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Abstract—Super-orthogonal space-time trellis codes recently
proposed in the literature are space-time trellis codes of full diver-
sity and high rates systematically constructed by concatenating
orthogonal space-time codes and multiple trellis coded modulation
(MTCM). However, the existing MTCM only has designs for
phase-shift keying (PSK) signals. In this paper, MTCM is ex-
tended from PSK signals to non-PSK signals in some special cases.
With obtained constellations of MTCM, several super-orthogonal
space-time trellis codes for two transmit antennas are presented.
The 2- and 4-state codes have a simple mathematical expression
for the coding gain distance (CGD), or diversity products. At rates
2.5, 3, 3.5, 4 bits/s/Hz, the newly proposed codes outperform the
existing ones.

Index Terms—Alamouti’s scheme, coding gain distance (CGD),
lattices, multiple trellis coded modulation (MTCM), orthogonal de-
sign, space-time trellis codes.

1. INTRODUCTION

PACE-TIME coding techniques are widely discussed to
S combat fading in wireless communication links, [1]-[3],
etc. However, due to the intractabilities of the design criteria for
space-time codes, systematic designs of good properties are of
particular interest. Recently, [4]-[6], and proposed a systematic
design of space-time trellis codes. In [4]-[6], it is shown that
super-orthogonal space-time trellis codes can be obtained from
the existing multiple trellis coded modulations (MTCM) if
orthogonal designs are used as the modulators. Furthermore,
[4]-[6] introduced the concepts of constellation expansion and
set-partitioning [7] into space-time coding to achieve high rates
and quality performance. In [8] and [4], the authors proposed
the equal eigenvalue criterion to tackle the design problem.

On the other hand, the existing MTCM [9] only has designs
from phase-shift keying (PSK) signals and PSK signals are in-
efficient at high rates. In this paper, we first present MTCM
designs from spectrally efficient constellations (non-PSK con-
stellations). Basically, these MTCM constellations are obtained
from the partitioning of lattices as in [10], [11]. However, a new
method is adopted to increase the minimum intracoset squared
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distance. Based on the new MTCM designs, several super-or-
thogonal space-time trellis codes are then proposed. The resul-
tant codes show significant gains at high rates. In addition, for
error events of arbitrary length, our 2- and 4-state codes are the
optimal in the sense of the equal eigenvalue criterion.

In what follows, the following notations are adopted. C7,
CH denote the transpose of matrix C, the complex conjugate
transpose of matrix C, respectively; det{C}, tr{C} denote the
determinant of matrix C, the trace of matrix C, respectively.
R{c} and c* denote the real part and the complex conjugate of
a complex number ¢, respectively. E{c} denotes the expectation
of random variable c. N, Z, and R denote natural numbers, in-
teger numbers, and real numbers, respectively. I,, represents an
n X n identity matrix.

II. SIGNAL AND SYSTEM MODEL

Consider a wireless communication system with 2 transmit
and N, receive antennas over a flat fading channel. Let h.,, ,, be
the fading coefficient of the channel between the mth transmit
and the nth receive antenna. It is assumed that h,, ,, is quasi-
static, i.e., constant over a frame of length L, and independent
from one frame to another. As in [3], it is modeled as indepen-
dent complex Gaussian variable with zero mean and unit vari-
ance, i.e., A, ~ CN(0,1). In the kth trellis transition, the
codeword matrix label is

C(k) _ [021«4-1,1

C2k+1,2 (1
Cok+42,1

C2k+42,2

where c; ,, is the signal transmitted on the nth antenna at time
t. It is assumed that

=FE,, i=1,2 )

which ensures normalized energy per channel use. It is assumed
that &/ = 1 in the paper. Therefore, the L, x 2 transmitted signal
matrix in a frame is

c=[cT(0) cT(1) c"(v)]" 3)

where NV, is the total number of the trellis transitions in a frame
and N; = L;/2, with an assumption of even L;.
At the receiver side

X=CH+W. “)

In (4), X is the received signal L; x N, matrix composed
by the received signal x;, at the mth antenna at time
t; H = (hmmn)2xn, is the channel coefficient matrix;
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Fig. 1.

