, arek x k matrices. A= 0 ko ’ B = UVD“)X 0 (12)
The proof of Lemma 3 is included in the longer version of this cor- 0 0 0 0
respondence [12] (it corresponds to [12, Lemma 6]). wherek — s > 2k — p, Da = diag(M Aas ooy A), Dy =
Note that the speciality of the above SVD of matfix B) comes diag(i1, pi2, ..., pro) @ndA; +pf = 1,1 > X\; > \/1/2 > pi; > 0,
from the special form of’ in (8) that may not hold foran SVDofa;, j = 1,2, ..., s,k + s = &, ands = rank((A B)) > k. In
general matrix. particular, |fg is a complex orthogonal design, then there exists a

As a consequence of Lemma 3, if the rank dfB) in Lemma 3is complex orthogonal desigi with the same parameteps n, k asG
k, thens = 0 in (7) and, therefore, all the diagonal elements Bre such that its corresponding matricés and B; have the forms in (12).
i.e., all singular values ofA B) arel. Another remark is that, when Proof: Proposition 2 is a direct consequence of Lemmas 2—4.
p==kFk, e, AandB are square then the above proof can be simplified QED.
as follows. Wherp = k, the matrlx( 4 f) is square. Then, the In the proof of the main theorem in the next section, we need the
condition in this Iemma |mp||es following rank inequalities.
= 1) (Sylvester’s InequalijyLet A be ak x p matrix andB be ap x n
4 B 4 B matrix. Then
= Is. '
B* A* B* A*
rank(A) + rank(B) — p < rank(ADB).
H
In this case, if we tak& = (};‘* ﬁ) that certainly has the form of  2) Let A be ak x p matrix andB be ap x n matrix. Then
(8), then (7) is proved. ank(AB) < min{rank(A). rank(B
We next want to make a transformation to the variables of a gener- rank(AB) < min{rank(4), rank(B)}-

alized complex orthogonal design. 3) LetA, B be twon x m matrices andt be anm x m positive
definite matrix. IfA% A + B% B = E, then

rank(A) + rank(B) > m.

Lemma 4: Let

§=(hz+ Bz’ Aozt Boz - Anz+ Bu’) The above rank inequalities 1) and 2) are fundamental and can be found

Wi\ gng in linear algebra books, e.g., see [25]. Rank inequality 3) can be ob-

be a generalized complex orthogonal design and métﬁk Wi
2 1

matrix V' be unitary. Make the transformatien= .y + W2y" and tained from

letA; = VAW, + VBWs andB; = VAW, + VB; W/, then rank(A) 4 rank(B) = rank(AHA) + rank(BE B)
R L~ N N:y Hpy _
AFA]' + B Bf =6,E.. 1<i,j<n >rank(A" A+ B7 B) = m.

and
Ill. UPPERBOUNDS OFRATES FORTHREE ORMORE ANTENNAS
APB; 4+ B'A; =0 - -
J In this section, we present several upper bounds of the rates for both

BI'A; + AjB; =0. 1<i#j<n (9) complex orthogonal designs and generalized complex orthogonal de-

whereE; = WHEW, + WEE; W5 are positive definite. In other signs.
words, {(A1 Bi),..., (A, B.,)} form a Hurwitz family. In par-  Theorem 1: LetG = G(x1, 72, ..., 24) be a generalized complex
tlcular |f Gisa complex orthogonal design, then its transformatioorthogonal design of sizexn. If n > 3, then, its rate is upper-bounded

(A1m+B1m Ayz + Boz* --- A,z + B2z *)isalsoacom- by4/5,i.e.,
plex orthogonal design. ko

Proof: It is enough to notice that R=-<_. (23)

p 9

A, B; V A B; W, W, . . . )
g i )=\o v) g 4 ) Uy we)- QED IfGisacomplexorthogonal design and> 3, then its rate is upper-
FEEE g J J 2 1 i
bounded by3/4, i.e.,

