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Distributed Linear Convolutional
Space-Time Coding for Two-Relay Full-Duplex

Asynchronous Cooperative Networks
Yi Liu, Xiang-Gen Xia, and Hailin Zhang

Abstract—In this paper, a two-relay full-duplex asynchronous
cooperative network with the amplify-and-forward (AF) protocol
is considered. We propose two distributed space-time coding
schemes for the cases with and without cross-talks, respectively.
In the first case, each relay can receive the signal sent by the
other through the cross-talk link. We first study the feasibility of
cross-talk cancellation in this network and show that the cross-
talk interference cannot be removed well. For this reason, we
design space-time codes by utilizing the cross-talk signals instead
of removing them. In the other case, the self-coding is realized
individually through the loop channel at each relay node and the
signals from the two relay nodes form a space-time code. The
achievable cooperative diversity of both cases is investigated and
the conditions to achieve full cooperative diversity are presented.
Simulation results verify the theoretical analysis.

Index Terms—Distributed space-time code, full-duplex, coop-
erative communications, asynchronous cooperative diversity.

I. INTRODUCTION

IN cooperative wireless communication networks, multiple
nodes work together to form a virtual multi-input and

multi-output (MIMO) system. Using cooperation, it is possible
to exploit the spatial diversity similar to a MIMO system,
see for example, [1]– [13]. According to the time slots of
receiving and transmitting, the working modes at relay nodes
can be categorized into full-duplex (FD) and half-duplex (HD)
modes. With the HD mode a relay receives and transmits
signals on orthogonal (in time or frequency) channels, while
with the FD mode it uses only one channel [14]–[19]. Thus,
an FD cooperative protocol may achieve a higher bandwidth
efficiency than an HD cooperative protocol [20]. However,
the FD mode introduces loop (self) interference due to the
signal leakage between the same relay’s output and input
and sometimes cross-talk interference among different relays’
output and input. To deal with this problem and analyze the
feasibility of the capacity gain with the FD mode, recent
efforts have been made in [14]–[19] where various loop
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interference cancellation schemes have been proposed for
networks with one relay, and in [21] with two or more
relays where in addition to self-loop interference, cross-talk
interference between the relays may occur. In terms of cross-
talk interference, the case with multiple single-input single-
output (SISO) relays is similar to the case with one multiple-
input multiple-output relay. However, for the case with one
MIMO relay, the relay can know the cross-talk exactly since it
is sent by itself and also the synchronization is not a problem.
On the other hand, for the case with multiple SISO relays, one
relay does not know the cross-talk interference exactly since
it is sent by other relays and furthermore, the signals may not
be synchronized among all the relays.

In our previous work [22], we proposed a different way to
deal with the self-loop interference for a cooperative network
with one relay node, where not all the loop interference is
cancelled but instead some of them are utilized as the coding
(space-time coding) to achieve the spatial diversity. Since there
is only one relay used, the cross-talk interference is not an is-
sue. In this paper, we consider a cooperative network with two
amplify-and-forward (AF) relays where cross-talk may occur.
To deal with both loop interference and cross-talk interference,
we propose a partial distributed linear convolutional space-
time coding (partial DLC-STC) scheme where the cross-talk
interference is utilized as a part of the partial DLC-STC as the
self-coding. Note that here we adopt the time domain approach
but not the frequency domain, i.e., orthogonal frequency
division multiplexing (OFDM), approach. This is because the
signal model in this case may induce infinite length (or the
same as any block length as we shall see later) impulse
responses in the equivalent channel and a long cyclic prefix
would be needed for the OFDM approach. When there is no
cross-talk interference, we also propose a DLC-STC scheme
where some of the loop interference is used for the self-
coding that is similar to but more general than Scheme two
proposed in [22]. In both cases, we illustrate that the proposed
DLC-STC schemes can achieve full asynchronous cooperative
diversity of two.

This paper is organized as follows. In Section II, we
formulate the system and signal models for two-relay two-
hop FD cooperative networks, where we show that the cross-
talk interference at relays cannot be removed well even when
the relays know all the accurate channel state information. In
Section III, we present the construction method of DLC-STC
for FD asynchronous cooperative communications with cross-
talks. In Section IV, we show the construction method when
there is no cross-talk link between the relays. In Section V, we
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Fig. 1. Two-relay two-hop cooperative network with potential loop and
cross-talk interference.

present some simulation results to evaluate the performances
of the proposed schemes. Finally, in Section VI, we conclude
this paper.

II. SYSTEM MODEL AND MOTIVATION

Consider a cooperative network shown in Fig. 1, where
there are two single-input single-output (SISO) relay nodes
between the source node with one transmit antenna and the
destination node with one receive antenna. The source node
communicates with the destination node via the relay nodes
and the direct link is assumed too weak to be considered. Each
relay node receives and sends signals with the same frequency
band at the same time. So there is a loop link at each relay
node as well as cross-talk links between the two relays. The
channel from the source to the kth relay is h(k)SR, from the kth
relay to the destination is h(k)RD , and the loop channel of the kth
relay is hkk . Since all the relays use the same frequency band,
there is a cross-talk link hjk between the jth relay transmitter
and the kth relay receiver. All of the channels are assumed to
be quasi-static and follow the distribution of CN (0, 1), that
is, the channels keep constant during each frame and change
between frames. The delay from the source node to Relay k
is ϕk. The two relays are assumed not far away from each
other, for which the transmission delay of the cross-talk links
is too small to consider as well as the loop links. Thus, the
received signal at Relay k at time slot i can be written as

r(k)(i) = h
(k)
SRx(i− ϕk) + hkkt

(k)(i) + hjkt
(j)(i) +w

(k)
R (i), j �= k

(1)
where t(k)(i) is the signal sent by Relay k and w(k)

R (i) is the
additive noise with the distribution of CN (0, σ2

R) at Relay
k, and the delay ϕk is normalized as an integer by the
information symbol period Ts since the fractional delay can
be absorbed in the channels. The channel state information
h
(k)
SR, ϕk, and hjk are assumed to be known at all the relays

and the destination.
The second and third terms in the right hand side of

equation (1) are signals from the loop channel and the cross-
talk channel, respectively, which are regarded as interference
in general. One obvious idea would be to cancel the loop
interference corresponding to the second term and the cross-
talk interference corresponding to the third term. Then, after
these interference terms are cancelled, the signal model would
become the same as the existing HD model and thus the

existing cooperative relay schemes for HD model could be
used. Let us see whether this idea works. The second term
is easy to be removed since each relay knows what is sent
by itself. However, the third term is from the other relay. To
remove this, Relay k can only use the signal estimated by
itself to reproduce this term (even though all the channel state
information is known at both relays), during which the noise
would be unfortunately propagated and accumulated as we
shall see in more details below.

