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Abstract—It is well-known that the traditional Chinese re-
mainder theorem (CRT) is not robust in the sense that a small
error in a remainder may cause a large reconstruction error. A
robust CRT was recently proposed for a special case when the
greatest common divisor (gcd) of all the moduli is more than 1
and the remaining integers factorized by the gcd are co-prime. It
basically says that the reconstruction error is upper bounded by the
remainder error level if is smaller than a quarter of the gcd of
all the moduli. In this paper, we consider the robust reconstruction
problem for a general set of moduli. We first present a necessary
and sufficient condition on the remainder errors with a general set
of moduli and also a corresponding robust reconstruction method.
This can be thought of as a single-stage robust CRT. We then pro-
pose a two-stage robust CRT by grouping the moduli into several
groups as follows. First, the single-stage robust CRT is applied to
each group. Then, with these robust reconstructions from all the
groups, the single-stage robust CRT is applied again across the
groups. This is easily generalized to multi-stage robust CRT. With
this two-stage robust CRT, the robust reconstruction holds even
when the remainder error level is above the quarter of the gcd of
all themoduli, and an algorithm on how to group a set of moduli for
abetter reconstruction robustness is proposed in some special cases.

Index Terms—Chinese remainder theorem, frequency estima-
tion from undersamplings, greatest common divisor, moduli, ro-
bustness.

I. INTRODUCTION

T HE problem of reconstructing a large integer from its sev-
eral remainders modulo several smaller positive integers

(called moduli) may occur in many applications, such as phase
unwrapping in radar signal processing [10], [14]–[23] and fre-
quency determination from several undersampled waveforms
[8], [9], [12]. The traditional solution for this problem is the Chi-
nese remainder theorem (CRT), see for example, [1], [2], that
uniquely formulates the solution from the remainders if all the
moduli are co-prime and the large integer is less than the product
of all the moduli. When the moduli are not co-prime, the large
integer can be uniquely determined if it is less than the least
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commonmultiple (lcm) of all themoduli [3], [4], where onemay
also find the reconstruction methods. However, it is well-known
that the above solution is not robust in the sense that a small error
in a remainder may cause a large error in the reconstruction so-
lution, whichmay degrade the performance of its applications in
phase unwrapping and frequency determination, since in these
applications, signals are usually noisy and the detected remain-
ders may be erroneous. For a fixed set of moduli (this corre-
sponds to a fixed set of sampling rates in the frequency deter-
mination problem from undersampled waveforms [8], [9], [12]),
the fundamental problems for robustly reconstructing a large in-
teger (or a high frequency) from its erroneous remainders (or the
detections from the discrete Fourier transforms of the undersam-
pled waveforms) are: 1) what is the range of such a determinable
large integer? 2) how large can the errors in the remainders be
for the robustness to hold? Clearly, the larger the answers are in
the above two questions, the better a reconstruction algorithm
is. For the first question, the answer is usually fixed and the de-
terminable range (called the dynamic range) is the lcm of all the
moduli. For the second question, i.e., the robustness, there have
been several studies recently [11]–[13]. Robust reconstructions
from erroneous remainders were recently proposed in [12], [13]
for a special case when the greatest common divisor (gcd) of all
the moduli is more than 1 and the remaining integers factorized
by the gcd of all the moduli are co-prime. In this special case,
a closed-form robust reconstruction from erroneous remainders
was proposed in [13] and a necessary and sufficient condition on
the remainder errors was also obtained in [13]. It basically says
that the reconstruction error is upper bounded by the remainder
error level if is smaller than a quarter of the gcd of all the
moduli [12]. A special version of this result was obtained ear-
lier in [10]. In some applications, an unknown, such as the phase
unwrapping and frequency estimation, is real-valued in general.
So, in [13] the closed-form robust CRT algorithm was naturally
generalized to real numbers. Also, a lattice based method was
proposed in [25] to address the problem of estimating a real un-
known distance with a closed-form algorithm using phase mea-
surements taken at multiple co-prime wavelengths. One can see
that there are constraints on the moduli in previous works. The
constraints on the moduli may, however, limit the robustness
when the range, i.e., the dynamic range, of the determinable in-
tegers is roughly fixed.
Different from robustly reconstructing a large integer from

its erroneous remainders, another existing approach is to accu-
rately determine the large integer by using some of the error-free
remainders among all the remainders [5], [6], [9], which may
require that significantly many remainders are error-free and a
large number of moduli/remainders may be needed. This ap-
proachmay sacrifice the dynamic range for a given set of moduli
(or undersampling rates [9]) and furthermore, in some signal
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processing applications, to obtain error-free remainders may not
be even possible, because observed signals are usually noisy. A
probabilistic approach to deal with noises in CRT was proposed
in [7], where all the moduli are required to be primes.
In this paper, we consider the robust reconstruction problem

for a general set of moduli on which the constraint used in
[12], [13] is no longer required. We first present a necessary
and sufficient condition for the remainder errors for a robust re-
construction from erroneous remainders with a general set of
muduli, where a reconstruction method is also proposed. This
can be thought of as a single stage robust CRT. We then pro-
pose a two-stage robust CRT by grouping the moduli into sev-
eral smaller groups as follows. First, the single stage robust CRT
is applied to each group. Then, with these robust reconstructions
from all the groups, the single stage robust CRT is applied again
across the groups. Interestingly, with this two-stage robust CRT,
the robust reconstruction holds even when the remainder error
level is above the quarter of the gcd of all the moduli. The
two-stage robust CRT is then easily generalized to multi-stage
robust CRT. In this paper, we also propose an algorithm on how
to group a set of moduli for a better reconstruction robustness
of the two-stage robust CRT in some special cases.
Note that the two-stage robust CRT is first appeared in [24]