As a remark, ifE; # I, thenA B, + B! A7 may not be), which Rk .3 (14)
is the reason why conditioh # j in (6) in Definition 1 for a Hur- Tp — 4
witz family is required. On the other hand, by reviewing Proposition 1, ) i ) .
condition A B, + B! A* = 0 is crucial for a generalized complex Proof: We first want to prove the first part of this theorem. Let

orthogonal design as in (3). G =(4A1z+ Bixz® Asx+ Box® .-+ A,z + B,z%).
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By Proposition 2, we can assume thht and B; have the following
forms:

D, 0 0sxs 0
0 Ii-s Ok—syxs O

A = B, =
! 0 0 ! D, 0
0 0 0 0

where Dy = diag(A1,...,\s), Dy = diag(p1, ..., ps), Ii—s is the
identity matrix of sizek —s, and1 > X; > pu; > 0,4, j=1,....s,
and{(A4, Bi), (42 B,) , (A, B,)} is a Hurwitz family with
A A +B{Bf= I

Divide p x k matrices4; andB; into block matrices as follows:

A A B;1 B

4413 AM st BM
Ai = 5 Bz' =

AZ'_5 AL‘G Bz‘5 BiS

Az Ais Bir Bis

where4;; andB;; ares x s matrices,4;3 andB;; are(k—s) X s
matrices A5 andB;; aresx s matrices,A;7 andB;r are(p—k—s)X s
matrices,4;» andB;; ares X (k—s) matrices,4;, andB;4 are(k —
s)x (k—s) matrices A;¢ andB;s ares x (k—s) matrices, andi;s and
B;s are(p—k—s) x (k—s) matrices.

SinceAf A; + B!B} = 0fori > 1, we have

A A
D, 0 0 0 Az A
<0 Iice O o) Az A
44-1'7 AiS
0 0
+<le B, Bl B) o o) _,
By Bl Bis Bis)|D. 0]
0 0
This matrix equation implies
A =0, Ay =0, 1=2,...,n.

From the skew symmetry aB;’ A;, we obtaind;s = 0 fori =
2, ..., n.
Define{(A> B>), (As Bs3), ..., (4, B, )} as follows:

0 B>

; 0 5 Bia
T = Bz =

0 Bis

Aig st

i.e.,Ai andB; are the second columns of the block matriced jrand
B;, respectively.
SinceA” A; + BB} = é;,E; fori, j > 2, we have

Apn O
AR AR AR ARN[ A5 0
<0 0 o0 Af ) Ajs 0
Ajr Ajs

71 72

B]l'1 BJ["J BJ[B BJL’7 33 34

+<Bf-2 B!, B, Bg) p. p | =%E
J J J0 J (38 26
By DBl

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003

whereE; are the(k—s) x (k—s) matrix taken from the lagt—s rows and
the lastk—s columns ofE;, and thereforek; are also positive definite.
By similarly, showing that other conditiof$As Bo), ..., (A, B.)}
are also a Hurwitz family of sizék —s) x p matrices.

By the rank inequality 3) at the end of Section I, (15) implies

rank(A;s) + rank(B;) > k — s, (16)

Sincen > 3, therg e>§ists a Qah" andj with i # j > 2; When
i #j>2,wehaved]’ A;+BiB; = 0,thatis, A/{A;s+B!Bf =0,
which implies
rank(Bi) + rank(B]') — p < rank (B;éf)

=rank (A2A;) <p—k—s (17)

where the first inequality is due to Sylvester’s inequality and the row
size of B; and B, is p, and the last inequality is becaudes and A s

are all of sizelp — k — s) x (k — s) and the rank inequality 2) at the
end of Section Il. Hence, from (17) and (16), rankjs) <p —k — s

and rank(A;s) < p — k — s, we have

p—k—s5> I"dllk(Bi) + rank(B]') —p
>k —s—rank(A;s)+k—s—rank(A4;s) —p
Zk_s—(p—k—s)+k—s—(p—]i7—5)—P
=4k — 3p

which implies
dp -5k > s> 0.

Therefore, the first half of the theorem is proved.

We next want to show the second half of the theorem and assume
thatG is a complex orthogonal design. All the above derivations still
hold forG and are adopted in the following proof. Singés a complex
orthogonal design, by Proposition 2

{(A2 B2), (A3 Bs), ..., (A, B.)}

satisfies (3) Proposition 1 with; = I. Therefore, it is not hard to see
that

{(fiz Bz), (‘43 gs) R (‘4” B.)}

also satisfies (3) in Proposition 1 witfi; = I.

