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Signal Constellations for Quasi-Orthogonal
Space–Time Block Codes With Full Diversity
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Abstract—Space–time block codes (STBCs) from orthogonal
designs proposed by Alamouti, and Tarokh–Jafarkhani–Calder-
bank have attracted considerable attention lately due to their
fast maximum-likelihood (ML) decoding and full diversity.
However, the maximum symbol transmission rate of an STBC
from complex orthogonal designs for complex signals is only
3 4 for three and four transmit antennas, and it is difficult to
construct complex orthogonal designs with rate higher than 1 2

for more than four transmit antennas. Recently, Jafarkhani,
Tirkkonen–Boariu–Hottinen, and Papadias–Foschini proposed
STBCs from quasi-orthogonal designs, where the orthogonality
is relaxed to provide higher symbol transmission rates. With
the quasi-orthogonal structure, the quasi-orthogonal STBCs still
have a fast ML decoding, but do not have the full diversity. The
performance of these codes is better than that of the codes from
orthogonal designs at low signal-to-noise ratio (SNR), but worse at
high SNR. This is due to the fact that the slope of the performance
curve depends on the diversity. It is desired to have the quasi-or-
thogonal STBCs with full diversity to ensure good performance at
high SNR. In this paper, we achieve this goal by properly choosing
the signal constellations. Specifically, we propose that half of the
symbols in a quasi-orthogonal design are chosen from a signal
constellation set and the other half of them are chosen from a
rotated constellation . The resulting STBCs can guarantee
both full diversity and fast ML decoding. Moreover, we obtain the
optimum selections of the rotation angles for some commonly
used signal constellations. Simulation results show that the pro-
posed codes outperform the codes from orthogonal designs at both
low and high SNRs.

Index Terms—Diversity, multiple antennas, orthogonal designs,
quasi-orthogonal designs, space–time block codes (STBC), wireless
communications.

I. INTRODUCTION

T ELATAR [1] and Foschini and Gans [2] have recently
shown that there is a huge potential capacity gain

of multiple-antenna communication systems compared to
single-antenna communication systems. They showed that the
capacity of a multiple-antenna system grows at least linearly
with the number of transmit antennas, provided that the number

Manuscript received January 25, 2002; revised January 14, 2003. This work
was supported in part by the Air Force Office of Scientific Research (AFOSR)
under Grant F49620-02-1-0157, and the National Science Foundation under
Grants MIP-9703377, CCR-0097240, and CCR-0325180. The material in this
paper was presented in part at the IEEE Global Telecommunications Confer-
ence, Taipei, Taiwan, R.O.C., December 2002.

W. Su was with the Department of Electrical and Computer Engineering, Uni-
versity of Delaware, Newark, DE 19716 USA. He is now with the Department
of Electrical and Computer Engineering, University of Maryland, College Park,
MD 20742 USA (e-mail: weifeng@eng.umd.edu).

X.-G. Xia is with the Department of Electrical and Computer Engineering,
University of Delaware, Newark, DE 19716 USA (e-mail: xxia@ee.udel.edu).

Communicated by D. N. C. Tse, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2004.834740

of receive antennas is greater than or equal to the number of
transmit antennas. To approach the potential huge capacity
of the multiple-antenna systems, new codes and modulation
signals, which are called space–time codes or space–time
signals, have attracted considerable attention lately, see, for
example, [3]–[31]. The fundamental performance criteria of
space–time codes were derived by Guey, Fitz, Bell, and Kuo
[3], and Tarokh, Seshadri, and Calderbank [4]. To achieve the
maximum diversity, the difference matrix between any two
distinct codewords should be of full rank. Note that, since
space–time codes are matrices, even for a small block size of
codewords and a reasonable rate, the size of a codebook can
be quite large and the maximum-likelihood (ML) decoding
may have a considerably high complexity. Therefore, a “good”
space–time code should possess two properties: i) full diversity;
and ii) fast ML decoding.

One attractive approach of space–time code design is to con-
struct space–time block codes (STBCs) from orthogonal de-
signs as proposed by Alamouti [5] and Tarokh, Jafarkhani, and
Calderbank [6]. These codes achieve full diversity and have fast
ML decoding at the receiver. The transmitted symbols can be
decoded separately, not jointly. Thus, the decoding complexity
increases linearly, not exponentially, with the code size. How-
ever, the maximum symbol transmission rate of an STBC from
orthogonal designs1 is only for three and four transmit an-
tennas [19] without linear processing and [25] with linear pro-
cessing (more general) and for or transmit
antennas [21] without linear processing, and it is difficult to con-
struct orthogonal designs with rate higher than for more
than four transmit antennas [6], [19]–[23].

Recently, Jafarkhani [13], Tirkkonen, Boariu, and Hottinen
[16], and Papadias and Foschini [17] proposed STBCs from
quasi-orthogonal designs, where the orthogonality is relaxed to
provide higher symbol transmission rate. With the quasi-orthog-
onal structure, the ML decoding at the receiver can be done by
searching pairs of symbols, similar to the codes from orthogonal
designs where the ML decoding can be done by searching single
symbols. However, these codes do not achieve the full diversity.
The performance of these codes is better than that of the codes
from orthogonal designs at low signal-to-noise ratio (SNR), but
worse at high SNR. This is due to the fact that the slope of the
performance curve depends on the diversity order.