In this paper, the amplify-and-forward (AF) protocol [15]–
[17] is considered. Accordingly, the transmission signal at
Relay k is

t(k)(i) = βkL(r(k)(i − φ)) (2)

where βk is the amplifying factor to control the transmission
power to be 1, φ is the common delay at the relays, and L(·)
denotes some simple linear operations, such as interference
subtractions as we shall see later and zero-forcing (ZF) or
minimum mean square error (MMSE) estimator that will be
described below. From (1), it is clear that the condition that
the cross-talk interference t(j)(i) can be cancelled is that
Relay k can somehow reproduce t(j)(i). This implies that the
time index i − φ ≤ i − ϕk − 1, for k = 1, 2. Thus, the
common delay at the transmissions of two relays should be
controlled such that φ ≥ max{ϕ1, ϕ2}+1. Suppose for i ≤ i0,
i0 = φ, the loop interference and cross-talk interference are
removed perfectly in (1). For simplicity, we assume that the
ZF estimation is used and then the estimated signal can be
ideally written as

L(r(k)(i)) = 1

h
(k)
SR

[r(k)(i)− hkkt
(k)(i)− hjkt

(j)(i)]

= x̂k(i− ϕk) = x(i− ϕk) +
w

(k)
R (i)

h
(k)
SR

, i ≤ i0.

(3)
Substituting (3) into (2), we obtain the transmission signal at
time slot i0 + 1 as follows,

t(k)(i0 + 1) = βkx̂k(i0 + 1− φ)

= βk

[
x(i0 + 1− φ) +

w
(k)
R (i0+1−φ+ϕk)

h
(k)
SR

]
.

(4)
The received signal at time slot i0 + 1 is

r(k)(i0 + 1) = h
(k)
SRx(i0 + 1− ϕk) + hkkt

(k)(i0 + 1)

+hjkt
(j)(i0 + 1) + w

(k)
R (i0 + 1), j �= k.

(5)

The loop interference can be removed perfectly since it is sent
by Relay k itself, but for the cross-talk t(j)(i0+1), it can only
be reproduced and cancelled by using the estimated symbols
at Relay k, that is, x̂k(i). Thus, we can obtain (6) at the top
of the next page.

The third term in the right hand side of (6) is the noise
propagated from the estimated symbols and will be also
propagated to the following transmission signal defined by
(2):

t(k)(i0+1+φ−ϕk) = βkx̂k(i0 + 1− ϕk)

= βk

[
x(i0 + 1− ϕk) +

w
(k)
R (i0+1)

h
(k)
SR

]
+
βkhjkβj [w

j
R(i0+ϕk−φ)−wk

R(i0+ϕk−φ)]
h
(k)
SR

.

(7)
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x̂k(i0 + 1− ϕk) = 1
hSR

[r(k)(i0 + 1)− hkkt
(k)(i0 + 1)− hjkβj x̂k(i0 − φ)]

= x(i0 + 1− ϕk) +
w

(k)
R (i0+1)

h
(k)
SR

+
hjkβj [x̂j(i0−φ)−x̂k(i0−φ)]

h
(k)
SR

= x(i0 + 1− ϕk) +
w

(k)
R (i0+1)

h
(k)
SR

+
hjkβj [w

j
R(i0+ϕk−φ)−wk

R(i0+ϕk−φ)]
h
(k)
SR

(6)

r(k)(i) =
∑∞
n=0 η

n
[
h
(k)
SRx(i − 2nφ− ϕk) +hjkβjh

(j)
SRx(i − (2n+ 1)φ− ϕj)

]
+
∑∞
n=0 η

n
[
w(k)(i − 2nφ) +hjkβjw

(j)(i− (2n+ 1)φ)
] (11)

r(k)(i) =
∑u1−1
u=0 ηuh

(k)
SRx(i − 2uφ− ϕk) +

∑v1−1
v=0 ηvhjkβjh

(j)
SRx(i − (2v + 1)φ− ϕj)

+
∑u2

u=u1
ηuh

(k)
SRx(i − 2uφ− ϕk) +

∑v2
v=v1

ηvhjkβjh
(j)
SRx(i − (2v + 1)φ− ϕj)

+
∑∞
u=u2+1 η

uh
(k)
SRx(i − 2uφ− ϕk) +

∑∞
v=v2+1 η

vhjkβjh
(j)
SRx(i − (2v + 1)φ− ϕj)

+
∑∞
n=0 η

n
[
w(k)(i− 2nφ) +hjkβjw

(j)(i − (2n+ 1)φ)
] (12)
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Fig. 2. Average transmission SNR versus the time index i of full-duplex
two relays network.

Comparing (4) and (7), we notice that the noise is accumulated
in the transmission signal and increases along with the time
index.

Although it is hard to achieve a closed form of the accumu-
lated noise, to have a qualitative observation, we calculate the
average SNR of the transmission signals at the two relays by
simulations and the result is shown in Fig. 2. The parameters
used in Fig. 2 are ϕ1 = ϕ2 = 0 and φ = 1. The signal power
is normalized to be 1 and the noise power σ2

R = −40dB.
The length of each block is 20. The channel coefficients
remain unchanged during one block and they change randomly
between different trials. We notice that with the increase in
the time index, the transmission SNR decreases from 40dB
to −49dB and −14dB with the ZF and MMSE estimators,
respectively, which means that the desired signal is completely
buried in the noise at the end of the block.

From the analysis above, we can see that it is impossible
for the relays to accurately estimate the symbols sent by the
source node when the AF protocol is used so that the cross-
talk interference can be removed. In other words, the cross-
talk interference cannot be removed well. It is not hard to
see that this conclusion also holds when a distributed space-
time coding is applied at the relays as we will do later. This
motivates the study for this paper, which is that since the cross-
talks cannot be removed well, why do not we use them as the
coding at the relays? In the following, we propose a space-time

coding scheme for this FD mode cooperative communication
network by adopting the cross-talk signals.