Consider matrixdss in Ay, which has sizép—k—s) x (k—s). There
exista(p—k—s) x (p—k—s) unitary matrixC’ and ak—s) x (k—s)
unitary matrixR such that

- (0 0
caan= (0 0)

whereDy = diag(fi, 32, ..., Br), r is the rank of the matrixiss,
and3; > 0,i = 1,2, ..., r, are the positive square roots of the
eigenvalues ofi,s A% . Clearly

r<p-—k-—s.

Using these unitary matrice$ and 12, we rewrite the matrix pairs
{(A2 B3), ..., (A, By)} as follows.

Let
P=(y0)

whereFE; are positive definite. By noting the second row and the secoigherel is the identity matrix of sizé + s. ThenP is ap x p unitary

column in the above products, we obtain

Al"A; + BIB; = 6, E;, hhj>2 (15)

matrix and

{(PAyR PB,R"), ..., (PA,R PB,R")}



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003 2793

also satisfies (3) in Proposition 1 with; = I. Furthermore, we have
{PA>;R, PB:R", PA3R, PBsR"} can be written as follows: 0 0
Byy B 0 0
00 Bez Ba 0000 D[,
00 Bos B 0000 O
0 0], Bas Bos 0 0
0 0 Basi Boago Dz 0 - i
D[‘] O 3283 §281 Bi;Z B22
B B L e . B:, B,
O Bz Doz By Bi B Bha Bia\| 5 3|
0 0 B3y Bsy +\| st Bt Ht Bt BZG B26 =T
> %) By, Byy Bys Bogy 0 e
0 0 , Bss  DBsg (19) 1?281 Bogo
1*}381 A_BRQ ?381 §382 B%R‘% 0
Asss Assa Bsss  Bssa Therefore, by noting the second row and the second column, we have

Mt *
where the sizes oB;2, Bi4, Big ares x v, (k — s) X 7, s X r, re- B3B3 = I, hence,
spectively, the sizes dBi», Bis, Bis ares x (k—s—r), (k—s) X rank(Ba) = k — 5 — 1. (22)
(k—s—7), sx(k—s—r), respectively, the sizes Gzs1, Azs1, Bis1 ‘
are(p — k — s —r) X r, the sizes 0Bas3, Asss, Bass arer x v, the  For the rank ofB3, we first use the fact that
sizes 0fBags, Assa, Basz are(p—k—s—r) x (k—s—r),and the
sizes 0f§284, 2384, Fgg;} arer X (k‘ -5 — 7‘). (PfiJR)”(PfL;R) + (PBJR*)f(PBJR*)* =1

We next want to show thaBsss = 0 and Bzssa = 0. From (3) in R R
Proposition 1, the matrikP A, R)” (PB, R*) is skew symmetry, i.e., @hdwethen use the forms B4, I andP By k™ in (19) and expand the
summation. We then conclude tha%, Asso+A 3%, Ass+BEB 5 =1.

l?zz Bas Finally, from the rank inequality 3) at the end of Section I, we have
B24 E24 —
00 0 0 Dg B B rank(Bs) > k—s—r—1r1 (23)
26 26
0000 0/ " 2* L
e wherer; is the rank of matrix 4 {5, Ag,) thathagp — k — s rows
B283 B284

from (19). Thus, we also have

is skew symmetry, which implieB s B2sa = 0, thereforeEm =0

becauseD; is invertible. Similarly, the matrix > A, R (PB3R*)is

also skew symmetry, which implie8ss4 = 0. Combining (18) and (21)—(24), we have
Again by (3) in Proposition 1, we have

ri<p—k—s. (24)

o . o 2k—p<2s+r+ri <2s+(p—k—s5)+(p—k—5)=2p—2k
(PA,R)"(PAsR) + (PBsR") (PBR*) = 0

ie.,
ie.,
k3
0 0 p 4
(O 0 00 Dq) g g This proves Theorem 1. QED
0ooo o0 Ase1 Ass From the above proof, one can see that the difference between
Asss  Assa the above upper bounds that we obtained on the rates of complex
B B orthogonal designs and the generalized orthogonal designs depends
- on whether the property
Dt rt Nt rt i B24 BZ4
ESZ 534 E‘JG E‘Jtsl 3383 B‘*‘ §* — O SH A Aok
B, B.Y, Bls Blw 0 é*zb Fge : A7 B+ B/AT =0 (25)
~781 282 )
Bies 0 holds. It holds for the complex orthogonal designs due to the orthonor-