It is desired to have the STBCs from quasi-orthogonal designs
with full diversity to ensure good performance at high SNR.
In this paper, based on the quasi-orthogonal code structures in
the Jafarkhani scheme, the Papadias–Foschini scheme, and the

1For simplicity, orthogonal designs stand for complex orthogonal designs
throughout the paper.
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Tirkkonen–Boariu–Hottinen scheme (TBH scheme for short),
we introduce a new modulation scheme by properly choosing
the signal constellations. Specifically, we propose that half of
the symbols in a quasi-orthogonal design are chosen from a
signal constellation set and the other half of them are chosen
from a rotated constellation . The resulting STBCs can
guarantee both full diversity and fast ML decoding. In this paper,
we also obtain the optimum selections of the rotation angles
for some commonly used signal constellations. The decoding
complexity and symbol transmission rate of the new scheme are
the same as those of the Jafarkhani scheme or the Papadias–Fos-
chini scheme or the TBH scheme. Simulation results show that
the new scheme outperforms the codes from orthogonal designs
at both low and high SNRs.

This paper is organized as follows. In Section II, we specify
the channel model and briefly review the design criteria for
space–time codes. In Section III, we briefly review the existing
STBCs from orthogonal and quasi-orthogonal designs. In
Section IV, based on the Jafarkhani scheme, the Papadias–Fos-
chini scheme, and the TBH scheme, we propose the new
modulation scheme by properly choosing the signal constel-
lations. We systematically investigate the signal constellations
and determine the optimum rotation angles in Section V. In
Section VI, we calculate the diversity product (or coding gain or
coding advantage or product distance or minimum determinant)
of the quasi-orthogonal STBCs with full diversity for different
signal constellations, and provide some simulation results for
systems with four and eight transmit antennas. In Section VII,
we further discuss the proposed scheme, and propose a more
general modulation scheme with full diversity. Finally, we
conclude this paper with some comments in Section VIII.

II. CHANNEL MODEL AND DESIGN CRITERIA FOR

SPACE–TIME CODES

We consider a wireless communication system with
transmit antennas and receive antennas. The system can be
modeled as

(1)

where is the transmitted signal matrix
of size whose entry is the signal transmitted at an-
tenna at time ; is the channel coefficient matrix
of size whose entry is the channel coefficient from
transmit antenna to receive antenna ;
is the received signal matrix of size whose entry
is the signal received at antenna at time ; and
is the noise matrix of size . The noise samples and the
entries of are independent samples of a zero-mean complex
Gaussian random variable with variance . The fading channel
is quasi-static in the sense that the channel coefficients do not
change during one codeword transmission, and change indepen-
dently from one codeword transmission to the next. Finally, we
normalize the transmitted signal matrix obeying the energy
constraint

where is the Frobenius norm2 of and stands for the
expectation. Then, the factor in (1) ensures that is the
SNR at each receive antenna, and independent of .

If perfect channel state information is available at the re-
ceiver, then the ML decoding is to minimize the decision metric

for detecting the transmitted codeword.
Note that, in general, the number of matrices needed in
a codebook is large. If the rate of a system is bits per channel
use, the number of matrices is . For the quasi-static and
flat Rayleigh-fading channels, the pairwise error probability is
upper-bounded as ([3], [4])

(2)

where , and are the nonzero
eigenvalues of . Here, the superscript
stands for the complex conjugate and transpose of a matrix. The
upper bound in (2) leads to two design criteria for space–time
codes ([3], [4]): i) Rank Criterion or Diversity Criterion: the
minimum rank of the difference matrix over all pairs
of distinct codewords and should be as large as possible;
and ii) Product Criterion: the minimum value of the product

over all pairs of distinct codewords and should
also be as large as possible.

The diversity criterion is the more important one of the two
since it determines the slope of the performance curve. In order
to achieve the maximum diversity, the difference matrix
has to be full rank for any pair of distinct codewords and

. The product criterion is of secondary importance and should
be optimized if the full diversity is achieved. If

is of full rank, then the product is equal to the
determinant of . In this case, which implies

, a helpful quantity called diversity product [10], [12]
is given by

(3)

The factor3 guarantees that , since

When all codewords are square matrices, i.e., , the diver-
sity product can be simplified as

(4)

2The Frobenius norm of C satisfies

kCk = tr(C C) = tr(CC ) = jc j :

3The normalization factor is needed here because the energy constraint
is EkCk = nT , while the normalization factor 1=2 was used in [10], [12]
because all codewords considered there are n � n unitary matrices, i.e., the
energy constraint is EkCk = n.
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Substituting (4) into (2), the pairwise error probability is upper-
bounded as

III. STBCS FROM ORTHOGONAL OR QUASI-ORTHOGONAL

DESIGNS

In this section, we briefly review the existing STBCs from
orthogonal or quasi-orthogonal designs. For more details, we
refer the reader to ([5], [6], [13], [16], [17], [19], [21]–[23], [30],
[31], the references therein).

A. STBCs From Orthogonal Designs

An orthogonal design in complex variables is
a matrix such that: i) the entries of
are complex linear combinations of ;
and ii)

(5)

where is the identity matrix.4 The rate of
is defined as .