III. CODING FOR THE CASE WITH CROSS-TALK

A. Construction of partial DLC-STC

From (1), we can see that the second term at the right
hand side is the signal sent by Relay k itself. Since the loop
channel hkk is known by Relay k, this term can be completely
cancelled from the received signal (note that in [22] the self-
loop interference is intentionally not removed completely but
instead part of it is maintained as the self-coding). After the
complete cancellation, the signal model can be written as
follows.

r(k)(i) = h
(k)
SRx(i − ϕk) + hjkt

(j)(i) + w
(k)
R (i) (8)

t(k)(i) = βkr
(k)(i− φ), (9)

where x(i) is the transmitted signal by the source node with
normalized power Es = E[|x(i)|2] = 1 and w

(k)
R (i) is

the additive CN (0, σ2
R) noise at the receiver of Relay k.

During the following analysis, we assume that the parameters
β1, β2, ϕ1, ϕ2, h21, h12 and φ are known at both relays.

To avoid overlap between the neighboring coded frames due
to the transmission delays, a simple method is to protect the
data sequence with zero guard intervals [23], [24]. Suppose
the zero padding length is p and the data sequence to be sent
by the source node is s(i), then the zero padded signal sent
by the source node is

x(i)=

{
s(i−mp), m(N + p) ≤ i ≤ m(N + p) +N−1

0, m(N + p) +N ≤ i ≤ (m+ 1)(N + p)−1
,

(10)
where N is the data frame length, N + p is the frame length,
and m is the frame index. The zero padding length p will be
specialized later.

Before we describe the partial DLC-STC, let us first see
what relays transmit and receive, when the source sends the
above framed and zero-padded signal x(i). Without loss of
generality, let us only consider the 0th frame, i.e., m = 0
in (10). In this case, substituting (9) into (8) recursively,
we obtain the signal received at Relay k as (11), where
η = β1β2h12h21.
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t̃(1)(i)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−3
2∑

n=0
ηn

[
β1h

(1)
SRx(i − (2n+ 1)φ− ϕ1) +β1h21β2h

(2)
SRx(i− (2n+ 2)φ− ϕ2)

]

+

L−3
2∑

n=0
ηn

[
β1w

(1)(i − (2n+ 1)φ) +β1h21β2w
(2)(i − (2n+ 2)φ)

]
+η

L−1
2 β1h

(1)
SRx(i − Lφ− ϕ1) + η

L−1
2 β1h

(1)
SRw

(1)(i − Lφ)

+ η
L−1

2 β1h21t̃
(2)(i − Lφ),

, L is odd

L
2 −1∑
n=0

ηn
[
β1h

(1)
SRx(i − (2n+ 1)φ− ϕ1) +β1h21β2h

(2)
SRx(i − (2n+ 2)φ− ϕ2)

]

+

L
2 −1∑
n=0

ηn
[
β1w

(1)(i− (2n+ 1)φ) +β1h21β2w
(2)(i− (2n+ 2)φ)

]
+ η

L
2 t̃(1)(i− Lφ),

, L is even

(18)

t̃(1)(i)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−3
2∑

n=0
ηn

[
β1h

(1)
SRx(i − (2n+ 1)φ− ϕ1) +β1h21β2h

(2)
SRx(i− (2n+ 2)φ− ϕ2)

]

+

L−3
2∑

n=0
ηn

[
β1w

(1)(i − (2n+ 1)φ) +β1h21β2w
(2)(i − (2n+ 2)φ)

]
+η

L−1
2 β1h

(1)
SRx(i − Lφ− ϕ1) + η

L−1
2 β1h

(1)
SRw

(1)(i − Lφ),

, L is odd

L
2 −1∑
n=0

ηn
[
β1h

(1)
SRx(i − (2n+ 1)φ− ϕ1) +β1h21β2h

(2)
SRx(i − (2n+ 2)φ− ϕ2)

]

+

L
2 −1∑
n=0

ηn
[
β1w

(1)(i− (2n+ 1)φ) +β1h21β2w
(2)(i− (2n+ 2)φ)

]
,

, L is even

(19)

Next we will show that there are always non-zero symbols
in the −1th frame involved in r(k)(i) no matter how many
zeroes are padded in x(l) in (10).

To do so, let us rewrite (11) as (12). For any i ≥ 0, no
matter how p is, the condition that the index of x(l) in (12) is
within non-zero data symbols’ indices of the −1th frame is{ −N − p ≤ i− 2uφ− ϕk ≤ −p− 1

−N − p ≤ i− (2v + 1)φ− ϕj ≤ −p− 1
, (13)

where the lower and the upper bounds for u and v can be
obtained as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u1 = � i−ϕk+p+1
2φ �

v1 = � i−ϕj+φ+p+1
2φ �

u2 = � i−ϕk+N+p
2φ �

v2 = � i−ϕj+φ+N+p
2φ �

, (14)

where �·� and �·� denote ceil and floor functions, respectively.
It is reasonable to assume that N > 2φ since the number of

the data symbols in one frame should not be too small in order
to achieve a reasonable spectrum efficiency. Because N > 2φ
and recalling the assumption φ ≥ max{ϕk, ϕj}+1 in Section
II, we can obtain that 0 ≤ v1 ≤ v2 and 0 ≤ u1 ≤ u2 in (14),
that is, there are always non-negative solutions to (13) for u
and v. Note that, for any i, when u1 = 0 or v1 = 0, the
corresponding term in the summation in the first line of (12)
becomes zero.

Thus, the first line of (12) is made up of the symbols of the
0th frame and the zero symbols of the −1th frame (if any).
The second line involves the non-zero symbols in the −1th
frame. In fact, non-zero symbols in other frames (e.g., −2th,
−3th, ...) are also similarly involved in the third line of (12).
All the non-zero symbols in the previous frames (−1th, −2th,
−3th, ...) are interference for r(k)(i) of the 0th frame. Thus,

it shows that this type of inter-frame interference cannot be
avoided no matter how many zeros are padded in x(l), i.e.,
no matter how large p is in (10).

To avoid the inter-frame interference in r(k)(i), another zero
padding at the relay transmission is needed, which means that
the relays send nothing but just keep receiving during the
zero padding period. The truly transmitted signals at the relays
during the 0th frame have the following form:

t̃(k)(i) =

{
0, 0 ≤ i ≤ φ− 1

βkr̃
(k)(i− φ), φ ≤ i < N + p

, (15)

The signal received at Relay k after the self-loop interference
signal is removed is

r̃(k)(i) = h
(k)
SRx(i−ϕk)+hjk t̃(j)(i)+w(k)

R (i), 0 ≤ i < N+p,
(16)

where k and j are the indexes of the two relays. Let us
see what the signals sent in (15) at the relays are in details.
The signal sent by Relay 1 can be written as follows in two
segments.

