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Abstract—Unitary space–time codes have been used in dif-
ferential space–time modulation, when neither the transmitter
nor the receiver of a multiple antenna system knows the channel
state information in Rayleigh fading channels. Among the codes
in literature, unitary orthogonal space–time codes, constructed
from Alamouti’s scheme, have the advantage of fast maximum
likelihood (ML) decoding but they require signal constellations
to be phase-shift keying (PSK). In this paper, unitary space–time
codes are constructed from Alamouti’s scheme with ampli-
tude/phase-shift keying (APSK) constellations. We show that the
unitary space–time codes from Alamouti’s scheme with APSK
signals have larger diversity products than those with PSK signals
while the complexity of their ML decoding algorithm is compa-
rable. Our newly proposed 4 b/s/Hz code has about 2 dB gain over
the same rate code with PSK signals at bit-error rate (BER) of
10 3 with one receive antenna. We also propose a noncoherent
scheme of rate 5 b/s/Hz, which has the same BER performance as
the 4 b/s/Hz unitary orthogonal space–time code in DSTM while
having comparable decoding complexity.

Index Terms—Alamouti’s scheme, amplitude/phase shift keying
(APSK) signals, differential space–time modulation (DSTM),
fast maximum-likelihood (ML) decoding algorithm, orthogonal
space–time codes, unitary space–time codes.

I. INTRODUCTION

D IFFERENTIAL space–time modulation (DSTM) has
been proposed in [1]–[3] for multiple antenna systems

in Rayleigh fading channels, when the multiple-input and
multiple-output channel state information is not available
or hard/costly to obtain. As a differential phase-shift keying
(DPSK) scheme for a single transmit antenna system, DSTM
allows the receiver to decode without the channel state in-
formation. In such a differentially encoded system, unitary
space–time codes are necessary to ensure average transmission
power to be constant in each time block (called block-mean
power). There are many constructions of unitary space–time
codes in the literature, for example, diagonal codes [1], [2],
dicyclic codes [2], [4] fixed-point-free group unitary codes [5],
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parametric codes [6], unitary codes using Cayley transform
[7], and unitary orthogonal space–time codes from Alamouti’s
scheme with PSK signals [3]. However, for general unitary
space–time codes, decoding complexity will go up exponen-
tially with the number of transmit antennas and with the rate
(bandwidth efficiency). Even for a reasonable rate in a two
transmit antenna system, the size of unitary space–time codes
may be large and, therefore, the development of fast decoding
algorithm becomes a critical issue. One of the remarkable
advantages of unitary orthogonal space–time codes in [3]
over others is the existence of fast maximum likelihood (ML)
decoding algorithm.

In differential orthogonal space–time modulation [3], the
mean power of transmit signal matrix, i.e., block-mean power,
is constant over time. This is particularly important for differ-
ential modulation, as we can see from [1] and [2]. There are
two useful measures of signal power for differential orthogonal
space–time modulation. One is the individual information
symbol power and the other is the block-mean power. In [3],
two independent information symbols in Alamouti’s scheme
[8] are PSK signals in order to ensure constant block-mean
power. Therefore, the power of individual information symbols
is constant. As shown later, this may degrade the diversity
products of the codes.

The main goal of this paper is to relax this constraint to allow
the information symbols to have different power levels and keep
the fast ML decoding algorithm. We design unitary space–time
codes from Alamouti’s scheme with amplitude/phase shift
keying (APSK) signals rather than PSK signals. While the
ML decoding complexity is slightly higher, the resultant
unitary codes have better diversity products than the unitary
orthogonal space–time codes with PSK signals at 1.5, 2.5, 3,
3.5, 4, and 4.5 b/s/Hz. In [5], via parameterizing Alamouti’s
scheme, Hamiltonian codes have constraints similar to those
of our proposed codes. However, the fast decoding algorithm
of Hamiltonian codes is not ML. The maximal decoding time
depends on the structure of the employed spherical codes. As
other unitary space–time codes, our codes in DSTM do not
need channel state information for decoding. We further show
that the peak-to-average power ratio of the proposed codes in
DSTM does not increase with respect to that of the unitary
orthogonal space–time codes.