The orthogonal design of size
can be used to construct STBCs for transmit antennas.
Specifically, for any , , let denote a signal
constellation with elements and average energy .
Then, for any information sequence of
bits, it is mapped to constellation symbols

. Replacing everywhere in
by , respectively, we have the

matrix . Finally, the STBC to be transmitted is

The factor ensures that the code obeys the energy con-
straint, i.e., . The symbol transmission rate of this
code is defined as , which means that there are informa-
tion symbols transmitted in each codeword with time delay .

For any pair of distinct codewords

and

the difference matrix is ,
and denoted as for simplicity. From (5), we have

(6)

It implies that STBCs from orthogonal designs guarantee full
diversity according to the rank criterion. Moreover, by (3), the
diversity product is

(7)

4For convenience, in what follows we use the orthogonality (5) while the more
general orthogonality G G = jx j D + jx j D + � � � + jx j D also
applies [6] where D ; . . . ; D are k constant diagonal matrices with positive
diagonal elements.

where are the minimum Euclidean distances of
the signal constellations , respectively. If all of

are -PSK, then the diversity product is .
The first STBC from orthogonal design was proposed by

Alamouti [5] for two transmit antennas. It is due to a
orthogonal design of rate

(8)

For three and four transmit antennas, there are codes of rate
[9], [14], [15]:

(9)

(10)

For transmit antennas, there are several realizations of
orthogonal designs of square size with rate from dif-
ferent approaches [32], [33], [14], [15], [35]. All of these real-
izations are equivalent. An intuitive interpretation of these real-
izations was given in [19] as follows. Let , and

(11)

for . For some number of transmit antennas which
is not a power of , orthogonal designs can be obtained from
(11) by truncating some columns. For orthogonal designs of
nonsquare size, Tarokh, Jafarkhani, and Calderbank in [6] pro-
vided a design method with rate for any number of transmit
antennas. Recently, systematic design methods were indepen-
dently proposed in [21]–[23] to generate orthogonal designs of
rates for or transmit antennas. The designs
in [21], [22] do not have closed forms and the designs in [23]
have closed forms and, furthermore, in [23] a design with half
delays of the ones in [21], [22] is proposed when the number of
transmit antennas is a multiple of 4, such as 4, 8, 12, etc.

B. STBCs From Quasi-Orthogonal Designs

To improve the symbol transmission rate, one natural way is
to relax the requirement of the orthogonality in STBCs. In [13],
Jafarkhani proposed STBCs from quasi-orthogonal designs. A
similar scheme was also proposed by Papadias–Foschini in [17].

For four transmit antennas, a quasi-orthogonal STBC with
symbol transmission rate was constructed from the Alamouti
scheme as follows [13]:

(12)
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where

(13)

and and are the complex conjugate, not transpose, of and
, respectively. One can check that

(14)

where

and

We can see that the ML decision metric of this code can be
written as the sum of two terms , where

depends only on and , and depends only on
and . Thus, the minimization can be done separately on
these two terms, i.e., symbol pairs and can be
decoded separately, which leads to fast ML decoding. However,
according to (14), the minimum rank of the difference matrix
between two distinct codewords is , which means that the
code (12) does not have full diversity. Note that there are other
code structures5 which can provide behaviors similar to those of
(12) and they do not have the full diversity like (12). For eight
transmit antennas, a code with rate was also constructed,
compared with the orthogonal STBCs where the rate is only

.
In [16], Tirkkonen, Boariu, and Hottinen proposed a similar

scheme (TBH scheme for short) for quasi-orthogonal STBCs.
For four transmit antennas, the TBH scheme is

(15)

where and are the same as those in (13). Similarly

(16)

where

and

The behaviors of (15) are similar to those of (12). For eight
transmit antennas, a code with rate was also constructed [16].
However, for eight transmitted symbols , this

5Note that, with the structure

A B

�B A

mentioned in [13], the transmitted symbols s ; s ; s and s cannot be sepa-
rated into two groups at the receiver for the fast ML decoding.

code can separate them only into two groups:
and . Therefore, one cannot decode them pairs
by pairs.

IV. QUASI-ORTHOGONAL STBCS WITH FULL DIVERSITY

The performance of the quasi-orthogonal STBCs code is
better than that of the codes from orthogonal designs at low
SNR, but worse at high SNR. As mentioned in [13], [16], this is
due to the fact that the slope of the performance curve depends
on the diversity. In fact, in the Jafarkhani scheme [13], the
Papadias–Foschini scheme [17], and the TBH scheme [16], the
signal constellations are chosen arbitrarily. With such a way
to select the information symbols, the resulting STBCs cannot
guarantee full diversity. The main idea of our new scheme is
to choose the signal constellations properly to ensure that the
resulting codes achieve full diversity. In the following, we focus
on the TBH scheme. The discussion for the Jafarkhani scheme
and the Papadias–Foschini scheme is similar.

Assume that is a orthogonal de-
sign in complex variables . A quasi-orthogonal
design of size in complex vari-
ables is defined as

(17)

where

and

Since both and are orthogonal designs, we have

(18)

where

and

The last equality in (18) follows from

and

Now we apply the quasi-orthogonal design
to construct STBCs with full di-

versity for transmit antennas. For each , let
denote a signal constellation with average energy , and

denote the signal constellation generated by rotating
with an angle of , i.e., , denoted as
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. Furthermore, let denote the number of elements
in . For any information sequence of bits,
it chooses symbols .
Replacing everywhere in
by , respectively, we have the matrix

. Finally, the STBC to be transmitted is

(19)

The factor ensures that the transmitted signal in (19) obeys
the energy constraint. We will specify later. The rate of this
code is bits per channel use. According to
(18), the ML decoding of (19) can be done separately on each
pair of symbols and .