that is, however, based on the special single stage robust CRT
in [13] when the remaining factors of all the moduli after fac-
torizing out their gcd are co-prime. With the two-stage robust
CRT obtained in [24], the remainder error level is, in fact,
not better than the quarter of the gcd of all the moduli. In con-
trast, our newly proposed two-stage or multi-stage robust CRT
in this paper is based on the generalized single stage robust CRT
for arbitrary moduli also newly obtained in this paper and as
mentioned earlier, the remainder error level can be above the
quarter of the gcd of all the moduli, i.e., it achieves a better ro-
bustness bound than [24] does.Wewould like to emphasize here
that for a general set of moduli, the reconstruction algorithms of
integers from their erroneous remainders proposed in this paper
have the best known robustness.
This paper is organized as follows. In Section II, we first

briefly introduce the robust CRT results obtained in [12], [13].
We then propose our new single stage robust CRT with the nec-
essary and sufficient condition for a general set of moduli. In
Section III, we propose two-stage and multi-stage robust CRT.
In Section IV, we propose an algorithm on how to group a set
of moduli for a better reconstruction robustness of the two-stage
robust CRT. In Section V, we present some simulation results on
estimating integers with a general set of moduli. In Section VI,
we conclude this paper.

II. SINGLE STAGE ROBUST CRT

Let us first see the robust remaindering problem. Let be a
positive integer, be moduli, and

be the remainders of , i.e.,

(1)

where and is an unknown integer, for
. It is not hard to see that can be uniquely recon-

structed from its remainders if and only if

. If all the moduli are co-prime, the
CRT provides a simple reconstruction formula [1], [2].
The problem we are interested in this paper is how to robustly

reconstruct when the remainders have errors:

(2)

where is an error level that may be determined by, for ex-
ample, the signal-to-noise ratio (SNR) and is also called re-
mainder error bound. Now we want to reconstruct from these
erroneous remainders and the known moduli . The basic
idea for the robust CRT in the recent studies and also this paper
is to accurately determine the unknown integers in (1) which
are the folding numbers that may cause large errors in the re-
constructions if they are erroneous. Therefore, the problem is to
accurately determine the folding numbers from these erro-
neous remainders .
Once for are accurately found, an estimate of
can be given by

(3)

where denote the errors of the remainders. From
(2), . Then, an estimate of the unknown parameter
is the average of :

(4)

where is the average of the remainder errors, and stands
for the rounding integer, i.e., for any (the set of all reals),
is an integer and subject to

(5)

Clearly in this way the error of the above estimate of is upper
bounded by

(6)

i.e., is a robust estimate of .
For the above robust remaindering problem, solutions, i.e.,

robust reconstruction algorithms, have been proposed in [12],
[13] for a special case when the gcd of all the moduli is more
than 1 and the remaining integers factorized by the gcd of all the
moduli are co-prime. The main results can be briefly described
below.
Let be the gcd of all the moduli in (1). Then,

, and assume that all for are
co-prime, i.e., the gcd of any pair and for is 1.
Define . For , let

(7)
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where and . We now show
how to accurately determine the folding numbers in [12] and
[13], respectively. First, define

(8)

Let denote the set of all the first components of the pairs
in set , i.e.,

(9)

and define

(10)

It is proved in [12] that if the remainder error bound is smaller
than a quarter of , i.e., , the folding numbers for

can be accurately determined from and . Set
defined above contains only one element , and furthermore if

, then . In addition, [12] has proposed a
1-D searching method with the order of searches.
When or gets large, the searching complexity is still high.
Then, a closed-form robust CRT algorithm and its necessary and
sufficient condition for it to hold have been proposed in [13].
For the closed-form algorithm, we refer the reader to [13] with
which the following necessary and sufficient condition for the
accurate determination of the folding numbers is obtained
in [13].
Proposition 1: [13]: Assume that all for are

co-prime and

(11)

Then, with the closed-form algorithm determining for
in [13], for , i.e., the folding numbers

for can be accurately determined, if and only if

(12)

Although the condition (12) in Proposition 1 is necessary and
sufficient for the uniqueness of the solution of the folding num-
bers , it involves with two remainder errors and is hard to
check in practice. However, with this result the following propo-
sition becomes obvious, which coincides with the much simpler
sufficient condition in [12].
Proposition 2: [12], [13]: Assume that all for

are co-prime and

(13)

If the remainder error bound satisfies

(14)

then we have for , i.e., the folding numbers
for can be accurately determined.

As it was mentioned earlier, these robust reconstruction re-
sults are based on the assumption that the gcd of all the
moduli is more than 1 and the remaining integers in the
moduli factorized by their gcd are co-prime. For ex-
ample, ,
and , where . When the remainder
error level , any integer less than
can be reconstructed within the same error level as the remain-
ders from the erroneous remainders by using the algorithms in
[12], [13]. A natural question is what will happen if a general
set of moduli are used. For example, what will happen if

,
and ? First of all, their gcd is and if
we divide them by their gcd, we get

and clearly these four are not co-prime. So,
we can not apply the algorithms or results in [12], [13] directly,
which may limit the applications in practice.
We next propose an accurate determination algorithm for the

folding numbers from erroneous remainders for a general set
of moduli with a new necessary and sufficient condition on
the remainder errors. Let us first see an algorithm for .
Following the algorithm in [13], we can generalize the results

as follows. First, from (1) we can equivalently write it as the
following system of congruences:

...
(15)

We want to determine for . To do so, we let the last
equations in (15) subtract the first one and we then have

...
(16)

Next, denote and
. Then, we can equivalently express (16) again as

...
(17)

Since and are co-prime, by Bézout’s lemma (Lemma 1
in [13]) we get

(18)

where (the set of integers) and is the
modular multiplicative inverse of modulo .
We can use

(19)

as an estimate of for . Recall that stands for the
rounding integer which is defined in (5). Let for
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be a set of solutions of (17) when is replaced by for
. In summary, we have the following algorithm.