(a) A 4-state, 2.5 bits/s/Hz code if 8-PSK signals are used. It also represents rate 2.5, 3, and 3.5 bits/s/Hz codes if the three constellations in Table I and

the transform J in (9) are used. (b) Set partitioning of 8-PSK signals in multiplicity two MTCM. The two integers represent a vector from the concatenated PSK
constellations, i.e., pq refers to (e7(27P/8) i(27a/8)) _(c) Typical paths different at three trellis transitions.

W = (W¢n)L,xN,, Where wy,, is the independent com-
plex Gaussian noise at the nth receive antenna at time ¢ and
wy,, ~ CN(0,0?%). Therefore, the signal-to-noise ratio (SNR)
at each receive antenna is 2E, /o2,

In multiple antenna systems, there are the rank criterion and
the coding gain distance (CGD) criterion as guidelines for the
design of the space-time codes. Given two codewords C; and
Cy/, the rank criterion requires the difference matrix B = C; —
C be full rank since the rank of B decides the slope of the
pairwise error probability (PEP) curve at high SNRs. Also the
PEP of full rank codes decreases as the increase of the CGD
of C and D, defined as \/det{B” B}, [3], [5]. The minimum
CGD, &, of the code is the overall minimum among all possible
codeword pairs.

In [4]-[6], it is shown that the classical set partitioning in
MTCM [9] can be used in the design of space-time trellis codes
if Alamouti’s scheme [12]

G(up,uz) 2 { b “2}

* *
—Us U

serves as the modulator in the system. That is, the codeword
matrix label at trellis transition k is

C(k) € G = {G(u1,u2)|u1, us are PSK signals} .
Under such a configuration, given two codeword matrix labels

at a trellis transition, C = G(u1,uz2) and D = G(v1,v2), the
CGD is

\/det {(C=D)#(C ~D)} = fuy —va [ + fuz — val?.

This means that the CGD for each trellis transition in space-time
trellis codes is equivalent to the Euclidean distance for MTCM.
In other words, the partition criterion of G is equivalent to that
of the two concatenated PSK constellations. Thus, the set-par-
titioning in MTCM [9] can be applied here. For the set-parti-
tioning of 8-PSK signals in MTCM, shown in Fig. 1(b), the cor-
responding set-partitioning of G is

gm" = {G(’U,,’U)KUI /U) € Smn}7 g = U gmn (5)

where S,,,, is a subconstellation in multiplicity two MTCM.
Let S = |, , Smn. Actually, S is a Cartesian product of two
8-PSK constellations. The average power of the constellation S
is defined as

2.

(u1,u2)€S

A 1

To achieve high rates while introducing redundancy, signal
constellation G is expanded to {G|JG'(JG?---} in [4]-[6].
Each set G’ is a transformed orthogonal space-time constella-
tion, defined as

p (lua|* + Jua ?) . (©6)

where U, Us, - - - are unitary matrices. Space-time trellis codes
can be designed based on the super-orthogonal space-time con-
stellation {G|JG*|JG?---}. This is analogous to the constel-
lation expansion concept in the classical trellis coded modula-
tions (TCM). Within each transformed space-time constellation
G', the set-partitioning is correspondent with that of PSK con-
stellations in MTCM, as G does. For example, in Fig. 1(a)

Gl = {G(u,v)Us|(u,v) € Spun} ,

where U; = diag[l ¢/®7/1)] and L = 8 is the constellation
size of PSK signals in use. The performance of codes in Fig. 1
depends on the structure of G and its transformed constellation
G'.

Using the above constellation expansion and set-partitioning,
anumber of super-orthogonal space-time trellis codes were pro-
posed in [4]-[6]. Although for codeword matrix labels at each
trellis transition C(k) € G°, and D(k) € G', i # [, the dif-
ference matrix B(k) = C(k) — D(k) might not be full rank,
the difference matrix of two paths diverging from a state and re-
merging to another state can be designed to be full rank.