For the proposed codes, the block-mean power is constant
over time. The one-level block-mean power in the differential
orthogonal space–time modulation in [3] has been generalized
in [9] to two-level block-mean power. In [9], an additional bit of
information is carried by the two levels of block-mean power.
This can be considered as a generalization of the differential
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APSK modulation in a single transmit antenna system [10],
[11]. Note that in [12], an alternative noncoherent block en-
coding scheme using APSK signals was proposed. In [13], a
rectangular noncoherent space–time coding scheme was pro-
posed. In [9], the information symbol power in a codeword ma-
trix is constant, i.e., information symbols are PSK signals. In this
paper, we combine the scheme proposed in [9] with the newly
designed unitary codes to increase data throughput. Therefore,
two levels of the block-mean power along intermatrix blocks
and multiple levels of information symbol power in an intrama-
trix of a codeword are used.

Our simulations confirm the performance advantage of the
proposed codes and scheme. In particular, with one receive an-
tenna, the 4 b/s/Hz code has about 2 dB gain over the same rate
code with PSK signals at bit-error rate (BER) of 10 . Further-
more, the decoding complexity of our 3, 4 b/s/Hz codes is only
about twice that of the unitary orthogonal space–time codes with
PSK signals. The proposed 4.5 b/s/Hz code has 1 dB gain over
the 4 b/s/Hz code with PSK signals with one receive antenna. By
using the proposed 4.5 b/s/Hz code, the two-level block-mean
power differential modulation provides a 5 b/s/Hz noncoherent
scheme. This scheme has the same BER performance as the 4
b/s/Hz unitary orthogonal space–time code with PSK signals.

This paper is organized as follows. In Section II, the
space–time modulation system model, DSTM, and unitary or-
thogonal space–time codes are briefly reviewed. In Section III,
unitary space–time codes from Alamouti’s scheme with APSK
signals are presented. Also some properties of the proposed
codes are investigated. In Section IV, a two-level block-mean
power differential modulation using the proposed codes is
given. Finally, in Section IV, simulation results are presented to
show the performance of the proposed codes and scheme.

In what follows, the following notations are adopted. and
denote the complex conjugate transpose of matrix , the in-

verse of , respectively; denotes the determinant of ma-
trix denotes Frobenius norm of matrix ,
i.e.,

and denote the real part and the complex conjugate
of a complex number , respectively. denotes the expec-
tation of random variable Prob denotes the probability
of the event . denotes the real number domain. repre-
sents an identity matrix; represents an ma-
trix with all zero elements. For convenience, unitary orthogonal
space–time codes from Alamouti’s scheme with PSK signals
in [3] are shortened as PSK-UA codes. The proposed unitary
space–time codes from Alamouti’s scheme with APSK signals
are called APSK-UA codes.

II. REVIEW OF DSTM AND PSK-UA CODES

In this section, we briefly review the system model commonly
used in the space–time modulation literature, DSTM [1], [2],
Alamouti’s scheme, and PSK-UA codes in [3].

A. System Model and Differential Encoding

Consider a wireless communication system with two transmit
antennas and receive antennas over a frequency-nonselective
fading channel that is unknown to both the transmitter and the
receiver. Let be the signal transmitted at the th transmit
antenna at time , and let be the fading coefficient of the
channel between the th transmit and the th receive antenna at
time . It is assumed that is quasi-static, i.e., it is constant
over a frame of length and independent from one frame to
another. is the additive noise at the th receive antenna
at time . It is assumed that is a complex Gaussian white
noise with zero mean and unit variance, i.e.,
and are independent of each other with respect to both
and .

The received signal at the th receive antenna at time
is the superposition of the transmitted signals on two transmit
antennas, i.e.,

(1)

where is signal-to-noise ratio (SNR) at each receive antenna.
When is constant within a frame

(2)

where is the th block of the received signal matrix
is the transmitted signal matrix in

the th block, is the noise matrix in the th
block, and is the channel coefficient matrix
in the th block. As in [3], is modeled as an independent
complex Gaussian variable with zero mean and unit variance.