For any pair of distinct transmitted signals
and , the

difference matrix is ,
denoted as for simplicity. Then, from (18), we have

(20)

where

and

The determinant of (20) can be calculated as

(21)

Note that, with the Jafarkhani scheme or the Papadias–Foschini
scheme or the TBH scheme, i.e., for all , the determinant
in (21) can be zero, for example, when ,
which means that the space–time signals do not have the full
diversity. Now we can properly choose the rotation angle to
ensure that the determinant in (21) is nonzero.

For example, let us consider a simple case. If all of ,
, are binary phase-shift keying (BPSK), i.e., ,

then we choose the rotation angle as , i.e., . The re-
sulting signal constellation . There-
fore, for any two symbols and in , the difference

belongs to set ; and for any two symbols
and in , the difference belongs to set

. It is easy to check that in (20) is zero. Thus,
the determinant of is nonzero, which means that
the space–time signals achieve full diversity.

For other signal constellations, we systematically and opti-
mally investigate the rotation angle in the next section. Further-
more, it is desired to have the diversity product as large as pos-
sible if full diversity has been achieved. According to (3) and
(21), the diversity product can be calculated as

(22)

For convenience, let us define the minimum -distance be-
tween two signal constellations and as follows:

(23)
where and are understood as , and

. Obviously, we have

(24)

where and are the minimum Euclidean dis-
tances of the signal constellations and , respectively. Thus,
we have

(25)

We now go back to (22). The diversity product can be rewritten
as

(26)

We observe that the diversity product is determined by the min-
imum -distance of each pair of signal constellations and

, and the minimum -distance is upper-bounded by the
minimum Euclidean distance of each signal constellation.

In the example we discussed before, where all of signal con-
stellations are BPSK and the rotation angle is chosen as ,
the minimum -distance between and is equal to
the minimum Euclidean distance of . However, for a gen-
eral signal constellation, is not always achieved by

. We will show later that if is 8-PSK, then the
minimum -distance cannot be greater than

, which is strictly less than .
There are two problems remaining. First, for a fixed-signal

constellation , how to choose the rotation angle such that
the minimum -distance between and is as large as pos-
sible? Second, how to design the signal constellation such
that the minimum -distance between and is as large
as possible? We answer these two questions completely in the
next section. As for the first question, for any fixed-signal con-
stellation , we can always find the optimum rotation angle
by computer search. However, we will give some analytic re-
sults on the optimum rotation angle in the next section.

V. MINIMUM -DISTANCE AND OPTIMUM ROTATION ANGLE

In this section, we systematically investigate the minimum
-distance between and for some commonly used signal

constellations , and determine the optimum rotation angle
accordingly. For convenience, we will simplify the notation of
the minimum -distance as or

, and simplify the notation of the minimum Euclidean
distance as .

From (25), we know that the minimum -distance between
and is upper-bounded by the minimum Euclidean distance
of , i.e.,

(27)
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For some signal constellation , we can properly choose the ro-
tation angle such that the equality holds in (27); and for some
signal constellations, the equality in (27) can never be achieved.

At first, let us derive a necessary condition for the equality
in (27) to hold. For a fixed-signal constellation , assume
and are two signals in such that the Euclidean distance
between and is the minimum Euclidean distance of ,
i.e., . From (23), we have

Thus, we can conclude that the minimum -distance between
and cannot be greater than , i.e.,

(28)

A necessary condition for the equality in (27) to hold is
, i.e., or . If

the signal constellation is -PSK, then the effective rotation
angle is in the interval from the symmetry of
signals in -PSK. According to (28), we have

Thus, for -PSK with , the minimum -distance is strictly
less than .

Since the minimum -distance is
upper-bounded by the minimum Euclidean distance of ,
it is desired to have the signal constellation with as
large as possible and meanwhile the minimum -distance
between and achieving . In the following, we
propose two classes of signal constellations which possess the
desired properties.

We first propose a class of quadrature amplitude modulation
(QAM) 6 constellations.

Theorem 1: Assume that be a signal constellation drawn
from a square lattice, where the side length of the squares in
the lattice is equal to . Then, the minimum -distance
between and is , i.e.,

In Theorem 1, the signal constellation can be any arbitrary
subset of the square lattice. The only requirement is that the side
length of the squares in the lattice is equal to . A proof
of Theorem 1 appears in Appendix A. Therefore, for any signal
constellation drawn from a square lattice, is an
optimum rotation angle. Note that, the optimum rotation angle
here is not unique. For example, for the constellation BPSK
we discussed in the previous section, is an optimum
rotation angle. On the other hand, BPSK can be viewed as a
constellation drawn from a square lattice, so is also
an optimum rotation angle. Actually, BPSK can also be viewed

6Throughout the paper, QAM stands for a constellation drawn from a square
lattice, where the side length of the squares in the lattice is equal to the minimum
Euclidean distance of the constellation.