Let us see the code of 4-state, 2.5 bits/s/Hz in Fig. 1. Fig. 1(b)
shows the partitioning of S, a Cartesian product of two 8-PSK
signals. G,,, is the corresponding subconstellation, generated
by (5), of the space-time constellation. G} .. is the transformed
subconstellation obtained from (8). Fig. 1(c) shows typical
paths different at three transitions. The difference matrix of
two codeword matrix labels at the second trellis transition,
0(2) = G(U3,U4), (U3,U4) S 500, and D(Z) = G(’Ug,’U4)U,

i=1 ®)
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(vs,v4) € Soo, is not full rank. However, the difference matrix
of the following two paths is full rank:

C = [G"(u1,u2) G (u3,ua) GT(U5,u6)]T,
(ur,uz), (us,uq), (us,ue) € Soo,

D = [G"(v1,v2) UG (v3,04) G (v5,v6)
(v1,v2), (vs,v6) € So1, (vs,v4) € Soo

?

]T

both of which start from state zero and end at state zero. [4]-[6]
proposed a set of rules to assign proper subconstellations to the
proper states and branches to guarantee the full rank of paths
that start from a state and remerge at another state. Thus full
rank property of the code is guaranteed.

III. IMPROVED SPACE-TIME TRELLIS CODES

It is known that PSK signals are inefficient at high rates. The
main effort in this paper is to exploit more efficient constella-
tions to design super-orthogonal space-time trellis codes.

To design super-orthogonal space-time trellis codes, the first
step is to partition the multidimensional constellation S into
Ny = 2k k e N, subconstellations S;, where index i can be
thought of as a binary represented integer. Each S; has size of
|Si| = Ny. In other words, it has Ny pairs (u1, us) of complex
numbers u; and uy. Therefore, N, is the number of subconstel-
lations. N is the size of subconstellations. The average power
of the constellation S, the union of all S;, is P defined in (6).
Define

TQ(SZ'7SJ') = |U1 —’U1|2+|UQ—U2|2

min
(u1,u2)€S;,(v1,v2)ES;

as the minimum squared interdistance between subconstella-
tions S; and S;, and

(8;) = lug —v1|*+|ug —vs|?

min
(u1,u2),(v1,v2)€S;,(ur,u2)#(vi,v2)

as the minimum squared intradistance of the subconstellations.
In most cases, all 72(S;), 1 < i < N, are the same. Therefore,
in the paper, the minimum squared intradistance is referred to
as 2.

In [4]-[6], the vector (u;,u2) is chosen from the Cartesian
product of two PSK constellations, as in [9]. Actually, (u1,us)
can also be designed from four-dimensional (4-D) lattices in
R*. The first two dimensions of a point in the lattice form
u1, as the real and the imaginary part, respectively. The last
two dimensions of the point are mapped to uy in the same
way. In the following, designs from the 4-D half integer grid
Z* + (1/2,1/2,1/2,1/2) are shown. Each subconstellation S;
is constructed by points in the 4-D subsets, or cosets. The 4-D
grid can be denoted as the Cartesian product of two two-di-
mensional (2-D) half integer grid, (A, A), where A denotes the
2-D half integer grid, shown in Fig. 2. The partition of the 4-D
grid can be performed through the partition of the constituent
2-D grids.

In A, the minimum squared Euclidean distance is 1. We can
make a partition for A as for the 2-D square lattice in [13], shown
in Fig. 2. The partition, denoted as A /A1, is two way. In the coset
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Fig. 2. The two-way partition of the 2-D half integer grid A. The coset A,
is represented by points of circle and the coset A, is represented by points of
square.

A1 or Ay, the minimum squared intradistance is 2. In the same
way, Ay, or Ao, can be further partitioned.

With the partition method for A, the partition of the 4-D grid
(A, A) can be obtained by alternatively partitioning the con-
stituent grid A until N, cosets are obtained. For example, if the
desired N, = 4, the cosets are (A1, A1), (A2, A1), (A1, Ag),
and (A2, As). In each coset, the minimum squared intradistance
72 is 2. The final constellation can be obtained by taking NV,
points of the least powers as in [10].