When 0 ≤ i < φ, Relay 1 sends nothing and just keeps
receiving, that is,

t̃(1)(i) = 0. (17)

When φ ≤ i < N + p, the signal sent by Relay 1 can be
written as (18), where L = � iφ� and η = β1β2h12h21. It is
clear that 0 ≤ i−Lφ ≤ φ− 1. This implies t̃(k)(i−Lφ) = 0
for k = 1, 2 from (15). Therefore, (18) can be rewritten as
(19).

The signal part involving x(i) in (19) can be re-formulated
as follows:

t(1) = [t̃(1)(0), t̃(1)(1), · · · , t̃(1)(N + p− 1)]. (20)



6410 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 12, DECEMBER 2013

t̃(2)(i)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−3
2∑

n=0
ηn

[
β2h

(2)
SRx(i − (2n+ 1)φ− ϕ2) +β2h12β1h

(1)
SRx(i− (2n+ 2)φ− ϕ1)

]

+

L−3
2∑

n=0
ηn

[
β2w

(2)(i − (2n+ 1)φ) +β2h12β1w
(1)(i − (2n+ 2)φ)

]
+η

L−1
2 β2h

(2)
SRx(i − Lφ− ϕ2) + η

L−1
2 β2h

(2)
SRw

(2)(i − Lφ)

+ η
L−1

2 β2h12t̃
(1)(i − Lφ),

, L is odd

L
2 −1∑
n=0

ηn
[
β2h

(2)
SRx(i − (2n+ 1)φ− ϕ2) +β2h12β1h

(1)
SRx(i − (2n+ 2)φ− ϕ1)

]

+

L
2 −1∑
n=0

ηn
[
β2w

(2)(i− (2n+ 1)φ) +β2h12β1w
(1)(i− (2n+ 2)φ)

]
+ η

L
2 t̃(2)(i− Lφ),

, L is even

(25)

t̃(2)(i)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−3
2∑

n=0
ηn

[
β2h

(2)
SRx(i − (2n+ 1)φ− ϕ2) +β2h12β1h

(1)
SRx(i− (2n+ 2)φ− ϕ1)

]

+

L−3
2∑

n=0
ηn

[
β2w

(2)(i − (2n+ 1)φ) +β2h12β1w
(1)(i − (2n+ 2)φ)

]
+η

L−1
2 β2h

(2)
SRx(i − Lφ− ϕ2) + η

L−1
2 β2h

(2)
SRw

(2)(i − Lφ),

, L is odd

L
2 −1∑
n=0

ηn
[
β2h

(2)
SRx(i − (2n+ 1)φ− ϕ2) +β2h12β1h

(1)
SRx(i − (2n+ 2)φ− ϕ1)

]

+

L
2 −1∑
n=0

ηn
[
β2w

(2)(i− (2n+ 1)φ) +β2h12β1w
(1)(i− (2n+ 2)φ)

]
,

, L is even

(26)

Then, it can be regarded as a part of the following convolution

m̃1 ∗ x = [0φ+ϕ1 m1 0max{ϕ1,ϕ2}−ϕ1
] ∗ x, (21)

where x = [x(0), x(1), . . . , x(N + p − 1)] =
[s(0), s(1), . . . , s(N − 1),0p], 0k is the all zero vector
of size k, and

m1=[β1h
(1)
SR 0φ+ϕ2−ϕ1−1 β1h21β2h

(2)
SR 0φ+ϕ1−ϕ2−1 · · ·

ηΓβ1h
(1)
SR 0φ+ϕ2−ϕ1−1 η

Γβ1h21β2h
(2)
SR 0φ+ϕ1−ϕ2−1]

,

(22)
where Γ = �N+p−1−φ

2φ �. In fact, we have

t(1) = [m̃1 ∗ x]N+p, (23)

where [u]k denotes the vector formed by the first k elements
of u, i.e., [u]k = [u(0), u(1), · · · , u(k − 1)]. From (23), one
can see that the effective signal part t(1) transmitted at Relay
1 is a coded signal of the original data sequence s(i) with the
generator sequence m̃1.

The same as Relay 1, the effective signal part sent from
Relay 2 is as follow.

When 0 ≤ i < φ, Relay 2 transmits nothing but keeps
receiving, that is,

t̃(2)(i) = 0. (24)

When φ ≤ i < N+p−1, the signal sent by Relay 2 can be
written as (25). From (15), it is clear that 0 ≤ i−Lφ ≤ φ−1,
t(k)(i−Lφ) = 0 for k = 1, 2. Thus, (25) can also be rewritten
as (26). The signal part involving x(i) in (26) can be re-
formulated as follows:

t(2) = [t̃(2)(0), t̃(2)(1), · · · , t̃(2)(N + p− 1)], (27)

which can also be written as

t(2) = [m̃2 ∗ x]N+p, (28)

where
m̃2 = [0φ+ϕ2 m2 0max{ϕ1,ϕ2}−ϕ2

], (29)

and

m2=[β2h
(2)
SR 0φ+ϕ1−ϕ2−1 β2h12β1h

(1)
SR 0φ+ϕ2−ϕ1−1 · · ·

ηΓβ2h
(2)
SR 0φ+ϕ1−ϕ2−1 η

Γβ2h12β1h
(1)
SR 0φ+ϕ2−ϕ1−1].

(30)
Thus, the effective signal part t(2) transmitted at Relay 2 is
also a coded signal of the original data sequence s(i) with the
generator sequence m̃2.

To normalize the mean transmission power at the relays,
the amplifying factors should satisfy

E[|m̃1|2] = E[|m̃2|2] = 1. (31)

Substituting m̃1 and m̃2 into (31) and considering
E[|h(1)SR|2] = E[|h(2)SR|2] = 1, we obtain{ ∑Γ

n=0 |η|2n
(|β1|2 + |β1h21β2|2

)
= 1∑Γ

n=0 |η|2n
(|β2|2 + |β2h12β1|2

)
= 1

, (32)

where the channel coefficients hjk between the two relays are
treated deterministic and known at the relays in the above
equation. This is because η = β1β2h12h21 and if we treat hjk
as random variables similar to h(j)SR, it will be not possible to
have their moments of all even orders needed in (32) and thus
not possible to solve βj . From (32), the amplifying factors β1
and β2 can be found.