• Step 1: Calculate these values of
and for from the given

moduli for , which can be done in advance.
• Step 2: Calculate for in (19) from the given
erroneous remainders for .

• Step 3: Calculate the remainders of modulo , i.e.,

(20)

for , where is the modular multiplicative in-
verse of modulo and can be calculated in advance.

• Step 4: Calculate from the following system of congru-
ences:

(21)

where moduli may not be co-prime, which can be done
by using the algorithms in, for example, [3], [4], and es-
pecially in [4], a multi-level decoding technique to recon-
struct the large integer is proposed.

• Step 5: Calculate for :

(22)

With the above algorithm, we have the following necessary and
sufficient condition result for a general set of moduli.
Theorem 1: Let , be arbitrarily

distinct positive integers as a given set of moduli and
. Then, for all

, i.e., the folding numbers for can be
accurately determined, if and only if for all ,

(23)

Proof: We first prove the sufficiency. Considering the con-
dition in (23) and the estimate of in (19), from (5) for the def-
inition of the operator we have . Then, from (18),
and have the same remainder modulo . Since

and are known, we can calculate .
Thus, for , which form a system
of simultaneous congruences as . In addition,
since , it is not hard to
see that is less than . So, according to
the algorithm about generalized CRT in [4], can be uniquely
reconstructed by solving the above system, and .
After is determined, we can obtain other integers for

from (17) or (18). Therefore, for .
Hence, the sufficiency is proved.
We next prove the necessity. Assume that there exists at least

one remainder that does not satisfy (23). For example, the -th
remainder , does not satisfy (23). This equiva-
lently leads to and therefore .
We then have the following two cases.
Case A: When for any
. We want to prove that the remainders of and
modulo are different. Assume and have the
same remainder modulo , i.e.,

(24)

Multiplying both sides of (24) by and considering
for some , we have

(25)

According to (19), we have

(26)

This contradicts with the assumption. Hence, the remainders of
and modulo are different, i.e., and have

different congruences. Thus, .
Case B: For every

for some but there exists at least one with
such that , i.e., . From (19),
we have for . Hence, from
the first equation in (18) and according to the generalized CRT,
can be uniquely reconstructed. Thus, from Steps 1–4 in the

above algorithm, we have .
However, since , from (17) or the second equation

in (18) we have . This proves the necessity.
The above result involves with two remainder errors and is

hard to check in practice. Let be the maximal remainder error
level, i.e., , for . Similar to
Proposition 2, we can also present a simpler sufficient condition.
Corollary 1: Let , be arbitrarily

distinct positive integers as a given set of moduli and
. If the remainder error

bound satisfies

(27)

then, we have for all , i.e., the folding
numbers for can be accurately determined.

Proof: Recall that in the procedure of proving Theorem
1 we just arbitrarily selected the first equation in (15) to be a
reference to be subtracted from the other equations to get (16).
In fact, to improve the robustness through selecting a proper
reference equation to differentiate, we can choose the index
such that for .

Without loss of generality, modulus satisfies

(28)

Then, we have for . Since is the
maximal remainder error level, i.e., , for

, we can obtain

(29)

Clearly, (29) implies the sufficient condition (23) in Theorem 1.
Hence, for all . Therefore, we complete the
proof.
Remark 1: Since in the above new result, there is no any

constraint to the moduli for , some of the
moduli may be redundant with respect to the range

of the determinable unknown integer
. The first case is when there exist a pair of moduli and
such that for (the set of all positive
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integers) and in this case is redundant for the determinable
range of , i.e., the lcm of all . The other case is when there
exists one moduli that is a factor of some other (more than
one) moduli’s lcm, i.e., for
some and , and in this case is redundant sim-
ilarly. When a determinable range of is fixed, we can add or
delete some of the redundant moduli to or from the moduli set
in order to get a better robustness bound for . For example,
the redundant modulus 30 in moduli set improves
the robustness bound compared with the robustness bound of
moduli set from 5/4 to 10/4. On the other hand, the re-
dundant modulus 10 in with its robustness bound
10/4 does not help but worsens the robustness bound compared
with 15/4 of , so it is better to delete the modulus 10
from the moduli set. Below is a general result.
Corollary 2: If there exist a pair of moduli and such

that for , then, the redundant modulus
does not help to increase the robustness bound and it can be
deleted from the set of moduli.

Proof: Without loss of generality, we can assume for
a moduli set that

and the robustness
bound is .

Consider another set of moduli
where is a factor of one moduli in

, i.e., for
. For the moduli ,

its robustness bound is .

To calculate it, we split into two parts:
and , i.e., (30), shown at the bottom of the page.