Since the obtained constellations are used in super-orthog-
onal space-time trellis codes and as shown later, the minimum
CGD is upper-bounded by 272/ P, 272/ P is to be maximized.
Our method is to choose a threshold 73 for minimum squared
intradistance 72. The NN, points of the least powers and of at
least 7 far away from each other are taken. Then, we vary 72
until the constellation with maximum 272/ P2 is found. The de-
tailed algorithm is shown as follows.

Step 1) Initialization. P(%) = 0. Take kN, points of the
least powers from each coset to form subset C,,,,,
k= 4to06. Set 7(21) = 7(20) =7%(Cpppn) and i = 1.
Choose point p of the least power from Cp,,, as the
first point in S,(Z,n and mark the point p.

Choose point q of the least power among the un-
marked points in Cy,,,. Mark this point q in Cyy,,,. If
qis at least T(Qi) far away from all points in S,Si),,,, add
qto S,(qi)n Otherwise, just discard q. Repeat Step 3
until Ny points are found for each S

Calculate T(Zi) /P@, where P is the average
U Siin. I (72, /PD) >
(T(Qi_l)/P(i_l)>, proceed to Step 2 with ¢ = i + 1
and 77, = Té_l) + 1. Otherwise, take S(—1) as
the final constellation S.

Step 2)

Step 3)

Step 4)
power of S
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TABLE 1
NON-PSK MTCM CONSTELLATIONS
djm in d‘jm of
Constellations | N, | P | 72 | 2-state MTCM | designs in [9] | PAPR (dB)
I 16 | 3.5 | 4 1.7142 1.7574 1.55
I 321 5 4 1.2001 - 2.55
111 64 |6.75| 4 0.8889 0.4566 1.24

gl gl
00 01

Fig.3. 2-state codes: 2.5 bits/s/Hz, 3 bits/s/Hz, 3.5 bits/s/Hz, constructed from
the three constellations in Table I.

If T(zi) becomes large, then P(*) increases dramatically and
the algorithm stops quickly. Therefore, the computation load
is light. In fact, the constellations in Table I are all obtained
within five iterations.

Using this searching algorithm, we obtain several constella-
tions for MTCM, shown in Table I. The peak-to-average power
ratio (PAPR) might be of concerns when the signal constella-
tions change. However, for the three constellations listed, the
PAPR are all within 3 dB as shown from Table 1.

Since, for the these three constellations in Table I, N, and T2
are the same, Constellation I and Constellation II are subsets of
Constellation III. Constellation III is enumerated in Appendix.
Constellations I and II are composed by the N, points of the
least powers in S,,,,, of Constellation III. As shown in Table I,
Constellation I is not superior to the corresponding MTCM de-
sign in [9] if it is used in the 2-state MTCM. However, since it
has larger 272 /P than the constellations from 8-PSK signals,
super-orthogonal space-time trellis codes of larger minimum
CGDs can be obtained from it. Constellation III has larger d;ree
with respect to the design in [9] if it is used in 2-state MTCM.

The new 2-state codes are shown in Fig. 3, where

Gt ={G(u,v)J|(u,v) € Spn}

j 0
-3 4]
and S,,,,, is the constellation referred to in Table III. J is ob-
tained by maximizing the minimum CGD of length two paths,
which start from a state and remerge at another state.

Fig. 1(a) can also represent the new 4-state 2.5, 3, and
3.5 bits/s/Hz codes if the new constellations in Table I and the
transform J in (9) are used. J provides a simple expression for
the CGDs of the 2- and 4-state codes in Fig. 3 and Fig. 1, as
shown in the next subsection.

Fig. 4 shows the 8-state codes of rates 3 and 4 bits/s/Hz if
Constellation I and III in Table I are used. In Fig. 4

Grn = {G

where

©)

(u,v)K;|(u,v) € Spun}, 1=1,2,3
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00 10 <01 11

10 01 11 00

1 gl 1 1

11 00 ~10 01
gZ
01

gZ 2 gZ
11 ~00 10

g3 g3 3 g?
11 00 ~J10 01

Fig. 4. 8-state codes: 3, 4 bits/s/Hz, constructed from Constellation I and
Constellation III in Table I.

where

j 0 -7 0 0 1
SN T R
(10)
and S,,,,, is the constellation referred to in Table III.