~ mality but may not hold for generalized complex orthogonal designs.

plies bound for the rates of a complex orthogonal space—time block code,
BB — 0 20 which sharpens the result in Theorem 1 if an additional condition is
3Pz (20) satisfied. LeG = (A1z+ Biz* ... A,z+ B,z")beageneralized
whereB; = (B!, B'y B's Bls)' fori = 2, 3. By Sylvester's complex orthogonal design. Define
inequality, and noting that the size of matrid@s and B is (p — r) x A . .
(k — 5 — 1), (20) implies p= x| raunk((Ai Bi)). (26)
rank(Bs) + rank(B;) < p — . (21) Theorem 2: LetG = (Az+ Biz" Asx+ Box™ -+ A+ Bh,x™)

be a generalized complex orthogonal desigp.# p andn > 2, then

We next want to determine the ranksB$ and Bs. the rate ofg is upper-bounded by /(2n — 2), i.e

Because
k n

(PAsR)Y(PALR) + (PByR") (PByR™) =1 F=2<o =
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Proof: If 2k < p, then, the theorem is proved. So, in what fol- Let.A be a subset (finite or infinite) of the complex plane, which is
lows, we assumek > p. Without loss of generality, we assume ranlcalled the alphabet set. Thdferenceset of 4, denoted\ A, is defined
((A1 By)) = p. By Proposition 2, we may assumg andB; have by
the following forms:

AAZ {z1 — 2o |foranyzi, zo € A} 27
Dy 0 Osxs 0
Ar=[ 0 ILs|. Bi=[04_ugx. 0 Note that for any alphabet sgt, we have) € AA.
0 0 D, 0 An alphabet se#d is calledadmissibleif it contains at least three
distinct points such that they anet collinear, i.e., they do not lie on a
where s = p — k, Dy = diag(\,....\.), D, = Straightlineon the complex plane, or more precisely, there exist
diag(p1s.. . ps), Ie—s is the identity matrix of sizek — s, Ps T3¢ € A j =1,2, 3, suchthat
and 1 > X, > pu; > 0,45 = 1,....s, and D — Do G —
{(A1 B1), (42 Ba)...., (A, B.)}is a Hurwitz family. det (’“ prn “> #0 (28)
P1—P3 q1—(qs

Divide matricesA; andB; into block matrices as follows:
wherej = /—1. We next want to see the admissibility condition (28)

/ A“ {Lz B Biz on the difference seh A. It is clear that condition (28) is equivalent to
Adi=| Ais A |, Bi=|DBis Ba any one of the following:
Ais Ass Bis DBis
P2—p1 2@
where the sizes ofi;; and By ares x s, the sizes of4;3 and B;s det <p2 s qe— q3> 70 (29)
are(k — s) x s, and the sizes of the remaining submatrices can be o _
) . . ) > pP3—p1 G- Q
determined accordingly. By the properties of a Hurwitz family in Def- det <p3 e 45— > #0. (30)

inition 1, we haved?’ A; + B!B7 = 0 for: > 1, that s,
Let.’l)l = Z1 — Zo, Ty = Zp — Z3,X3 = Z3 — Z1. Then’l‘J S AA,
Dy 00 Aa Ai B!, B', B 00 furthermore, condition (28) can be rewritten as
Aiz A | + 0 0

=0
0 I0 B!, Bj; Bl Re(x1) Tm(aq)
Ais Ais ‘ ‘ ‘ D, 0 ‘ ’ ’
6 . det <—R,e(;ng) —Im(xg)) #0 (31)
which impliesA;2 = A;4 = 0fori > 1. Similarly, A;c = 0 can been

obtained from the skew symmetry ¢’ B, whereRe(z) andlm(z) are the real and image parts:gfrespectively.