From (19), (26) and (32), it is not hard to see that the noise
in the signal to be sent at the relays is zero mean and with the
variance of σ2

R. So the transmission SNRs at the two relays
are

γ1 = γ2 =
1

σ2
R

. (33)
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Â =

[
â1
â2

]
=

[ [
a11 0ψ1 a12 0ξ−ψ1 Ka11 0ψ1 Ka12 0ξ−ψ1 K

2a11 0ψ1 K
2a12 0ξ−ψ1 · · ·

][
a21 0ψ2 a22 0ξ−ψ2 Ka21 0ψ2 Ka22 0ξ−ψ2 K

2a21 0ψ2 K
2a22 0ξ−ψ2 · · ·

] ]
(36)

We can see that unlike (7), the noises are not amplified or
accumulated at the relay nodes.

From (23) and (28), one can see that the two transmitted
signals at the two relays are generated by the same signal
x with two generator sequences m̃j , j = 1, 2. If these two
generator sequences are put to a generator matrix of two rows
as

M̃ =

[
m̃1

m̃2

]
=

[
0φ+ϕ1 m1 0max{ϕ1,ϕ2}−ϕ1

0φ+ϕ2 m2 0max{ϕ1,ϕ2}−ϕ2

]
, (34)

then, the two transmitted signals at the two relays are the
outputs of the signal x with the above encoding generator
matrix. At the destination, these two signals are received
through two fading channels h(j)RD , j = 1, 2. What we are
interested now is whether this system can achieve the spatial
diversity of two from the two relays. Similar to the case
studied in [22], these two signals may not be synchronized
and may arrive at the destination at different times. Thus,
we may apply the theory of shift full rank (SFR) matrices
developed in [23]–[25] and, to check the diversity property,
we need to check whether the generator matrix M̃ is SFR,
where the synchronization between the two relays may not be
achieved.

Different from [22] where the coding process at the relay is
independent of the other link, i.e., the direct link, the coding
processes at the two relays are not independent in this case
because the data are exchanged through the cross-talk links.
For this reason, the source to relay channels h(j)SR, j = 1, 2,
have nonlinear effect on the generator matrix M̃, which can
be seen from (22) and (30). So h(j)SR, j = 1, 2, are included in
M̃ when checking its SFR property in the following.

B. Diversity analysis

An SFR matrix is a matrix that has full row rank no matter
how its rows are shifted. For more about SFR matrices, we
refer to [23]–[25]. Clearly, the SFR property of the generator
matrix M̃ is equivalent to that of the following matrix

M̂ =

[
m1

m2

]
, (35)

which will be studied in this subsection. To do so, we first
have the following lemma.

Lemma 1: Let K be a constant. Matrix Â defined by (36)
is an SFR matrix for any ψ1 and ψ2 with 0 ≤ ψ1, ψ2 ≤ ξ if

and only if A =

[
a11 a12
a21 a22

]
is an SFR matrix.

Proof: In [23], the necessary and sufficient condition for
two-row SFR matrix is: The two-row matrix is an SFR matrix
iff the two rows are linearly independent.

It is not hard to prove that the two rows of Â and the two
rows of A are either both linearly independent or both linearly
dependent. So we obtain that Â and A have the same SFR
property.

Lemma 2: Suppose Â =

[
â1
â2

]
is defined by (36) and x

is 1 × (N + p) vector. If and only if p ≥ ξ + 1, the partial
DLC-STC

Ĉ =

[
[â1 ∗ x]N+p

[â2 ∗ x]N+p

]
(37)

can achieve the same asynchronous diversity as the DLC-STC

C̄ =

[
ā1 ∗ x
ā2 ∗ x

]
(38)

Here, ā1 = [a11 0ψ1 a12 0ξ−ψ1 ] and ā2 =
[a21 0ψ2 a22 0ξ−ψ2 ], where ψ1, ψ2, and K are constants
with 0 ≤ ψ1, ψ2 ≤ ξ.

The proof is in Appendix A.
For the model considered in this paper, Â in (36) equals

M̂ in (35) and Ā =

[
ā1
ā2

]
in (38) equals M̄ =

[
m̄1

m̄2

]
=[

β1h
(1)
SR 0φ+ϕ2−ϕ1−1 β1h21β2h

(2)
SR 0φ+ϕ1−ϕ2−1

β2h
(2)
SR 0φ+ϕ1−ϕ2−1 β2h12β1h

(1)
SR 0φ+ϕ2−ϕ1−1

]
.

And ψ1 = φ+ϕ2−ϕ1−1, ψ2 = φ+ϕ1−ϕ2−1, ξ = 2φ−2.
Thus, p ≥ 2φ − 1. The two transmitted signals t(1) in (23)
and t(2) in (28) are truncated sequences of m̃1 ∗ x and
m̃2 ∗ x, but when p ≥ 2φ− 1, they contain t̄1 = m̄1 ∗ x and
t̄2 = m̄2 ∗ x, respectively. From Lemma 2, we only need to
check the SFR property of M̄.

As for the SFR property of the generator matrix of the
proposed scheme, we have the following theorem.

Theorem 1: M̂ in (35) (or M̄) is SFR if and only if
β1h12(h

(1)
SR)

2 �= β2h21(h
(2)
SR)

2, β1h
(1)
SR �= 0, β2h

(2)
SR �= 0,

where β1 and β2 are defined by (32).
Proof: From Lemma 1, we only need to investigate the

SFR property of

M =

[
β1h

(1)
SR β1h21β2h

(2)
SR

β2h
(2)
SR β2h12β1h

(1)
SR

]
. (39)

First, we prove the necessary condition. If β1h
(1)
SR = 0

or β2h
(2)
SR = 0, it is easy to see that M is not an SFR

matrix. If β1h12(h
(1)
SR)

2 = β2h21(h
(2)
SR)

2, we obtain β1h
(1)
SR

β2h
(2)
SR

=

β1h21β2h
(2)
SR

β2h12β1h
(1)
SR

, which means the two rows of M are not linearly

independent. So the two-row matrix M is not an SFR matrix.
Second, we prove the sufficient condition. If

β1h12(h
(1)
SR)

2 �= β2h21(h
(2)
SR)

2 and β1h
(1)
SR �= 0, β2h

(2)
SR �= 0,

we can obtain that β1h
(1)
SR

β2h
(2)
SR

�= β1h21β2h
(2)
SR

β2h12β1h
(1)
SR

, which means the

two rows of M are linearly independent. So the two-row
matrix M is an SFR matrix.

It is proved in [23]–[25] that in a half-duplex relay system,
the SFR property of a generator matrix leads to the asyn-
chronous full diversity of the DLC-STC, where the coefficients
(or entries) of the generator matrix are fixed constants with a
fixed total power. It is, however, different, in the above full
duplex system where the entries of the generator matrix in
Theorem 1 depend on the source to relay channel coefficients
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Fig. 3. Two-relay two-hop cooperative network without cross-talk.

that are random. Although this is the case, due to the am-
plifying factor βk used at the relay nodes, the total power
of the generator matrix coefficients is also fixed. As a result,
the full asynchronous diversity is achieved from our numerous
simulations due to the above SFR property.