As for , since

we have

As for , since

we have (31), shown at the bottom of the page.
Thus, we can derive (32), shown at the bottom of the

page. This tells us that the redundant modulus does

not help to increase the robustness bound of the set of
moduli compared with that of

.
From the result of Corollary 2, for a set of moduli, we can

delete this kind of redundant modulus when there exists
one modulus in the moduli set such that .
So, throughout this paper, a set of moduli we consider does not
include such a pair of moduli in a single stage robust CRT.
From the above results, one can see that the choice of the ref-

erence remainder is important in determining the maximal pos-
sible robustness bound for when the whole moduli set of
arbitrary moduli is considered once as above. In fact, when the
moduli satisfy the constraint, i.e., are co-prime, in Proposi-
tion 2 in [12], [13], it has been pointed out and analyzed in [13]
that a proper reference remainder indeed plays an important role
in improving the performance in practice.
Going back to the necessary and sufficient condition (23), one

can see that the remainder error difference bound depends on
, that varies with each and the choice of the

reference modulus . This means that for the robust recon-
struction of , the error levels of its remainders for different
may have different requirements. Also, as it was mentioned
earlier, using as the reference modulus is not necessary. Let
us choose the reference modulus that satisfies

(33)

and the remainder error bound for the reference remainder
satisfy

(34)

Then, we have the following result.
Corollary 3: Let , be arbitrarily dis-

tinct positive integers as a given set of moduli and
, define the remainder error bound for

as , i.e., for , and the ref-
erence modulus and its corresponding remainder error bound
are and satisfying (33) and (34) above for some with

. If the remainder error bound ,
satisfies

(35)

then, we have for all , i.e., the folding
numbers for can be accurately determined.

(30)

(31)

(32)
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Proof: If the reference modulus and its corresponding re-
mainder error bound are and , we just need to
prove for all ,
which implies the sufficient condition (23) in Theorem 1.
Since , we

have

(36)

Thus, Corollary 3 is proved.
Next, we consider the example mentioned before again.
Example 1: Let

, and . It is easy to see that
their gcd is , and do not satisfy the con-
straint of Propositions 1 and 2 in [12], [13]. Thus, their results
can not be applied here. However, from the result of Corollary
1, we can obtain the maximal robustness bound for all re-
mainders as 10/4, which is even larger than 5/4, a quarter of
the gcd of all the moduli. From the result of Corollary 3, we
choose as the reference modulus that does satisfy (33), and
we can get the robustness bound for each remainder as follows:

and . One can see
that, if we treat remainder error bounds individually as above,
the remainder error bounds for some of the individual remain-
ders, such as the second remainder in this example, may be
larger than that in (27) in Corollary 1 for all the remainder error
levels. In addition, the robust reconstruction range of is also

.
It is clear that when moduli for are co-prime

similar to the case of [13], from the system of congruences (21)
in Step 4 in the above algorithm, a closed-form single stage
robust CRT can be obtained as [13] and we can replace Step
4 with the following Step .
• Step : Calculate :

(37)

where is the modular multiplicative inverse of
modulo , which can be calculated in advance, and

. After that, from (22) we can get the
formulas for other for .
Next, let us consider the result in [24]. If we consider the

following special case of moduli in Corollary 3, we can ob-
tain a better result of the remainder error bounds than that
in [24]. Let a set of moduli be

where
. Then, we have the following corollary.

Corollary 4: Assume that all the ,
are co-prime, let , where is an integer, and

. Denote as the error
bound for each remainder for . If

(38)

then, with a closed-form algorithm we have for
, i.e., the folding numbers for

can be accurately determined.
Proof: Since

we can set as the reference mod-

ulus and the error bound in

(34).
Then, from (35) when
; and when .

So we can accurately determine the folding numbers for
. Next, we can get for
and for , all of

which are co-prime. Thus, we can obtain a simple closed-form
reconstruction formula for similar to (37) and then by (22)
for .
Example 2: In the above, let

, and the moduli are
.

From Corollary 4, we can get
. In addition, it has a closed-form algo-

rithm to robustly reconstruct an unknown integer for
. However, according

to the result of [24], the remainder error bounds would be
.

Interestingly, the robustness bound result in this corollary is
even better than that obtained in [24] using a two-stage robust
CRT. What the result here tells us that for the set of moduli in
Corollary 4, which is the set considered in [24], it is not nec-
essary to use a two-stage robust CRT as what is done in [24].
Another remark we make here is that the notation above de-
notes the -th remainder error bound. Later, without causing any
notational confusion, will denote the remainder error bound
for the remainders in the -th group.

III. MULTI-STAGE ROBUST CRT

From the study in the previous section, one can see that the
robustness bound is kind of dependent on the gcd of the moduli.
The larger the gcd is, the better the robustness bound is. How-
ever, the large gcd reduces the lcm of the moduli, i.e., reduces
the determinable range of the unknown integer . When a set
of moduli are given, the maximal determinable range is given
too, which is their lcm. Then, the question is for a given set
of moduli, can we improve the robustness bound obtained in
Corollary 1? Note that in the single stage robust CRT obtained in
the previous section, all the remainders and their related system
of congruence equations are considered and solved together si-
multaneously. A natural question is: can we split the set of
moduli into several groups so that the moduli in each group have
a large gcd and remainders and their corresponding system of
congruence equations in each group are considered and solved
independently using the single stage robust CRT obtained in the
previous section? If so, can we obtain a better robustness bound
than that in Corollary 1 for the single stage robust CRT? To an-
swer these questions, let us first see an example.
Suppose that a set of moduli are given

and the gcd of these 4 moduli is 1. These four moduli can be
split to two groups and . The gcd of the
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two moduli in the first group is with
, and the gcd of the two moduli in the

second group is with
. One can see that each group satisfies the con-

dition in Propositions 1 and 2 and therefore the closed-form
robust CRT in [13] or the single stage robust CRT in the pre-
vious section can be applied for the robust reconstruction of
an unknown integer with robustness bound or