Fig. 1. Four-point signal constellations: (a) 4-QAM; (b) 4-TRI.

as a constellation drawn from a lattice of equilateral triangles,
thus, is another optimum rotation angle as stated in the
following theorem.

Theorem 2: Assume that is a signal constellation drawn
from a lattice of equilateral triangles, where the side length of
the equilateral triangles is equal to . Then, the minimum

-distance between and is , i.e.,

A proof of Theorem 2 can be found in Appendix B. The signal
constellation could be any subset of the lattice of equilateral
triangles with the requirement that the side length of the equilat-
eral triangles is equal to . For such a signal constellation

, is an optimum rotation angle.
Note that for any number of points in two dimensions, the

best constellations known by now, from a minimum Euclidean
distance point of view, are drawn from the lattices of equilateral
triangles [37]–[40]. Moreover, Wayner in [38] proved that for a
large number of points, the optimum constellation tends toward
a lattice of equilateral triangles.

In the remainder of this section, we calculate the minimum
-distance explicitly for different 4-, 8-, and 16-point signal

constellations. The calculation for signal constellations of other
sizes is similar. We also consider the subject of bit labeling. For
convenience, for a signal constellation of points drawn from a
square lattice, we denote it as -QAM; and for a signal constel-
lation of points drawn from a lattice of equilateral triangles,
we denote it as -TRI.

Four–Point Constellations: If the signal constellation
is chosen as 4-QAM in Fig. 1(a), then according to Theorem 1,

is an optimum rotation angle, and the minimum -distance
achieves the minimum Euclidean distance. Moreover, with Gray
labeling, the difference between the nearest two signals is only
1 bit. The minimum Euclidean distance of 4-TRI in Fig. 1(b) is
the same as that of 4-QAM in Fig. 1(a). According to Theorem
2, is an optimum rotation angle for 4-TRI. Because of the
triangular nature of 4-TRI, it is impossible to do bit labeling such
that the difference between the nearest two signals is always
1 bit [37]. It is not difficult to see that the average bit errors
between the nearest two signals in 4-TRI are 1.2 bits. Thus,
4-QAM is the right choice for four-point constellations.
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Fig. 2. Eight-point signal constellations: (a) 8-PSK; (b) APSK; (c) 8-QAM; (d) 8-TRI.

Eight-Point Constellations: If the signal constellation
is chosen as 8-PSK in Fig. 2(a), then from (28) we know that
the minimum -distance is strictly less than . By com-
puter search, the best rotation angle is and the minimum

-distance is only . The advantage of 8-PSK is that
with Gray labeling, the difference between the nearest two
signals is 1 bit. For signal constellation 8-APSK in Fig. 2(b),
by computer search, the best rotation angle is , and the
minimum -distance is only which is far away from
the minimum Euclidean distance . Moreover, with bit
labeling, the average bit errors between the nearest two signals
are 1.33 bits. For signal constellation 8-QAM in Fig. 2(c),
according to Theorem 1, is an optimum rotation angle,
and the minimum -distance achieves the minimum Euclidean
distance. With bit labeling, the average bit errors between the
nearest two signals are 1.2 bits.

For eight-point constellations, 8-TRI in Fig. 2(d) is the best
known constellation from a minimum Euclidean distance point
of view. If the signal constellation is chosen as 8-TRI, then ac-
cording to Theorem 2, is an optimum rotation angle. How-
ever, with bit labeling, the average bit errors between the nearest
two signals are 1.29 bits. The overall bit-error rate (BER) per-
formance of 8-TRI is worse than that of 8-QAM.

16–Point Constellations: If the signal constellation is
chosen as 16-QAM in Fig. 3(a), then according to Theorem 1,

is an optimum rotation angle, and the minimum -distance
achieves the minimum Euclidean distance. Moreover, with Gray
labeling, the difference between the nearest two signals is only
1 bit. For 16–point constellations, 16-TRI in Fig. 3(b) is the
best known constellation from a minimum Euclidean distance
point of view, which is well known as Voronoi code [38]–[40].

According to Theorem 2, is an optimum rotation angle for
16-TRI. However, the average bit errors between the nearest two
signals in 16-TRI are 1.33 bits [37]. Simulation results in the
next section show that the performance of 16-TRI is worse than
that of 16-QAM. Thus, 16-QAM is the right choice for 16–point
constellations.

VI. DIVERSITY PRODUCT AND SIMULATION RESULTS

In this section, we calculate the diversity product (coding
gain) for the quasi-orthogonal STBCs with full diversity for
different signal constellations, and provide some simulation re-
sults for systems with four and eight transmit antennas, respec-
tively. In all simulations, the perfect channel state information
is known at the receiver. The channel coefficients are constant
during one block of code transmission, and independent from
block to block. We compare performances of different schemes
in terms of BER.

A. For Four Transmit Antennas

For four transmit antennas, the quasi-orthogonal STBC with
full diversity is given by

(29)

where and for some signal constel-
lation , and the rotation angle is determined by the signal
constellation , which is specified in the previous two sections.
Note that, the code in (29) is the same as the TBH scheme (15),
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Fig. 3. 16–point signal constellations: (a) 16-QAM (b) 16-TRI.

Fig. 4. Performances of the new scheme (line with �) and the TBH scheme (line with 4).

but the signal constellations here are different from those in the
TBH scheme.