Since the new constellations are not PSK signals, for the en-
ergy normalization in (2), the transmitted signal matrix at trellis
transition k is C(k) = 1/2/PG(u1,u2)V,where V=1, J, or
K, according to the design in Fig. 3, Fig. 1(a), and Fig. 4.

A. CGDs of the New Codes

It is commonly known that the distance between two code-
words along two trellis paths in a conventional TCM is the sum
of the distances of the codewords in all the corresponding trellis
branches. This additivity plays a key role in analyzing properties
of a TCM. However, this additivity no longer holds for CGDs
in a general space-time trellis code. The following result states
that the additivity is indeed true for some of our newly proposed
super-orthogonal space-time trellis codes.

Proposition 1: For two paths different at k trellis transitions

C = [(Glur,un)V])" (Glus,us)V3)" -
(G(u%—hqu)V}G)T}T (11)

D= I:(G(’Ul,’l)g)V%)T (G(’U37’U4>V§)T
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Tt
(Glose-1,02)VE) " (12)
where Vi is either I or J in (9), the CGD is
k
Vdet{A} =" /det{A;} (13)
i=1

where A = (C —D)#(C - D), \/det{A,} is the CGD of the
two codeword matrix labels in the transition 7, and

H
A; = (G(uzi—1,u2)V; — G(v2i—1,02) V?)

X (G(ugi—1,u2;)V} — G(vai—1,v2;) V7). (14)
Proof: The CGD, by the definition, is
1
k 2
Vdet{A} = (det{ZAi}) . (15)
=1

Since V7 is unitary

3

% (Gluzim1, ui) = Gloair,v2)VE (V) ). (16)

H
A; = (G(UQi—hU?i) - G(U2i—17U2i)V? (V*l)H)

Furthermore, V,Zf can only be one of the two matrices, I and J.
Therefore, VZ(V})H also only has three possible outcomes I,
J, JH,

Since I, J, and J¥ are diagonal, we may assume
V2(VHHE = T = diag[t; to]. Therefore

A= (Jugi—1 P+ |uoi P+ [vai—1 P+ v *) T
— TG (vai—1,2:)G(u2i—1,u2;)
— G (ug;_1,u2:)G(v2;_1,v2;) T
= (|U21‘,—1|2+|U21‘,|2+|U27‘,—1|2+|02i|2) I-A;, (17)

where (see the equation at bottom of page).
FT=LJ orJ¥ ¢ = t5. Therefore

A; = (Jugim1 — trvgic1[* + Jugity — v2]?) L. (13)
Therefore
1k
H
A:igtr{Ai AT 19)
and
k
Videt{A} =" \/det{A;}.
i=1
|

In [8] and [4], the authors proposed the equal eigenvalue
criterion, in which the optimal A should be semi-unitary, i.e.,
A = (1/2)tr{AH® A}, to maximize the CGD. From (19), it is
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shown that, for event events of any length, the new 2- and 4-state
codes are optimal in the sense of the equal eigenvalue criterion.
Also, via Proposition 1, the minimum CGDs of the new 2- and
4-state codes can be derived.

Proposition 2: For the 2-state codes in Fig. 3, the minimum
CGD, &, of the codes is 272/ P, where P is the average power of
the constellation and 72 is the minimum squared intradistance
of S,.n, listed in Table II1.

Proof: For the codes in Fig. 3, the paths diverging from
state zero and remerging at state zero are considered as a typ-
ical case. The other cases can be dealt with in the same way. If
the two paths differ only at one trellis transition, two different
codewords are of the forms

C :@G(ul,UQ),
D :\/%G(vl,vg),
(

’U,17UQ)7(’01,’02) S 5’007but (ul,u2) ;ﬁ (?)17’02).