, if

or , respectively.
Using the first group with moduli and

and two remainders and , if the integer is in the range
of , then can be uniquely determined by its
two error free remainders and as with ;
otherwise

(39)

Using two erroneous remainders and with error level ,
and the closed-form robust CRT in [13] or the single stage robust
CRT in the previous section for the first group, we can obtain an
integer and

(40)

Similarly, using the second group with moduli
and and two remainders and , if the integer
is in the range of , then can be uniquely

determined by its two error free remainders and as with
; otherwise

(41)

Using two erroneous remainders and with error level ,
and the closed-form robust CRT in [13] or the single stage robust
CRT in the previous section for the second group, we can obtain
an integer and

(42)

On the other hand, if integer is in the range of
, it can

be uniquely determined by its four error free remainders
. This can be done either from the four remainders

directly or from the two new remainders and of with
two new moduli and with (39) and (41), respectively. For
the robustness, as we mentioned earlier, the closed-form robust
CRT and the results in Propositions 1 and 2 can not be applied
to the four moduli and the four erroneous remainders directly
since they do not satisfy the co-prime condition. In addition,
according to our single stage robust CRT in Theorem 1 and
Corollary 1 obtained in the previous section, its robustness
bound would be (interestingly, for the 4 moduli, their
gcd is only 1). However, using the above grouping idea, the
reconstruction of can be done in two stages: the first stage is
to reconstruct in (40) and in (42) from the two groups,
respectively; the second stage is to reconstruct from its
two possibly erroneous remainders and with two new
moduli and . From the second stage, using the known
robust CRT again, we obtain

(43)

Thus, we have a robust reconstruction too. In order to keep all
inequalities (40), (42) and (43), one can see that with this two-
stage approach, the robustness bound on the remainder error
level is 18/4 which is surprisingly even better than 9/4 that is
the robustness bound in Corollary 1 using the single stage robust
CRT for general moduli obtained in the previous section. This
means that using two or more groups for a set of moduli may
have a better robustness bound than that using a single group
for the whole set of moduli. Clearly, for the better robustness,
the way to group the moduli or remainders plays a very impor-
tant role as one can see from the bounds above. Note that the
robustness bound in Corollary 1 for the single stage
robust CRT for the moduli set is only half
of the robustness bound for the same moduli set

but with the grouping and the two-stage
approach. We next present our results for general cases. First,
we consider the case of two groups and two stages.
Let be

the whole set of moduli that may not be necessarily all dis-
tinct. It is split to two groups with Group 1 of moduli:

; and Group 2 of
moduli: . These two groups
do not have to be disjoint. Let be a positive integer, and

be the corresponding
remainders of , i.e.,

(44)

where and is an unknown integer for
or 2. As we know, can be uniquely

reconstructed from its remainders if and only if
, where and

. The congruence system (44) can
be converted into the following two-stage congruences.
For , and Group , we can write

(45)

Then, the above and can be combined to form a new
system of congruences:

(46)

When , the two congruence equations are degenerated to
a single equation and without loss of generality, we assume
here and such a similar degenerated case is not considered

either in what follows in this paper. Replacing and in
(46) by (45), we have

(47)

It is not hard to see that
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where

for or 2. Clearly,

From the known values of all themoduli and all the er-
roneous remainders , if we can accurately determine
and , then we can accurately determine . Thus, we pro-
pose the following algorithm to robustly reconstruct , called
two-stage robust CRT, when the remainders are erroneous.
• Step 1: Following the single stage robust CRT algorithm
of Steps 1–5 in Section II, calculate for
in the system of congruence equations (45) from erroneous
remainders for each .

• Step 2: After obtaining for ,
calculate the average estimate of for by (3)
and (4):

(48)

where stands for the rounding integer (5).
• Step 3: Treating and as the new erroneous remain-
ders in the system of congruence equations (46) and fol-
lowing the single stage robust CRT algorithm Steps 1–5 in
Section II again, we calculate and .

• Step 4: Calculate for and :

(49)

• Step 5: Calculate the average estimate of the unknown
integer :

(50)

where stands for the rounding integer (5).
Then, we have the following result. For , let denote
the error level of the remainders in the -th group, i.e.,

for and

Let

In the above, when the -th group has only one modulus ,
then and the corresponding lcm, , is just .
Theorem 2: If

(51)

then, we can accurately determine the folding numbers
for , and the average estimate of

the unknown integer in (50) satisfies

(52)

where stands for the rounding integer (5).
Proof: For , according to Corollary 1, when

, we can accurately determine in the
systems of congruence equations (45):

(53)

Furthermore, for the average estimates and in (48) in
Step 2 above, we have

which keeps the same error level as the remainders for
.

In the second stage (46), and become the erroneous
remainders. To accurately determine and , according to
Proposition 2 or Corollary 1, the error levels should satisfy

and , then

(54)

Thus, combining with the first stage, we have the condition
and so that and

for . Namely, we have
from (49).
After we accurately determine the folding numbers
for , we can get the average estimate
in (50) of the unknown integer , i.e.,

(55)

From for , we can easily
obtain

(56)

Therefore the proof is completed.
The above results for two groups of moduli can be easily

generalized to a general number of groups of moduli by using
Corollary 1 twice for the two stages of the congruence equations
as follows.
Assume that there are groups of moduli with .