First, we compared the new scheme with the TBH scheme
(15) in Fig. 4 with a transmission rate of 2 bits per channel use.
The signal constellation in both schemes was 4-QAM. The rota-
tion angle was chosen as in the new scheme. Clearly, the
performance of the new scheme shows a better diversity order
than that of the TBH scheme (15), and the new scheme outper-
forms the TBH scheme significantly at high SNR. Note that the
decoding complexity and the transmission rate of both schemes
are the same. Thus, compared with the TBH scheme (15), the

new scheme with full diversity gets better performance without
extra cost.

We also compared the new scheme with the orthogonal de-
sign (10) in Fig. 5 with a transmission rate of 3 bits per channel
use. In the new scheme, the signal constellation was 8-QAM,
and the rotation angle was . We simulated the orthogonal
design (10) with both 16-QAM and 16-TRI. We observe that
the performance of the TBH scheme is better than that of the
orthogonal design at low SNR, but worse at high SNR. We can
also see that the new scheme with full diversity further outper-
forms the orthogonal design at both low and high SNRs. This
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Fig. 5. Performances of the new scheme (line with �), the TBH scheme (line with 4), and the orthogonal design (line with � for 16-QAM and dash line for
16-TRI).

is due to the fact that, the diversity product of the new scheme
with 8-QAM is larger than that of the orthogonal design with
16-QAM or 16-TRI.

With different signal constellations, we compared the diver-
sity product between the new scheme and the orthogonal design
(10) in Table I. With the same transmission rate, the diversity
product of the new scheme is always larger than that of the or-
thogonal design.

B. For Eight Transmit Antennas

For eight transmit antennas, the quasi-orthogonal STBC with
full diversity is given by

(30)

where and for some signal
constellation , and the rotation angle is determined by the
signal constellation , which is specified in the previous sec-
tions. The factor in (30) ensures that the quasi-orthog-
onal STBC obeys the energy constraint, i.e., . If

we do not rotate some of the signal constellations, i.e., ,
then the performance of the code (30) is the same as that of the
Jafarkhani scheme [13]. Here, the new scheme takes the advan-
tage of rotating some of the signal constellations to achieve the
full diversity.

We compared the new scheme with the Jafarkhani scheme
[13], and also with the orthogonal design (11). Fig. 6 provides
simulation results with transmission rate of 1.5 bits per channel
use. The signal constellation was 4-QAM, and the rotation angle

was in the new scheme. We simulated the orthogonal
design (11) with both 8-QAM and 8-TRI. We observe that the
performance of the Jafarkhani scheme with 4-QAM is better
than that of the orthogonal design with 8-QAM or 8-TRI., and
the performance of the new scheme with full diversity is better
than that of the Jafarkhani scheme.

With different signal constellations, we calculated the diver-
sity product of the new scheme in Table II, and compared it
with that of the orthogonal design (11). We observe that with the
same transmission rate, the diversity product of the new scheme
is always larger than that of the orthogonal design.

C. For 16 Transmit Antennas

For 16 transmit antennas, the quasi-orthogonal STBC with
full diversity is given by

(31)
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Fig. 6. Performances of the new scheme (line with �), the Jafarkhani scheme (line with 4), and the orthogonal design (line with � for 8-QAM and dash line for
8-TRI).

where

and

where and for some
signal constellation , and the rotation angle is determined
by the signal constellation , which is specified in the previous
sections. The factor in (30) ensures that the quasi-orthog-
onal STBC obeys the energy constraint, i.e., .
The symbol transmission rate of (31) is . We list the diver-
sity product for the new scheme in Table III for some signal
constellations.

VII. A GENERAL MODULATION SCHEME WITH

FULL DIVERSITY

In this section, we propose a more general modulation scheme
with full diversity. Recall that the ML decoding of the quasi-or-
thogonal STBCs can be done separately on each pair of symbols

and . The basic idea of the new scheme introduced in the
previous sections is to choose the signal constellations for
and for properly to ensure that the modulated signals
achieve the full diversity. Specifically, we set ,
and select signals and independently, i.e.,
all pairs are taken. As a result, the min-
imum -distance is upper-bounded by the minimum Euclidean
distance of . A natural question is: can we select the pair of
signals jointly in a four-dimensional (real) signal con-
stellation (or two-dimensional complex signal constellation) to
get larger minimum -distance? The answer is positive.

Let us generalize the definition of the minimum -distance at
first. Assume that

both and are complex

is an -point signal constellation in four dimensions with en-
ergy constraint
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TABLE I
SUMMARY OF DIVERSITY PRODUCT FOR ORTHOGONAL AND QUASI-ORTHOGONAL STBCS FOR FOUR TRANSMIT ANTENNAS

NOTE: “AVERAGE BIT ERRORS” STANDS FOR THE AVERAGE BIT ERRORS BETWEEN THE NEAREST TWO SIGNALS

IN THE SIGNAL CONSTELLATION WITH BIT LABELING

TABLE II
SUMMARY OF DIVERSITY PRODUCT FOR ORTHOGONAL AND QUASI-ORTHOGONAL STBCS FOR EIGHT TRANSMIT ANTENNAS.