IV. CODING FOR THE CASE WITHOUT CROSS-TALK

In some scenarios, the signals from the cross-talk channels
are too weak to consider, e.g., when directional antennas are
used at the relay transmitter. In this case, the system model
becomes what is shown in Fig. 3 [14]–[17]. In this section,
we will present a DLC-STC scheme for this case.

A. Construction of DLC-STC

Because no cross-talk is considered in this case, for which
the two relays are independent and one of the relays can be
taken as an example to describe the coding process, we omit
the relay index and denote the loop channel response as hLI
during the following discussions for simplicity. The received
signal r(i) and the transmitted signal t(i) at the relay node at
time i are as follows [15]–[17],

r(i) = hSRx(i − ϕ) + hLIt(i) + wR(i) (40)

t(i) = βr(i − φ), (41)

where, note that, ϕ is the delay from the source to the relay,
and φ is the common delay at the relays.

In this case, we can see that no cross-talk can be used
to construct the code. However, we will present a DLC-
STC scheme which is constructed by the signals from loop
channels. Following the same idea as Scheme 2 in [22], where
the DLC-STC is designed for the network with only one relay
and the direct link, this scheme is to cancel the loop channel
partially and do the coding by making use of the signal from
the loop channel at the relay.

Since the loop channel information is known at the relay,
the signal from the loop channel can be removed and the signal
from the source node can be estimated at the relay itself at
time i as

x̂(i− ϕ) = r(i) − hLIt(i) = hSRx(i − ϕ) + wR(i), (42)

which will be used in the residual interference cancellation
later.

In this case, the main idea is to construct the convolutional
code at each relay by the feedback of the loop interference
channel. Next, we will see the process in details.

Suppose b(≥ 2) symbols are to be coded. In (41), by letting
i = bφ + ϕ + l, 0 ≤ l ≤ φ − 1 and considering {x(i) =
0, wR(i) = 0, i ≤ −1}, we can obtain the transmission signal
at the relay at time slot bφ+ ϕ+ l as (43).

Substituting (43) into (40), the received signal at the relay
at time slot bφ+ϕ+ l can be written as (44). The first term in
the right hand side of the last equation in (44) is the desired
transmission signal including b symbols while the second and
third terms are interference and noise from the loop channel,
respectively. Notice that from (42), the second term in (44)
can be written as

(hLIβ)
b[hSRx(l) + wR(ϕ+ l)] = (hLIβ)

bx̂(l).

At time slot (b+1)φ+ϕ+ l, since the relay has obtained the
estimated signal x̂(l) as in (42), the interference of the second
term in (44) can be cancelled. Then the transmission signal
can be written as

t((b+ 1)φ+ϕ+l) = β[r(bφ + ϕ+ l)− (hLIβ)
bx̂(l)]

= β
b∑
j=1

(hLIβ)
j−1hSRx((b−j+1)φ+l)

+ β
b∑
j=1

(hLIβ)
j−1wR((b−j+1)φ+ϕ+l).

(45)
If the cancellation process is done continuously in terms of k
in the time index (b + k)φ + ϕ + l, we can obtain a general
expression as (46). Letting i = (b + k)φ + ϕ+ l, where 0 ≤
l ≤ φ− 1, (46) can be simplified as

t(i) = β[r(i − φ)− (hLIβ)
bx̂(i− (b + 1)φ− ϕ)]

= β
b∑
j=1

(hLIβ)
j−1hSRx(i− jφ− ϕ)

+β
b∑
j=1

(hLIβ)
j−1wR(i− jφ).

(47)
Let

q(i) =

{
β(hLIβ)

n−1, i = nφ+ ϕ, (1 ≤ n ≤ b)
0, else

, (48)

then the first term in the right hand side of the last equation in
(47) can be written as the convolution between q(i) and x(i)
as follows,

β

b∑
j=1

(hLIβ)
j−1hSRx(i− jφ− ϕ) = hSR · q(i) ∗ x(i), (49)

where 0 < β < 1
|hLI | is the amplify parameter controlling the

relay transmission power as

E

{
b∑
i=1

|q(i)|2
}

=

b∑
i=1

|β(hLIβ)i−1|2 = 1. (50)

In (50), b determines the constraint length of the convolu-
tional code. To ensure full row rank of the effective coding
matrix, b should be no less than the number of independent
links, which is 2 in the current case. The sequence q(i) is
determined after β is selected to satisfy (50).
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t(bφ+ ϕ+ l) = β

b∑
j=1

(hLIβ)
j−1[hSRx((b − j)φ+ l) + wR((b − j)φ+ ϕ+ l)] (43)

r(bφ + ϕ+ l) = hSRx(bφ+ l) + hLIt(bφ+ ϕ+ l) + wR(bφ+ ϕ+ l)

=
b∑
j=1

(hLIβ)
j−1hSRx((b − j + 1)φ+ l) + (hLIβ)

b[hSRx(l) + wR(ϕ+ l)]

+
b∑
j=1

(hLIβ)
j−1wR((b − j + 1)φ+ ϕ+ l)

(44)

t((b + k)φ+ ϕ+ l) = β[r((b + k − 1)φ+ ϕ+ l)− (hLIβ)
bx̂((k − 1)φ+ l)]

= β
b∑
j=1

(hLIβ)
j−1hSRx((b + k − j)φ + l)

+β
b∑
j=1

(hLIβ)
j−1wR((b+ k − j)φ+ ϕ+ l).

(46)

If we combine the two relay links and use the subscript
indices to denote different relays, the two signals transmitted
from the two relays can be thought of as a DLC-STC with
the following generator matrix:

M =

[
β1 0φ−1 β1(h11β1) 0φ−1 . . . β1(h11β1)

b−1

β2 0φ−1 β2(h22β2) 0φ−1 . . . β2(h22β2)
b−1

]
,

(51)
where βk, k = 1, 2 are determined by⎧⎪⎪⎨

⎪⎪⎩
b∑
i=1

|β1(h11β1)i−1|2 = 1

b∑
i=1

|β2(h22β2)i−1|2 = 1

. (52)

The received signal at the destination is a superposition of
possibly delayed versions of these two signals.