For every , the elements in the -th group
are denoted as , let

and denote the error level
of the remainders , in the -th group, and when
the -th group has more than one element, define

(57)
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If the -th group has only one element, , define .
Let

(58)

Then, we have the following result.
Theorem 3: If

(59)

then, we can accurately determine the folding numbers
for and , and thus we can ro-

bustly reconstruct as an estimate of when
:

(60)

(61)

Proof: The proof is similar to the proof of Theorem 2. In
the first stage, via (59) we can accurately determine the folding
numbers for , and obtain the robust
estimates of for the -th group with the error bound

, where for all
.
Then, in the second stage we take these estimates as erro-

neous remainders and as moduli for to form a new
congruence system. Applying the result of Corollary 1 again,
we can accurately determine the unknown folding numbers
for . By that, we can accurately determine for

with .
Lastly, once we get the accurate values of , the average

estimate of can be found. The error bound of is proved
similar to Theorem 2. Hence, the theorem is proved.
Similar to Corollary 3 for the single stage robust CRT, in the

second stage with moduli and erroneous remainders for
, we can also individually consider the remainder

error level for each remainder with respect to modulus
and have the following result.
Corollary 5: Assume that the reference modulus is for

some with , which satisfies

(62)
and its corresponding remainder error bound . If

(63)

(64)

for all and then we can accurately
determine the folding numbers for and

.
Example 3: Given three groups ofmoduli:

, and . We can get

and . So, from Theorem 3, we
obtain the robustness bounds:

and . If we use
the result of Corollary 5, we can get a better error bound for
some groups as follows: and .
For a given set of moduli , there are many

different grouping methods of the remainders, and therefore,
many ways to robustly reconstruct the unknown integer from
its erroneous remainders. Let us see an example.
Example 4: Consider the moduli set

. First, consider all the moduli as
a single group and we obtain the robustness bound 24/4 ac-
cording to Corollary 1. Second, we group the four moduli into
two groups and with

and in Theorem 2.
Accordingly, the robustness bound in this case is and

. Lastly, if we group the four moduli into another two
groups and with

and , then, the robustness bound in this case is
and .

From this example, we can see that different grouping
methods lead to different robustness bounds. Compared with
the robustness bound by using a single stage robust CRT for
the whole set of moduli, sometimes a grouping can enlarge the
robustness bound while sometimes a grouping may decrease
the robustness bound. Thus, another question is whether there
exists a proper grouping method to ensure the robustness bound
larger than that in Corollary 1 using the single stage robust
CRT. We next present a result that tells us when there exists a
grouping method with a better robustness bound for remainders
in some groups using a two-stage robust CRT than that using
the single stage robust CRT.
Corollary 6: For a given set of moduli ,

the robustness bound can not be enlarged for remainders in any
group by using a two-stage robust CRT with a grouping method
of the moduli if and only if it is the case of [13], i.e., the re-
maining factors of the moduli divided by their
gcd , are co-prime.

Proof: It is easy to prove the sufficiency as follows. When
themoduli satisfy the constraint in [13], i.e., are co-prime,
its robustness bound using the single stage robust CRT with a
single group moduli is . On the other hand, from Theorem
3, each of any grouping and are both . Hence, we
cannot enlarge the robustness bound in this case.
We next prove the necessity. Assume that the robustness

bound for remainders in any group can not be enlarged by the
two-stage robust CRT with a grouping method of the moduli
over the robustness bound of the single stage robust CRT of the
whole set of the moduli. Denote . Without
loss of generality, we can assume

Thus, according to Corollary 1, its robustness bound using the
single stage robust CRT with a single group moduli is .
We then have the following two cases.
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Case I: There exists one with such that

If we group the moduli as Group 1: ; and Group
2: . With this grouping, we have that

and .
Thus, we obtain , where

, which contradicts with the
assumption that we cannot enlarge the robustness bound for
the remainders in Group 1 using a two-stage robust CRT. This
proves that .
Case II: Under the condition of
, we know that any , since

is a factor of all the moduli . Suppose that there exists one
with . We can group the moduli as Group 1:
, and Group 2: . Similar to Case

I, and . So, we
can enlarge the robustness bound for the remainders in Group 1
by using the two-stage robust CRT with this grouping. This also
contradicts with the assumption.
From the above two cases we conclude that for all

, i.e., it is the case of [13].
Now, we give an explicit example. Suppose there are a set

of moduli with the form of
where are co-prime. According to Corollary 1,
the robustness bound using the single stage robust CRT is

. If the moduli are grouped into
two groups as and .
Then, according to Theorem 2, its robustness bound is

and , one of which is greater
than the robustness bound when

.
Example 5: Let , and

. Then we can calculate and
from the two-stage robust CRT. One can see that is
significantly greater than using the single stage robust
CRT.
From Corollary 6, one can see that as long as in moduli

are not all co-prime, using a two-stage robust CRT with some
grouping method has a larger robustness bound for remainders
in some groups than the single stage robust CRT does. In the
same way, we may treat as a new set of moduli
and group it again so that the single stage robust CRT is applied
three times with the following result. We call it three-stage ro-
bust CRT.
Let us split in Theorem 3 to groups. For

every , the elements in the -th group are denoted as
, let and define

(65)

Let

(66)

We then have the following result.