By some simple calculations, we may find that condition (31) or (28)

Define is equivalent to
. 0 ) BiZ T J}T
A,‘ — 0 \ B7 — Bi4 X det o3 '1:* ;ﬁ 0. (32)
0 Bis N

Similarly, (29) and (30) are equivalent to, respectively,
Then, by the same method as that used in the proof of Theorem 1,

{(A42 Bs), ..., (A, B,)}isalsoa Hurwitz family. dot (70 0. det [Fr T 0 33
By applying the properties of a Hurwitz family, itis not hard to verify “ o x5 70, det T2 T3 7 0- (33)

that the(n — 1)(k — « I t f the followi trix: . S . .
at the(n )( ) column vectors of the following matrix In summary, an alphabet sdtis admissible if and only if there exist

Byy Bss --- B at least three point§x1, x2, 3} in AA such that condition (32) or
Bos Bsi -+ Dua any one of the two in (33) hoId;. Note.thz.at a constellatiomgePSK
Boe Be oo B (M > 2) or M-QAM (M > 2) is admissible.

26 786 "6 We next give the definition of sestrictedgeneralized complex or-

are linearly independent i6”. Therefore, by noticing = p — &k, we thogonal design. Let

have

G=(A1z+Bz" -+ A,z+ B,z")
(n=1(k=s)=(n—-1k=(p—Fk)<p be ap x n matrix, wherez = (2, 2, ..., )" € C*, and4;, B,,
. ) i=1,...,n,arep x k complex constant matrices.
which establishes the theorem. QED
. Definition 2: Let Ay, As, ..., Ax be k complex point sets.
It is not hard to check that the rat®4 complex orthogonal G: A1, As, ..., Ay} is called a restricted orthogonal space—time

space—time block codes in [3], [4]-[6] for three and four transmj esign if for any
antennas do not satisfy the condition in Theorem 2 and, therefore, the
upper bound in Theorem 2 does not apply to them. 2= (21, 22, ooy 2) € (AL X Az X - X Ag)

the following orthogonality holds:
IV. RESTRICTED(GENERALIZED) COMPLEX ORTHOGONAL DESIGNS

In the previous sections, we consider the conventional (generalized) GG =(diz+ Biz" - Anz+ Buz’)

complex orthogonal designs in the sense that all the variables in the (A1z+ Biz" - Anz+ Buz")

designs may take any values on the complex plane. In this section, we =|21°Dy + |22* D2 + - - - + |2:|* Dy (34)
consider restricted (generalized) complex orthogonal designs where the

variables only take values from subsets of the complex plane. To dostereD;,i = 1, 2, ..., k, are some: x n diagonal positive definite

we first introduce some necessary notations and concepts. constant matrices.
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For a restricted generalized complex orthogonal design, we have the V. CONCLUSION

following theorem. In this correspondence, we have shown that the rates of complex

Theorem 3: Let {G; A1, As, ..., Ai} be arestricted generalized orthogonal space-time block codes for three or more transmit an-
complex orthogonal design. If for eacith 1 < i < &, the following  tennas are upper-boundedd#4 and the rates of generalized complex
conditions hold for alphabet set;: orthogonal space-time codes for three or more transmit antennas are

upper-bounded byt/5. We have presented another sharper upper
bound for the rates under a certain condition. Notice that the maximal
rate of real orthogonal space-time codesligor any number of

i) A; is admissible, i.e.A; does not contain only collinear points;
i) there exists: = p + qj € A; with pg # 0 such that # =* and

e Ai transmit antennas, which is achievable using the Hurwitz—Radon
i) there existz; = p; + ¢;5 € Ai, j =1, 2, 3, such that constructive proof. For complex orthogonal space—time block codes or
) s o generalized complex orthogonal space—time block codes, the maximal
det (771 - P; q; - q;) £0 (35) ratel is reached only for two transmit antennas. For generalized
pP1—DPs 91— 43 complex orthogonal space-time block codes, ratél and 3/5

generalized complex orthogonal designsoe 5 andn = 6 have
- N been constructed in [9], which a9¢55 and1/5 away from the upper
Proof: By Proposition 1, itis enough to prove that under the consound4/5 we derived in this correspondence for generalized com-

theng is also a generalized complex orthogonal design.