NOTE: “AVERAGE BIT ERRORS” STANDS FOR THE AVERAGE BIT ERRORS BETWEEN THE NEAREST TWO SIGNALS

IN THE SIGNAL CONSTELLATION WITH BIT LABELING

The minimum -distance of the four-dimensional signal constel-
lation is defined as

(32)

where and . If we choose the
pair of signals and as , then, from (22) we
know that the diversity product is determined by the minimum

-distance in (32). The proposed scheme in the previous sections
is related to the case that the signal constellation is a tensor
product of two two-dimensional signal constellations and ,
i.e., . It is reasonable to expect that we may get
larger minimum -distance if we choose the pair of signals
and from a four-dimensional signal constellation . Note
that the decoding complexity of the general scheme is the same
as that of the proposed scheme in the previous sections.
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TABLE III
SUMMARY OF DIVERSITY PRODUCT FOR THE QUASI-ORTHOGONAL STBCS FOR

16 TRANSMIT ANTENNAS. NOTE: “AVERAGE BIT ERRORS” STANDS FOR THE

AVERAGE BIT ERRORS BETWEEN THE NEAREST TWO SIGNALS IN THE

SIGNAL CONSTELLATION WITH BIT LABELING

We present here an example for four-point signal constel-
lations. For convenience, we apply a unitary transform on the
four-dimensional signal constellation as follows:

(33)

Then, is also a four-dimensional
signal constellation with energy constraint

and the minimum -distance of is simplified as

(34)

Whenever is constructed

can then be determined via (33). Now we construct a four-point
signal constellation, i.e., , as follows (see Fig. 7):

where is specified as . The
minimum -distance of this constellation is

. Recall that the minimum -distance for four-point
constellation in previously proposed scheme is , in which the
constellation is a tensor product of two BPSK constellations.

From Proposition 3 in [26], we know that for a four-point
signal constellation in four dimensions, the minimum -distance
(34) is upper-bounded by . However, we prove
in Appendix C that this upper bound cannot be reached. We
conjecture that the signal constellation in Fig. 7 is optimum in
four dimensions from a minimum -distance point of view. Note
that the difference between the minimum -distance

and the upper bound is only . For signal
constellations with more than four points in four dimensions,
we do not know any other designs with the minimum -distance
greater than the scheme we proposed previously.

Fig. 7. An example of four-point constellation in four dimensions.

As a remark, using (33), the scheme proposed in the previous
sections can be thought of as

(35)

for any , where and belong to a single-
signal constellation , independently, and can be optimally
determined by using the theorems developed in the previous sec-
tions. By considering the two matrices in the right-hand
side of (35) as two unitary matrices, one might want to ask: is it
possible to replace these two unitary matrices by a general uni-
tary matrix as follows:

(36)

to obtain with larger diversity product?
The answer is NO. It is not hard to show that

by setting one of , . Since the upper bound
has been reached by the construction as shown in

Theorems 1 and 2, the following unitary matrix with the op-
timum rotation angle , as stated in Theorems 1 or 2:

is already optimum in terms of providing the optimum diversity
product from the construction in (36).

Another remark we want to make here is that, after we sub-
mitted this paper, we have come across reference [29]. In [29],
unitary transformations are used to construct diagonal
STBCs from independent symbols with square lattice (or QAM)
signals. We noticed that the transformation in (35) with the ro-
tation angle found in this paper for the square lattice
(or QAM) signal constellations is equivalent to the diag-
onal code in [27]–[29], which was obtained by a different ap-
proach based on the algebraic number fields. However, there is
no discussion in [29] dealing with signal constellations from the
lattice of equilateral triangles as we presented in Theorem 2, in
which the optimum rotation angle was given. More-
over, the goal of this paper is to design signal constellations
for quasi-orthogonal STBCs with full diversity. In the case of
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four 4 quasi-orthogonal STBC for systems with four transmit
antennas and the particular consideration of the tensor-product
symbol selection, it turns out that the proposed transformation
with the optimum rotation angle is equivalent to the diag-
onal code in [27]–[29]. However, in general cases, our designs
are essentially different from the codes in [27]–[29], as shown
in the example in Fig. 7. Some further work in this direction can
be found in [41].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed to design the signal constellations
properly to ensure that the resulting quasi-orthogonal STBCs
can guarantee to achieve the full diversity. We systematically in-
vestigated some commonly used signal constellations and deter-
mined accordingly the optimum rotation angles in terms of max-
imizing the diversity product (coding gain). Simulation results
showed that the proposed scheme outperforms the STBCs from
orthogonal designs at both low and high SNRs. Note that the de-
coding complexity and the transmission rate of the new scheme
are the same as those of the Jafarkhani scheme or the TBH
scheme. Therefore, compared with the previous two schemes,
the new scheme with full diversity obtains better performance
without extra cost. We also proposed a more general modulation
scheme with full diversity. However, the results for the general
scheme are far from complete. We had only one example of size

to stimulate future research.
We would like to point out that, after we submitted this paper,

we found that the idea of signal constellation rotations in quasi-
orthogonal STBCs was also shown independently in [42]–[44],
where, however, no optimality of the rotation angle for a general
signal constellation was shown. In [42], the optimality of the ro-
tation angle was discussed only for QPSK constellation. In [43],
the authors proposed to maximize the metric

, which is a suboptimal approach, while in our pro-
posed scheme, we considered the maximization of the diversity
product, i.e., maximizing the metric in
(34), which is an optimal approach from the viewpoint of max-
imizing the coding gain.