Theorem 4: If for all and ,

(67)

then, we can accurately determine the folding numbers
for , and thus

we can robustly reconstruct as an estimate of when
:

(68)

(69)

Proof: The congruence system

where for and
, can be converted into the following

three-stage congruences.
For , and Group in the first stage, we can write

(70)

In the second stage,

(71)

Then, in the third stage, we can write

(72)

As long as we can accurately determine all of and
in each congruence system, we can then accurately determine
. According to conditions (67), we can accurately determine
for and get the error bound

(73)

Next, in each group of the second stage we take these esti-
mates as erroneous remainders and as moduli. Applying
the result of Corollary 1, we can accurately determine , and
also get the robust estimate satisfying

(74)
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Similarly, treat the estimates as the erroneous remainders
and as moduli in the third stage. Since , from
Corollary 1 again, we can accurately determine . Once we ac-
curately determine these unknown folding numbers in each con-
gruence system, we can accurately determine and then ob-
tain the robust estimate of the unknown integer . As for the
error bound of the estimate , the proof is the same to that of
Theorem 2. Therefore, we complete the proof.
Example 6: Consider a given set ofmoduli

. Treating them as one group and using
the single stage robust CRT, we get its error bound for the re-
mainders satisfying . If we split the moduli to three
groups: and ,weget

and .Byusing the two-stage robust
CRT, we can get the error bounds for the remainders in Group
for satisfying

and , all of
which are larger than the bound 32/4 in the single stage robust
CRT. If we use the three-stage robust CRT and split
to two groups again: , we can get

. So, in this three-stage robustCRT, the error bounds satisfy

and . Compared with the two-stage
robust CRT, we increase the robustness bounds in Group 1 and
Group 2 from 64/4 to 72/4 by using the three-stage robust CRT.
The above three-stage robust CRT can be easily generalized

to a multi-stage robust CRT with more than three stages. Al-
thoughwe can use amulti-stage robust CRTwith some grouping
methods to obtain a larger robustness bound for remainders in
some groups, there are some challenges about how to choose
moduli in a group and how many groups and stages we should
split in order to find a better robustness bound such that we can
enlarge all the robustness bounds in every group.
Let us first look at the simplest case when there are only three

moduli . Without loss of generality, we can as-
sume that .
Regarding the three moduli as one group and by Corollary 1, the
robustness bound is . Since

, if we want to obtain a robustness bound strictly
larger than , the modulus must indepen-
dently form an individual group by itself, and in the meantime
it does not allow other groups to include . Thus, there is only
one possible grouping method as and . The ro-
bustness bound therein is and

, which
may be both larger than . Otherwise, we have
to group them as and and in this way we
may only enlarge one group’s (not every group’s) robustness
bound as what is used in the proof of Corollary 6.
Example 7: When ,

we can see that
and

. Regarding these three moduli as a
single group, the robustness bound is

. In order to find a larger robustness
bound, we just only consider the robustness bound of the case
of two groups: and . We can get
and , which are all larger than 70/4.

The above special case is about only three moduli’s grouping.
When the number of given moduli is larger, it becomes more
complicated. In the next section, we analyze some special cases.

IV. AN ALGORITHM FOR GROUPING MODULI IN TWO-STAGE
ROBUST CRT

From the above study, one may see that for a given set of
moduli, although its determinable range for an integer from its
remainders is fixed, i.e., the lcm of all the moduli, the robust-
ness bounds for an erroneous remainder and a reconstructed in-
teger depend on a reconstruction algorithm from erroneous re-
mainders, which depends on the grouping of the moduli in a
multi-stage robust CRT. For a general set of moduli, it is not ob-
vious on how to group them in a multi-stage (or even two-stage)
robust CRT, in particular when the number of moduli is not
small. In this section, based on Theorem 3 for the two-stage ro-
bust CRT, we propose an algorithm for grouping a general set
of moduli to possibly obtain a larger robustness bound for re-
mainders in every group than that in Corollary 1 for the single
stage robust CRT.
For a given set of moduli ,

we first assume that the set of moduli does not include any
pair of and satisfying , because Corol-
lary 2 has told us that such a redundant modulus does
not help to increase the determinable range of

nor the robustness bound in a single
stage robust CRT. From condition (59) we need to assure that all
in (57) and in (58) after a grouping strictly greater than

in Corollary 1 for the single

stage robust CRT. Then, we have an algorithm as follows.
1) For each , find all

, satisfying . Then, with , form the
corresponding set :

(75)

Thus, with each set , we have

(76)

If modulus satisfies for all
, then we let .

2) Among all of the sets for , there may be
one or more pairs, and , satisfying .
In this case, we can delete the smaller set and only
keep the larger set .

3) After Step 2), from the remaining sets of , we find
all such combinations of that

exactly includes all moduli . In other words, if

anyone for is deleted from a combination

, then is a proper

subset of , i.e.,

(77)
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4) As for every combination in the above, treat each as
a small group and calculate its lcm as . Then,
check whether

(78)

If there is one combination as above to make in-
equality (78) hold, then every ,
is strictly greater than . According to (59) in Theorem 3,
one can see that this combination is just a grouping as de-
sired and it enlarges a robustness bound for remainders in
every group by using the two-stage robust CRT. Otherwise,
if for every possible combination in Step 3), inequality (78)
does not hold, then it is said that we fail to use this algo-
rithm to enlarge a robustness bound for remainders in every
group by using the two-stage robust CRT.