In the DSTM proposed in [1] and [2], the transmit signal ma-
trix is obtained by the differential encoding of

(3)

and . In [3], the unitary space–time codeword is from
Alamouti’s scheme

(4)

where is a PSK constellation, i.e.,
, to

ensure Frobenius norm of to be constant. The two
information symbols and are independent of each other.
Therefore, the size of PSK-UA codes is . The
rate of is b/s/Hz. The available rates
( 4.5 b/s/Hz), depending on the PSK constellations for and

, are listed in Table I.

B. ML Decoding Algorithm

The noncoherent ML decoder, or demodulator, of is
[1]–[3]

(5)
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For general unitary space–time codes, the decoding, thus, re-
quires an exhaustive search within the codes. Since ,
the decoding complexity can be prohibitive at a rational rate.
On the other hand, for PSK-UA codes, the complexity of ML
decoding can be greatly reduced. Due to the orthogonality of

, decoder (5) can be manipulated into

(6)

where and denote the th row of the and ,
respectively, .

Since and are independent, they can be separately de-
coded

(7)

where

(8)

(9)

Moreover, the decoder (7) can be further simplified because
and are PSK signals. The complex plane may be divided

into equal sectors started from the origin and is determined
by the sector in which the complex number falls, .
Thus, the decoding complexity is comparable to that of PSK
demodulation in a single transmit antenna system. It is clear,
from (7), that the decoding of PSK-UA codes does not need
channel estimation.

As another fact, PSK-UA codes are full rank codes because
for any two different codewords and in

. The following diversity product:

(10)

is defined for the unitary space–time code
in [1]. For full rank codes, maxi-

mization of diversity product is commonly used as a criterion
for the design of unitary space–time codes because is a good
indicator for the block error rate (BLER) of unitary space–time
codes in DSTM. For PSK-UA codes, as configured in Table I,
the diversity product is

(11)

III. UNITARY SPACE-TIME CODES FROM ALAMOUTI’S SCHEME

WITH APSK SIGNALS

From (11), we know the performance of the PSK-UA codes is
limited by the larger constellation of and ’s. For example,
if the 1.5, 2.5, or 3.5 b/s/Hz codes in Table I are considered,
the corresponding diversity products are limited by the -PSK
constellations. In this section, this disadvantage of the PSK-UA
codes is overcome. We show that the two symbols in Alam-
outi’s scheme can be chosen from an APSK signal constella-

TABLE I
RATES OF PSK-UA CODES

tion to construct unitary space–time codes. Our proposed uni-
tary space–time codes with APSK signals have larger diversity
products than those with PSK signals.

A. Unitary Code Construction

We propose a unitary code construction from Alamouti’s
scheme via APSK signals as follows:

(12)

In (12), and are from the same PSK constellation
. is from set , de-

fined as where
is a positive real number,

, and . The value of is determined
by the selection of : when is assigned as for some

takes , where . Theo-
retically, can be any positive integer. But only , and
are considered in this paper.

As for and in , the sum of their
squared modulus is two, i.e.,

and their modulus ratio is defined as

Therefore, set is determined by the following two vectors:

(13)

(14)

Let denote the number of distinct components in vector
and denote the set composed by all distinct components in
vector , i.e.,

for some

if for (15)

Let be the correspondence between the
components in and the elements in as

(16)
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Fig. 1. The APSK constellation for c and c in the (8, 4, 2) APSK-UA code.
In the graph, ' = (�=8) and ��� = [1:64 1:37].

Parameter will be shown to have direct effects on the decoding
complexity and to be relevant to the diversity product.

It is not hard to see that , and in the code in (12)
are independent of each other. Therefore, the size of is

and the rate is b/s/Hz.
In what follows, for convenience, an APSK-UA code in (12) is
defined as an APSK-UA code, or an code
for short.