APPENDIX A
PROOF OF THEOREM 1

Assume is a signal constellation drawn from a square lat-
tice, where the side length of the squares in the lattice is equal to
the minimum Euclidean distance of , denoted as . Then,
any signal in the constellation can be represented as

(see Fig. 8), where and are inte-
gers. Thus, any signal in the rotated constellation can
be represented as , where
and are integers.

For any pair of signals and in , the difference
can be represented as

Fig. 8. Representation of the square lattice.

Therefore, for simplicity, we can assume

for some integers and . For the same reason, for any pair
of signals and in , we can assume the difference

for some integers and . Thus, we have

Since all of and are integers, so if one of
and is not zero, then

It follows that

which is the desired result, since is a upper bound of
. In the following, we will prove that one of
and is nonzero under the

constraint that , i.e., and cannot
be zero at the same time.

If both and are zeros, i.e.,

(37)

(38)
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then from (37), either both and are odd, or both and
are even. If both and are odd, denoted as
and , then substituting them into (37), we have

It follows that one of and is even. On the other hand, from
(38) we know that either both and are odd, or both and

are even. Thus, we conclude that both and are even,
denoted as and . Substituting them into (38),
we have , which contradicts the assumption
that both and are odd. So, both and must be even,
denoted as and

For the same reason, we can prove that both and must
be even, denoted as and . Substituting

and into (37) and (38), we
obtain

(39)

(40)

Repeating the preceding discussion, we can prove that all of
and are even. Let

and . Substituting them into (39) and (40), we have

We can continue this process again and again. Since all of
and are finite integers, so we conclude that some

of and must be zero.
If , then from (38), we have , i.e., .

Substituting and into (37), we have
. It follows that and , since both

and are integers. So all of and are zeros, which
contradicts .

If or or , similarly, we can prove that
all of and are zeros, which contradicts

.
Thus, we can conclude that one of and

is nonzero under the constraint that
. Thus we prove Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

Assume is a signal constellation drawn from a lattice of
equilateral triangles, where the side length of the equilateral tri-
angles in the lattice is equal to the minimum Euclidean distance
of , denoted as . Then, any signal in the constellation
can be represented as (see Fig. 9),
where and are integers. Thus, any signal in the rotated con-
stellation can be represented as

where and are integers.

Fig. 9. Representation of the lattice of equilateral triangles.

For any pair of signals and in , the difference
can be represented as

Therefore, for simplicity, we can assume

for some integers and . For the same reason, for any pair
of signals and in , we can assume the difference

for some integers
and . Thus, we have

For convenience, denote and
, then

Since all of and are integers, so if two of and
are nonzero, then .

It follows that
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which is the desired result, since is an upper bound of
. In the following, we will prove that two of

and are nonzero under the constraint that
, i.e., and cannot be zero at the

same time. The proof is divided into three steps.

Step 1: At first, we want to show that if two of
and are zeros, then .

If and , then and , i.e.,
; if and , then and

, i.e., ; if and , then
and , i.e., .

Step 2: In this step, we show that if , then one
of and must be zero.

Suppose that all of and are not zero. From the
assumption , we have

(41)

From the second equality in (41), we have

(42)

Therefore, either both and are odd, or both and are
even. If both and are odd, denoted as and

, then substituting them into (42), we have

So must be even. It follows that

must be even, which contradicts the fact that, from the first equa-
tion in (41), is odd since is odd.

From the preceding discussion, we know that both and
must be even, denoted as and . From the first
equation in (41) again, we have

(43)

Therefore, either both and are odd, or both and are
even. If both and are odd, denoted as and

, then substituting them into (43), we have

which is impossible. So both and must be even, denoted
as and .

By now we know that all of and are even. Substi-
tuting and into (41),
we obtain

(44)

where all of and are not zero. Repeating the above
discussion, we can prove that all of and are even.
Let and . Substituting
them into (44), we have

where all of and are not zero. So we can repeat this
process forever. This contradicts the fact that all of
and are finite integers.

Step 3: In this step, we further prove that if ,
then all of and are zeros.

If , from the result of Step 2, we know that one
of and must be zero. If , then according to
(41), we have . Therefore, either
or . If , then

which implies that and . If , then

It follow that , which also implies that and
, since both and are integers. We conclude that if
, then and , i.e., all of

and are zeros.
If or or , similarly, we can prove that

all of and are zeros.

From the above three steps, we know that at least two of
and are nonzero under the constraint that

. Thus, we prove Theorem 2.

APPENDIX C

Claim: For any four-point signal constellation in four dimen-
sions, the minimum -distance is strictly less than .

Proof: Assume is a four-point
signal constellation in four dimensions with energy constraint

(45)

According to (34), we have

Therefore,

(46)

(47)

(48)

where the last equality follows by
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Thus, we have

i.e., . If , then we know that the
equality holds in both (46) and (47). That the equality holds in
(46) means

(49)

That the equality holds in (47) means

(50)

From (49) and (50), we have

i.e., there are four points and in two dimensions
such that the Euclidean distance between any two points of them
is the same. This is impossible. Thus, we conclude that the min-
imum -distance is strictly less than .
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