Let us first consider the above grouping algorithm for the case
of [13], i.e., the remaining factors of the moduli
divided by their gcd , are co-prime. First, we
find all . Next, there is only one
combination satisfying (77), and we treat
each as one group, then calculate in
(78), which equals to . In conclusion, we fail to find a
grouping to enlarge a robustness bound for remainders in every
group by using the two-stage robust CRT, which can be also
confirmed from the earlier result in Corollary 6. Next, we give
a positive example.
Example 8: Consider a set of moduli

,
where is an integer. As one group, using the single
stage robust CRT, its robustness bound is .
According to the above grouping algorithm, find 7
sets:

. Among them,
there are only four combinations satisfying (77) as
follows:

. Then, check whether one of the
above four combinations satisfies inequality (78). Fortunately,
for the first combination , inequality (78) holds.
We can calculate , all
of which are strictly greater than . Thus, we have obtained
a grouping method of the moduli to enlarge a robustness bound
for remainders in every group by using the two-stage robust
CRT.
Remark 2: As one can see in the proof of Corollary 6 and

in the above algorithm and examples, a modulus may
be repeatedly used in more than one groups in the two-stage
robust CRT. Its aim is to make and after grouping
greater than or equal to the robustness bound by using the
single stage robust CRT for the whole set of moduli. Recall
the case of grouping a set of three moduli .
Assume .
From Corollary 1, the robustness bound for using the single
stage robust CRT is . According to the above
grouping moduli algorithm in the two-stage robust CRT, they
are split to two groups: and . One can see that

and . In this grouping method, the robustness
bound for remainders in group is
and the robustness bound for remainders in group is

. As and are greater than , a
robustness bound for remainders in each group depends on the
value of . When is less than , a
robustness bound for remainders in each group is worse than
that for the single stage robust CRT. Thus, we should repeat
modulus in group , and the two groups become

and . In this way, we enlarge a robustness
bound for group and keep the robustness bound
for group non-changed. On the other hand, when

is larger than , we do not need
to repeat modulus , since the robustness bound for group

and the robustness bound for group are both
greater than . This example tells us that, to enlarge
the robustness bound, whether a modulus is repeatedly used
or not in multiple groups depends on the grouping method and
the set of moduli. Repeating a modulus, sometimes, may help
to enlarge the robustness bound but sometimes may not.

V. SIMULATIONS

In this section, we present some simple simulation results to
evaluate the proposed single stage robust CRT algorithm and
the two-stage robust CRT algorithm for integers with a gen-
eral set of moduli. Let us first consider the case when

and . These three moduli do
not satisfy the condition that , are co-prime and
thus the robust CRT obtained in [12], [13] can not be applied
directly. However, we can use our proposed single stage robust
CRT. According to Corollary 1, the maximal range of the de-
terminable is 1620 and the maximal remainder error level
for the robustness is upper bounded by from (27). In
this simulation, the unknown integer is uniformly distributed
in the interval . We consider the maximal remainder
error levels , and the errors are also uni-
formly distributed on in the remainders. 2000000 trials
for each of them are implemented. The mean error
between the estimated in (4) and the true is plotted by the
solid line marked with , and the theoretical estimation error
upper bound in (6) is plotted by the solid line marked with in
Fig. 1. Obviously, one can see that for a general set of moduli
the reconstruction errors of from the erroneous remainders
are small compared to the range of .
Next, we compare the robustness between the single stage and

the two-stage robust CRT algorithms for the above same set of
moduli. In this case, the conditions of the maximal remainder
error levels for the single stage and the two-stage robust CRT
algorithms of two groups and are and ,
i.e., and 11, respectively. Let us consider the maximal
remainder error levels from 0 to 25, and 2000000 trials for
each of them. The unknown integer is taken as before. Fig. 2
shows the curves of the error bounds and the mean estimation
errors for both the single stage and the two-stage
robust CRT algorithms. Note that from our single stage robust
CRT theory, the valid error bound for is only up to 6, which
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Fig. 1. Mean estimation error and theoretical error bound using the single stage
robust CRT.

Fig. 2. Mean estimation error and theoretical error bound comparison using
the single stage robust CRT and the two-stage robust CRT.

can be seen from the simulation results that the mean estima-
tion error starts to deviate the previous line trend
at , then increases significantly and breaks the linear error
bound when is further greater, i.e., robust reconstruction may
not hold. On the other hand, with the two-stage robust CRT al-
gorithm, one can see that the curve of the mean estimation error

is always below the curve of the error bound, i.e.,
we can robustly reconstruct , even when the
maximal error level is 11 that is the upper bound for obtained
in this paper for the two-stage robust CRT algorithm. These sim-
ulation results confirm the theory obtained in this paper.

VI. CONCLUSION

In this paper, we considered the robust reconstruction
problem from erroneous remainders, namely robust CRT
problem, for a general set of moduli that may not satisfy the
condition needed in the previous robust CRT studies in [12],
[13]. We obtained a necessary and sufficiency condition for
the robust CRT when all the erroneous remainders are used
together, called single stage robust CRT. Interestingly, our
proposed single stage robust CRT may have better robustness

than that of the robust CRT obtained in [12], [13] even when
it could be applied. To further improve the robustness, we
then proposed a multi-stage robust CRT, where the moduli are
grouped into several groups. As an example, for the two-stage
robust CRT, our proposed single stage robust CRT is first ap-
plied to each group and then applied across the groups second
time. Also, an algorithm on how to group a given set of moduli
was proposed. We finally presented some simulations to verify
our proposed theory.
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