Therefore
2

A= F (|u1 — ’U1|2 + |UQ — ’U2|2) I

and, thus, the minimum CGD of the parallel paths is 272 /P.
If the two paths differ only at two trellis transitions, the two
codewords are

(3::\/52[(}T(U1»U2) G (ug,ua)] ",

(U’17 U2)7 (u37 ’LL4) S 5007

[ 2
D= F [GT(’Uh’Ug) JTGT(037U4)]T7
(v1,v2), € So1, (v3,v4) € Soo-
So A; = (2/P)(|U,1 — ’(}1|2 + |U2 — ’l)2|2)I and A, =
(2/P)(|jus — v3|* + |ug — jvsa]?)L It is easy to show that

2
Tot{A,] = 2S00, Sou)

min
(w1,u2)€Spo,(v1,v2)€ESo1 P

(20)

2n

where TZ(SOO, Sp1) is the minimum squared interdistance be-
tween Sgp and Sp.

To study the property of Ay, we assume ug = (p+0.5+75(q—
0.5)),p+q = 2k,andvs = (v40.54+5(1—0.5)), v+ p = 2m,
P, q, v, i, k, m € 7, because us, vz € Ai. Therefore

ljus — vs|* = li(p—p+1) — g —v|*. (22)
If (22) equals zero, p + g = 2k and v + 4+ = 2m can not hold.
Furthermore, p, q, v, ;1 are integers, so |jus — v3|? > 1. With
the same argument, |uy — jv4|? > 1. Therefore,

\/ det{Ag} = %

(23)

mi
(u3,u4),(v3,v4)€So0

Ai’ =

2% {tlugiflvy_l + t1u2iv’2"i}
(15 — t1) (u2i—1v5; — u5;v21)

(tg — tT) (U;i,1v2i - UZ’L"U;ifl)
2R {t3u3;_ v2i—1 + thugvi; }
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So, from (21), (23), and (13), the minimum CGD of length two
paths is

2

P (7*(So0, So1) +2) . (24)

For paths different at £ > 3 trellis transitions, two codewords
take the forms

C :\/% [GT (1, us)

(u1,u2), (W2r—1, u2k) € Soo,

o 3o

(v1,v2), € So1, (Var—1,v2r) € Soo.

GT (ugp_1, usg)| T

7

T

(v1,v2) TG (var—1,v21)]

Therefore, from Proposition 1

k
Videt{A} =>"/det{A;} > \/det{A,} + \/det{A;}

(25)
since all \/det{A;} > 0, for 1 < ¢ < k. Again, when the
same argument for (24) is applied to (25), the minimum CGD
of length & > 3 paths is

2
&34 2> I (7(S00, So1) +2) . (26)
Therefore, £ is always no less than that of length two paths.
As aresult, the minimum CGD should be the minimum between
the minimum CGD of parallel paths and the minimum CGD of
length two paths, i.e.,

2
f = F min {7_2,7_2(5007 SOl) + 2} .

For the three constellations in Table I, 72(Sgg, So1) = 2 and
72 = 4. Therefore, 72 = 7%(Sp0,So1) + 2. That is, { =
272/ P. [ |

For the new 4-state codes in Fig. 1(a), we also consider the
paths diverging from state zero and remerging at state zero. The
minimum CGD of parallel paths is still 272 /P as in the proof
for Proposition 2. There are no error events of length two for the
trellis in Fig. 1. For the paths of length k, two codewords are in
the forms of

C :\/% [GT (u1,u2)

(u1,u2), (ugk—1,u2r) € Soo,

/ T
D= G" (vap—1,v21)] ",

U1,v2) (’Uzk 15 ’Uzk) € So1-

T
G" (ug—1,u21)]

U1 712

The CGD of the two codewords is

Vdet{A} > \/det{A,} + /det{A.}. 27)
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TABLE 1II
MINIMUM CGDs, &, OF NEw CODES
Code | Rate(bits/s/Hz) | Number of states | £ | £ of [4] [5] [6]
Fig. 3 2.5 2 2.29 -
Fig. 1 2.5 4 2.29 2
Fig.3 3 2 1.60 -
Fig. 1 3 4 1.60 1.64
Fig. 4 3 8 2.29 2
Fig. 3 35 2 .19 -
Fig. 1 3.5 4 1.19 0.58T
Fig. 4 4.0 8 1.19 0.581
Since
A = 2 2 )1
1—F(|U1_Ul| + [ug — v2| ) )
(u1,u2) € Soo, (v1,v2) € Sou,
2 2 2
Ay = 2 (Juzk—1 — var—1]> + |uzk — var|?) I
(uak—1,u2k) € Soo, (Var—1,v2k) € Sot,
we have
min det{A}
(u1,u2)€Spo,(v1,v2),ES01
= min det{Ar}. (28)
(w2k—1,u2k)€ES00,(V2k—1,V2k),ESo01 { }
Furthermore
. 272(S00, S
min vdet{A;} = M. (29)
(u1,u2)€So00,(v1,v2),€S01 P