If we let in the code (12), then the code follows
Alamouti’s scheme. The difference with Alamouti’s scheme is
that the two symbols are not independent while there is a rela-
tionship between their amplitudes and as

The above identity ensures that the matrices in the code in (12)
are unitary, i.e., the code is unitary. Since the amplitude of
may have different levels, symbol actually is an APSK signal.
Fig. 1 shows an APSK constellation for and in an (8, 4, 2)
APSK-UA code.

For two distinct codewords

and

where , the determinant of
the difference matrix is

(17)

Therefore, the diversity product does not change if all elements
in are multiplied by . Without loss of generality,
is assumed. Also, if no elements in are congruent, which is

true for all of our designed codes, . In other
words, APSK-UA codes are full rank codes.

In the following sections, the code (12) is designed under
the diversity product criterion, i.e., maximizing the diversity
product. This leads to the design of the parameter vectors and

of .

B. Unitary Codes With Optimum Diversity Products When

If . The rate is
b/s/Hz. To maximize the diversity product, the determinant in
(17) is investigated in two cases: and . The
first case is . Since there are only two elements in ,
this means . Therefore

(18)

Consequently, the minimum determinant in this case is

(19)

In the second case, . So and .
Without loss of generality, we assume . Thus

(20)

Define . Then, we have
since . The determinant in (20) is mini-

mized when and
both reach maximum. Therefore, when

(21)

we have

(22)

The diversity product of the code is

Since and is monotonically de-
creasing with respect to and is monotonically increasing
with respect to and . Therefore, the maximum diversity
product , in terms of parameters and , is achieved
when and . This implies that

(23)
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TABLE II
APSK-UA CODES

Thus, the optimum can be solved from (23) and the solution
is

(24)

since . When , the optimum has to be
. The optimum diversity product, therefore, is

(25)

With the optimum and , it is easy to obtain the optimum
for code (12) when .
For these codes, . Thus

and . In Table II, these codes are denoted as (2, 2, 2),
(4, 2, 2), (8, 2, 2) codes. The parameters of and the diversity
products are also listed.

C. Unitary Codes When and

When , analytic solutions tend to be more difficult.
A family of codes is obtained, shown in Table II, by computer
search under the diversity product criterion.

The (2, 2, 2), (4, 2, 2), and (8, 2, 2) codes in Table II are con-
structed in Section III-B. The (8, 2, 1) code is obtained by setting

in (23). Except for the two codes of 4.5 b/s/Hz, the codes
of the same rate have approximately the same BER performance
with a small or median number of receive antennas. A smaller
in a code corresponds to a smaller diversity product, but a lower
decoding complexity. Therefore, for 3, 3.5, 4 b/s/Hz, the codes
with small would be suggested for use in systems with a small
or median number of receive antennas, or in systems of strict

complexity requirement. For 4.5 b/s/Hz codes, the (8, 8, 4) code
outperforms the (8, 8, 2) code by 1 dB with one receive antenna.

D. Peak-to-Average Power Ratio

When the constellation of migrates from PSK to APSK, the
peak-to-average power ratio of transmitted signals is a concern.
In DSTM, the average power of the transmitted signals on th
antenna is

or (26)

From (3) and (4), it is straightforward to show that is a unitary
matrix in the form of Alamouti’s scheme if APSK-UA codes are
used in (3), i.e.,

where

So, and the peak power . The peak-to-
average power ratio is dB. Suppose

(27)

are to encode in a sequence, then . Under such cir-

cumstance, . Therefore, dB.
However, for PSK-UA codes, the peak-to-average power ratio

is also 3 dB, which can be shown with same argument by letting
in (27). In [3], unitary matrix

is used to preprocess . As a result, the transmitted power on
each transmit antenna is constant at 1 bit/s/Hz. However, at other
rates, differential encoding still leads to expansion of the con-
stellation [2] and the peak-to-average power ratio is 3 dB. There-
fore, the signal constellation change from PSK to APSK has
no adverse effects on the peak-to-average power ratio of trans-
mitted signals in DSTM.