Notice: The basic idea of the scheme above is the same as
Scheme 2 proposed in [22]. However, Scheme 2 in [22] is
for the network with one relay and the direct link, where the
delay between the source to the relay is counted in the total
link delay and the processing delay at the relay is one symbol
period. It can be regarded as one special case of the proposed
scheme above by choosing φ = 1, ϕ1 = ϕ2 = 0, β1 = 1, and
h11 = 0.

B. Diversity analysis

In this section, we discuss the diversity of the proposed
scheme. Similar to what was studied before, as what has
been shown in [23]–[25], to achieve the asynchronous full
cooperative diversity, the SFR property of the generator matrix
M in (51) plays the important role. From the result in [23],
it it not hard to see that in (51), removing the zero columns
doesn’t change the SFR property of M. So we can study the
following generator matrix which is simpler:

M̄ =

[
β1 β1(h11β1) . . . β1(h11β1)

b−1

β2 β2(h22β2) . . . β2(h22β2)
b−1

]
. (53)

Theorem 2: The generator matrix M in (51) is an SFR
matrix iff h11β1 �= h22β2.

Proof: By the necessary and sufficient condition
for two-row SFR matrix given in [23], we obtain
that M̄ is an SFR matrix iff the two rows m̄k =[
βk, βk(hkkβk), · · · , βk(hkkβk)b−1

]
, k = 1, 2, are linearly

independent. It is obvious that βk �= 0, k = 1, 2 since the
transmission power at the relays is normalized to 1 in (52).
Then it is easy to see that m̄1 and m̄2 are linearly independent
iff h11β1 �= h22β2. Finally, we can obtain that M̄ or M is an
SFR matrix iff h11β1 �= h22β2.

By Theorem 2, we know that if the condition h11β1 �=
h22β2 is satisfied, the designed DLC-STC in (47) for the
relays with full duplex loop channels is SFR. Although
h11 and h22 are random, the total energy of the generator
sequences in M are normalized by (52) and as a matter of
fact, from our numerous simulations, the full diversity can be
indeed achieved. Different from the partial DLC-STC scheme
proposed in Section III, the effect of the source to relay
channels has the same linear function as that of the relay
to destination channels, for which the effects of the source
to relay channels and the relay to destination channels can
be put together and regarded as an equivalent channel when
analyzing the diversity.

V. SIMULATIONS

In this section, we present some simulation results to
illustrate the performance of the proposed DLC-STC schemes
for two-relay full-duplex cooperative networks. In simulations,
all the wireless channels are set to be quasi-static Rayleigh
flat fading. Because there are just two relays, we only need to
consider the relative delay between the two relays. The delays,
ϕ1 and ϕ2, from the source to the relays are chosen to be 0
or 1 with the same probabilities, where there are only three
different cases as follows:

1) Case 1: Relay 1 is ahead of Relay 2 (ϕ1 = 0, ϕ2 = 1);
2) Case 2: Relay 2 is ahead of Relay 1 (ϕ1 = 1, ϕ2 = 0);
3) Case 3: no delay between Relay 1 and Relay 2 (ϕ1 =

ϕ2 = 0 or ϕ1 = ϕ2 = 1).

The delays from the relays to the destination are uniformly
distributed in [0, τmax − 1].

The length of each symbol block N = 20. The maximum
delay τmax is 3. The zero padding length is 6 in the proposed
two full duplex schemes while it is 3 in other schemes.
The common processing delay at the relays is φ = 2. The
constellation used is QPSK. We compare the performance of
the proposed two schemes (marked as FD cross-talk and FD
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Fig. 4. BER versus SNRD of two-relay full-duplex network with AF
protocol when SNRR remains constant as 30dB.

no cross-talk, respectively), and the DLC-STC scheme for half
duplex cooperative communications (marked as HD) [23]. We
also simulate the proposed space-time code constructed using
the loop-interference as self-coding in [22] for full-duplex
cooperative networks with one relay and the direct link from
the source to the destination nodes for comparison (marked
as Self-coding). In the Self-coding scheme, the direct link
channel is also modeled as quasi-static flat Rayleigh fading
channel and the direct link is regarded as a special relay whose
generator polynomial is defined by the vector [1 0(b−1)φ]. In
the HD scheme and FD no cross-talk scheme, the effective
symbols to be convoluted in one time slot is b = 3. With
the parameters above, the spectrum efficiency of each scheme
is given in the legend of each figure. All the schemes are
evaluated with MMSE-DFE receivers [26], [27]. The signal
to noise ratios (SNRs) at the receivers of the relay and the
destination are denoted as SNRR and SNRD, respectively.
Since the average power gain of each wireless Rayleigh flat
fading channel is normalized to be 1, we have SNRR = Es

σ2
R

and SNRD = Es

σ2
D

.

Simulation 1-BER vs. SNRD: In this simulation, we com-
pare the BER performance vs. SNRD when SNRR remains
constant as 30dB, which is shown in Fig. 4. We can see that
the BER performance of Self-coding scheme is the best. This
is reasonable since the direct link is available in this scheme
and there is no source to relay fading or relay noise in the
direct link. As for the schemes for FD mode, FD cross-talk
and FD no cross-talk almost have the same BER performance.
The difference of the BER performance between the two
FD schemes and HD scheme is not very large, but the two
FD schemes can achieve a much higher throughput than HD
scheme.

Simulation 2-BER vs. SNRR: In this simulation, the BER
performance vs. SNRR is compared when SNRD remains
constant as 30dB, which is shown in Fig. 5. We also notice that
the BER performance of Self-coding scheme is the best. As
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Fig. 5. BER versus SNRR of two-relay full-duplex network with AF protocol
when SNRD remains constant as 30dB.

for the two schemes for the FD mode, the BER performance
is almost the same. The BER performance of HD scheme
is a little better than those of the two FD schemes but its
throughput is much smaller. From both the figures, we can
see that SNRD has much more effect on HD scheme than the
two FD schemes.

Simulation 3-Diversity comparison: This simulation is to
compare the achievable diversity of different schemes. In this
simulation, we set SNRR = SNRD = γ. The receivers for
all the schemes are MMSE-DFE receivers. The direct trans-
mission scheme (marked as Direct transmission), in which the
source node sends the signal to the destination node directly
without any relay, is also simulated for comparison. To be
fair, the transmission power for direct transmission scheme is
doubled, so the SNR is 2Es

σ2
D

= 2γ. We can see that except
the Direct transmission scheme which has only one transmit
antenna, all other schemes who have two equivalent transmit
antennas can achieve the full diversity, that is, diversity order
of two, when γ goes to infinity.