ditions of this theorem, the following matrix equations hold: plex orthogonal space-time block codes, respectively. For complex
P - o orthogonal space—time codes, r&¢3- complex orthogonal design
Ai"Aj + BB =6 E;, i,j=1,2,....n  (36) forn = 5 has been constructed in [11], whichlig12 away from the
Af’Bj + B}AZ =0, i,j=1,2,...,n (37) upper bound/4. For a generak, we conjecture that the upper bound

3/4 of the rate of complex orthogonal designs can be sharpened as
whereF; are positive definite diagonal matrices, which can be proved

by using Lemma 5 stated below similar to the proof of Proposition 1 R< [51+1
by using Lemma 1. We omit the details. QED = 22
Lemma 5: Let A, A, ..., A bek complex alphabet sets. Let . B
A, B, andC be threek x k complex matrices such that, for amy= Which can be achieved for = 1, 2. 3, 4. 5.
(212 220 oovy 20)' € (Ap X As x --- x Ay)", the following holds: Note _that the upper bqund of the ratBs< 3/4 whenn > 2 was
‘ ‘ proved in [10] for a special family of complex orthogonal space-time
Has+ 8B 4+ 2'Cx = 0. (38) block codes from the complex orthogonal desighswhere the en-
tries of G do not consist of any linear processingaafandz;, i =
i) Ifforany 1 < i < k, A; satisfies condition i) in Theorem 3, i.e., 1+ 2: - -+ k, and can only b@ or single variablestx; or £;, ¢ =
none of the alphabet sets contains only collinear points, then matrideg: - - - - ¥, and these variables do not repeat in any colurri.dfhe
A, B + B', andC + C" are all diagonal. _met_hod used in [10] was based more on a combinatorial argument that
ii) If forany 1 < i < k, A; satisfies conditions i)-iii) in Theorem S different from what was used in this work. _
3, then In the last part of this correspondence, we have considered the re-
stricted generalized complex orthogonal designs by restricting the vari-
A=B+B'=C+C"'=0. (39) ablesto subsets of the complex plane. We have obtained a condition on

the alphabet sets such that a restricted generalized complex orthogonal
i) Ifforany 1 < i < k, A; satisfies condition i) in Theorem 3 with design is a generalized complex orthogonal design. The commonly
three nonzero points atde A;, then, (39) holds. used QAM constellations of size aboven square lattices do satisfy
. . the condition. Thus, the upper bounds on the rates presented in this
Lemma 5 sharpens Lemma 1. Its proof is included in the longer V‘?:rérrespondence also apply to restricted generalized complex orthog-

sion of this paper [12] (it corresponds to [12, Lemma 8])'_ ) onal designs for commonly used QAM signal constellations of sizes
The result in Theorem 3 can be thought of a generalization of t ove4. This result can be thought of as a generalization of the re-

results in [13]_' [14]in the_sense that the size of an orthogonal Fje_SigrEbﬁts in [13], [14] from square real orthogonal designs to (not necessary
not necessarily square, i.e.does not have to be equal#g and it is square) generalized complex orthogonal designs.

in the complex field instead of the real field, and the orthonormality is Due to the lengthy proofs of some of the main lemmas in this

generalized to the orthogonality. One can see that PSK COnSte“ati%B?respondence, Lemmas 3 and 5, these proofs have been omitted in
do not satisfy condition iii) of Theorem 3. However, it is not dif'ﬁcultthe text but can be found online through our website http:/www.ee
to check that the commonly used QAM signal constellations of SiZﬁael.edUr/vxxia/Pub.html. We would like to mention here that Lemma

ahbove4 Ioc_:ra;ed (f)nasqua;:re latt';:e fs‘?lt'SfY condltllclms i)iii) in the abov§ presents a new SVD factorization of a special structure for a
theorem. Therefore, we have the following corollary. particular family of matrices, which does not exist in the mathematics

Corollary 1: A restricted generalized complex orthogonal desighiferature.
with its variables restricted to QAM constellations of sizes abbua
square lattices is also a generalized complex orthogonal design and, ACKNOWLEDGMENT
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