So, from (13), (27)-(29), the minimum CGD of the length k&
paths 53_,_ (472 (Soo, 501) /P). For all three constellations in
Table I, 72 = 4 and 72(So0, So1) = 2. Therefore, 272/P =
(472(S00, S01)/P) < &34 Thus, we have the following result.

Proposition 3: For the new 4-state codes, the minimum CGD
of the code is 272/ P, where P is the average power of the con-
stellation and 72 is the minimum squared intradistance of S,,,,,
listed in Table III.

For all the new codes, the minimum CGDs are tabulated in
Table II. Except the 3 bits/s/Hz code in Fig. 1, the new codes
have larger minimum CGDs than the existing codes in [4]-[6].
Also, as the partitioning of MTCM [9], if N, is larger, con-
stellations with larger 272/ P can be obtained. However, more
states are needed to construct super-orthogonal space-time
trellis codes with corresponding minimum CGDs.

IV. SIMULATION RESULTS

The simulation results are presented in this section to show
the performance of the proposed codes. The channels in the
simulation are quasi-static. The length of each frame is 130
symbols. The curves of frame error rate (FER) are obtained by
averaging over 50000 frames. The simulated systems use two
transmit antennas and one receive antenna.

At 2.5 bits/s/Hz as shown in Fig. 5, our code gains 0.5 dB over
the same rate code in [4]—[6] with the same number of states. At
3 bits/s/Hz shown in Fig. 6, our 4-state code shows 1 dB gain
over the existing 8-state code in [5] and [6]. At 3.5, 4 bits/s/Hz
shown in Fig. 7, our code has about 2 dB gain over the same
rate code in [4]-[6] with 16-PSK signals. Admittedly, our codes
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TABLE III
MTCM CONSTELLATION 111, (p, ¢) REFERS TO A PAIR OF POINTS INDEXED BY p AND ¢ IN FIG. 2. CONSTELLATIONS I, II ARE COMPOSED BY THE 16, 32
POINTS OF THE LEAST POWERS IN S,,,,, OF CONSTELLATION III, RESPECTIVELY

Soo C A1 ® Ay

So1 C A2 ® Ay

S10 C A1 ® Ay St CA® N

GALDBGB13)
(9,1),(7,3),15,3),(13,1),(1,9),(1,13)
(11,1),(3,9),(5,3)(1,11),(9,9),(9,13)

(T,IT,15),(15,7),(15,15),(13,9),(13,13)
(25,3),(29,3),(3,25),(3,29),(35,1),(19,1)
(1,35),(1,19),(3,23),3,31),(23,3),(21,1)
(33,1,(31,3),(1.21),(1,33),(11,9),(11,13)
(9,11),(7,5),(15,5),(13,11),(5,7),(5,15)
(25,7),(25,15),(29,7),(29,15),(9,35),(9,19)
(7,25)(7,29),(15,25),(15,29),(13,35),(13,19)

(35,9),(35,13),(19,9),(19,13),(11,11),(5,5)

(2,2),(4,4),(10,4),(12,2)
(2,12),(2,16),(4,10),(4,6),(16,2),(6,4)
(8,4),(2,14),(14,2),(4,8),(10,10),(10,6)
(12,12),(12,16),(16,12),(16,16),(6,10),(6,6)
(24,2),(20,2),(2,24),(2,20),(34,4),(20,4)
(4,34),(4,20),(26,2),(28,4),(2,26),(2,18)
(4,28).(4,36),(36,4),(18,2),(10,8),(12,14)
(8,10),(8,6),(14,12),(14,16),(16,14),(6,8)
(10,34),(10,20),(12,24),(12,20),(24,12),(24,16)
(20,12),(20,16),(34,10),(34,6),(20,10),(20,6)