Simulation 4-Diversity with direct link: Although the direct
link is not considered during the analysis, it is straightforward
to include the direct link by just adding one more row for
the generator matrix representing “a special relay” whose
generator polynomial is [1 0 0 · · · 0]. Moreover, the 3 by
1 MIMO with the linear Toeplitz space-time code [29] is also
simulated for comparison. To be fair, we set the 3 by 1 MIMO
to have the same received SNR with the proposed schemes,
that is, if SNRR = SNRD = γ dB, the received SNR for 3 by
1 MIMO is γ+10log103 dB. The Direct transmission without
any relay scheme, which has the diversity order of one, and
the Self-coding scheme with one relay and the direct link,
which has been shown in [22] to achieve the diversity order
of two, are also included in this simulation for comparison.
The results are shown in Fig. 7, from which we can see that
the BERs of the two proposed schemes are a bit larger than
the HD scheme and the 3 by 1 MIMO is the best. However,
the proposed schemes have better spectrum efficiency than the
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Fig. 6. Diversity comparison of two-relay full-duplex network with AF
protocol when SNR is high.
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Fig. 7. Diversity comparison with the direct link (DL) included.

HD scheme and they can achieve the same diversity as the 3
by 1 MIMO, that is, they all achieve the diversity order of
three in this case.

Note that, as mentioned earlier, although our proposed
partial DLC-STC and DLC-STC have generator coefficient
matrices SFR, we are not able to theoretically prove that they
achieve the full diversity as what is done in [23]. However,
from our simulations above, one can clearly see that they
indeed achieve the full diversity with the MMSE-DFE receiver
numerically.

VI. CONCLUSIONS

If AF protocol is adopted in two-relay asynchronous full-
duplex cooperative communication networks with cross-talks,
we showed that the cross-talk interference cannot be removed
well. We then first proposed a partial DLC-STC scheme to
make use of the cross-talks instead of removing them. For
the case of two-relay asynchronous full-duplex cooperative
networks without cross-talks between the relays, we also pro-
posed a DLC-STC scheme by making use of signal from the

loop channels. We showed that by controlling the amplifying
factors, both schemes can achieve full asynchronous coopera-
tive diversity when suboptimal receivers such as MMSE-DFE
receivers are used. The proposed schemes can also be extended
to the case where the direct link is available, by which one
more diversity order can be achieved.
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APPENDIX A
PROOF FOR LEMMA 2

Denoting ãk = [āk 0 0 · · · ] and its shifted version ãk(n) =
[01×n āk 0 · · · ], where āk = [ak1 0ψk

ak2 0ξ−ψk
] and

k = 1, 2, we have âk = ãk + Kãk(ξ + 2) + K2ãk(2(ξ +
2)) + · · · . Because the convolution is a linear operation, we
obtain

[âk ∗x]N+p=[ãk ∗x+Kãk(ξ+2)∗x+K2ãk(2(ξ+2))∗x+ · · · ]N+p

(54)
The codeword of the partial DLC-STC can be written as (55)

at the top of the next page, where

[
v1

v2

]
∗ x =

[
v1 ∗ x
v2 ∗ x

]
.

For any pair of distinct codewords Ĉ1 and Ĉ2, which
are generated from two different signal blocks x1 and x2,
respectively, we define the matrix B(Ĉ1, Ĉ2) = Ĉ1 − Ĉ2. It
can be written as (56), where e = x1 − x2 �= 0.

By the rank criterion of Rayleigh space-time codes [28],
we know that the diversity of the code depends on the
minimum rank of B(Ĉ1, Ĉ2). In (56), it is not hard to see that
B(Ĉ1, Ĉ2) is a result of column linear transform on the matrix

B(C̃1, C̃2) =

[[
ã1
ã2

]
∗ e

]
N+p

, for which B(Ĉ1, Ĉ2) and

B(C̃1, C̃2) have the same rank.

Next, we will show B(C̃1, C̃2) =

[[
ã1
ã2

]
∗ e

]
N+p

and

B(C̄1, C̄2) =

[
ā1
ā2

]
∗ e have the same rank iff p ≥ ξ + 1.

Recalling ãk = [āk 0 0 · · · ], where the length of vector āk
is ξ + 2, we obtain

B(C̄1, C̄2) =

[
ā1
ā2

]
∗ e =

[
ā1 ∗ e
ā2 ∗ e

]
(57)

B(C̃1, C̃2) =

[[
ã1

ã2

]
∗ e

]
N+p

=

[
[ā1 0 0 · · · ] ∗ e
[ā2 0 0 · · · ] ∗ e

]
N+p

(58)

Since the number of columns in B(C̄1, C̄2) is N+ξ+1, it is
obvious that R(B(C̃1, C̃2)) = R(B(C̄1, C̄2)) if the number
of columns in B(C̃1, C̃2) is no less than that in B(C̄1, C̄2),
i.e., p ≥ ξ + 1, where R(B) stands for the rank of matrix B.

While, if p < ξ + 1, which means B(C̃1, C̃2) is the
submatrix formed by the first N + p columns in B(C̄1, C̄2),
it cannot be ensured that the two matrices have the same rank
since ā1, ā2, and e are all random.

From the discussion above, we know that iff p ≥ ξ +
1, R(B(C̃1, C̃2)) = R(B(C̄1, C̄2)) for any two different
source frames x1 and x2. Considering R(B(Ĉ1, Ĉ2)) =
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Ĉ =

[
[ã1 ∗ x+Kã1(ξ + 2) ∗ x+K2ã1(2(ξ + 2)) ∗ x+ · · · ]N+p

[ã2 ∗ x+Kã2(ξ + 2) ∗ x+K2ã2(2(ξ + 2)) ∗ x+ · · · ]N+p

]

=

[{[
ã1
ã2

]
+

[
Kã1(ξ + 2)
Kã2(ξ + 2)

]
+

[
K2ã1(2(ξ + 2))
K2ã2(2(ξ + 2))

]
+ · · ·

}
∗ x

]
N+p

(55)

B(Ĉ1, Ĉ2) =

[{[
ã1
ã2

]
+

[
Kã1(ξ + 2)
Kã2(ξ + 2)

]
+

[
K2ã1(2(ξ + 2))
K2ã2(2(ξ + 2))

]
+ · · ·

}
∗ e

]
N+p

(56)

R(B(C̃1, C̃2)), we achieve R(B(Ĉ1, Ĉ2)) = R(B(C̄1, C̄2))
for any two different source frames x1 and x2 iff p ≥ ξ + 1.

So the partial DLC-STC Ĉ achieves the same asynchronous
diversity as the DLC-STC C̄ iff p ≥ ξ + 1.
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