(16,24),(16,20),(6,34),(6,20),(8,8),(14,14)

(3,2),(1,4),(3,12),(3,16) (2,3),(4,1),(10,1),(12,3)

(9,4),(7,2),(15,2),(13,4),(1,10),(1,6) (2,7),(2,15),(4,9),(4,13),(16,3),(6,1)
(11,4),(3,14),(5,2),(1,8),(9,10),(9,6) (8,1),(2,5),(14,3),(4,11),(10,9),(10,13)
(7,12)(7,16),(15,12),(15,16),(13,10),(13,6) (12,7),(12,15),(16,7),(16,15),(6,9),(6,13)
(25,2),(29,2),(3,24),(3,20),(35,4),(19,4) (24.,3),(20,3),(2,25),(2,29),(34,1),(20,1)
(1,34),(1,20),(3,26),(3,18),(23,2),(21,4) (4,35),(4,19),(26,3),(28,1),(2,23),(2,31)
(33,4),(31,2),(1,28),(1,36),(11,10),(11,6) (4,21),(4,33),(36,1),(18,3),(10,11),(12,5)
(9.8),(7,14),(15,14),(13,8),(5,12),(5,16) (8,9),(8,13),(14,7),(14,15),(16,5),(6,11)
(25,12),(25,16),(29,12),(29,16),(9,34),(9,20) (10,35),(10,19),(12,25),(12,29),(24,7),(24,15)

(7,24),(7,20),(15,24),(15,20),(13,34),(13,20) (20,7),(20,15),(34,9),(34,13),(20,9),(20,13)

(35,10),(35,6),(19,10),(19,6),(11,8),(5,14) (16,25),(16,29),(6,35),(6,19),(8,11),(14,5)

FER versus Eb/NO, N=1, 2.5bits/s/Hz

10 0 T T T T T T T
. —%— 4 state code with PSK
- new 2-state code
—A— new 4-state code
107" .
o
w
[
1072 .
1072 | ! I | 1 1 I
6 8 10 12 14 16 18 20 22
E/N,
Fig. 5. Performance comparison of codes: rate 2.5 bits/s/Hz.
FER versus Eb/NO’ N=1, 3bits/s/Hz
10° : e K T :
s T —¥— 8-state code with PSK
-+ new 2-state code
—<- new 4-state code
107" .
o
w
[
1072 .
1 0_a 1 1 1 1 1 1
8 10 12 14 16 18 20 22

E /N

b

0

Fig. 6. Performance comparison of codes: rate 3 bits/s/Hz.

FER versus Eb/NO’ N=1, 3.5, 4 bits/s/Hz

10° ; : : . T
107" F .
o
L
[T
1072 | .
—*—  4-state code with PSK,R=3.5
—A— new 2-state code,R=3.5
—— new 4-state code,R=3.5
—-% - 8-state code with PSK, R=4
- new 8-state code, R=4
1073 L I L I L
10 12 14 16 18 20 22
Eb/N R

Fig. 7. Performance comparison of codes: rates 3.5 and 4 bits/s/Hz.

have higher decoding complexity compared with the codes with
PSK constellations when using same number of states.

It is also shown the distance spectrum is important for the
space-time trellis codes. For example, the new 2.5 bits/s/Hz
codes of 2- and 4-states have the same minimum CGD. But
the 4-state code is about 0.5 dB better in terms of FER versus
E,/Ny. This observation coincides with those in [5] and [6].

V. CONCLUSION

The MTCM designs from non-PSK signals were proposed in
this paper. Based on the MTCM designs, some super-orthog-
onal space-time trellis codes were presented. Furthermore, it
was shown that the new 2- and 4-state codes have a simple
mathematical expression for their CGDs. The proposed new
space-time trellis codes of 3.5 and 4 bits/s/Hz show significant
gains over the existing ones.
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APPENDIX
CONSTELLATIONS FOR NON-PSK MTCM

See Table III.
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