E. A Posteriori Probabilities (APP)

For APSK-UA codes, it is possible to derive APP for ,
and , which can be used in soft decoding/demodulation if
needed. For illustration purposes, we assume , and it is
not hard to extend the result to the general case. From (2), we
may assume is complex Gaussian. Furthermore

(28)

(29)
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Therefore, the probability density function (pdf) of is

(30)

With known past received signals , (2) can be written as

(31)

Since and are complex Gaussian, given is also
complex Gaussian. From (31), the mean vector and correlation
matrix of given can be obtained as shown in (32) and (33)
at the bottom of the page. Therefore, the pdf of given is

(34)

From (30) and (34), APP for symbol is

Prob
Prob

(35)

In the same way, APP for symbol can be obtained as

Prob

or (36)

where we have (37)–(40) shown at the bottom of the page.
and can be computed according to the constel-

lation of the code.

F. ML Decoding Algorithm

The remarkable advantage of PSK-UA codes is their fast ML
decoding algorithm. The proposed APSK-UA codes keep such
an advantage, although the decoding complexity has a moderate
increase as shown in this section.

By expanding the ML decoder (5), the optimal estimates of
, and can be found by

(41)

where and are defined in (8) and (9), respectively.
If is fixed, i.e., , then is also determined

in by according to the code design in
Section III-A. Thus, and can be decoded separately as

(42)

where . In (42), the amplitude of is
discarded because it is not relevant in decoding . The
final ML decoding algorithm is

(43)
The inner maximization in (43) can be simplified as in (42).
Clearly, APSK-UA codes, as other unitary codes, in DSTM do
not need channel state information in decoding.

Since, in (42), only phases of affect the estimation of
and there are only distinct phases in , there are only

many trials of estimating and by enumerating . The ML
estimation algorithm can be stated as follows.

Step 1) Obtain the estimates of and by

(44)

(32)

(33)

(37)

(38)

(39)

(40)
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TABLE III
THE DECODING COMPLEXITY OF PSK-UA CODES AND APSK-UA CODES

(45)

where is defined in (15).
Step 2) Form candidate estimates of as

(46)

where is defined in (16).
Step 3) Select the optimum of the candidates in (46) by
maximizing

(47)

as the final decision for , where
when .

Let us take the decoding of the (8, 8, 4) code as an example.
For the (8, 8, 4) code

Thus, in (15) and
in (16). After and are

obtained from (44) and (45), the eight estimate candidates for
are

The final step selects the one out of these eight candidates that
maximizes (47).

In the algorithm, the decoding of APSK-UA codes needs 2
multiples of -PSK demodulation and the detection of from
set after obtaining and . The decoding complexity com-
parison with PSK-UA codes is shown in Table III. The decoding
of PSK-UA codes has a complexity in the order of . The
decoding of APSK-UA codes needs another 2( 1) multiples
of PSK demodulation and a element search. For all APSK-UA
codes, and . As an example, for the (8, 2, 1)
code, the decoding needs the demodulation of two 8-PSK sig-
nals and the detection of from a two-element set with ob-
tained and . The complexity is about the same as that of
the PSK-UA code. However, the diversity product of the (8, 2,
1) code, with respect to that of the same rate PSK-UA code, has

TABLE IV
DIVERSITY PRODUCT � OF SOME 2 BY 2 UNITARY SPACE-TIME CODES.

an increase from 0.1379 to 0.2083. The worst case in terms of
complexity is the decoding of the (8, 8, 4) code. Its decoding
requires eight multiples of 8-PSK demodulation and the detec-
tion of from an eight-element set . The decoding of the 4.5
b/s/Hz PSK-UA code, configured as in Table I, needs the de-
modulation of one 8-PSK signal and one 16-PSK signal after
obtaining and . When , the decoding complexity of
(8, 8, 4) is about four times that of the 4.5 b/s/Hz PSK-UA code.
When is large, the calculation of and starts to dominate
the complexity of the decoding, and therefore, the difference be-
tween their complexities becomes insignificant.

G. Comparison With Other Codes

In Table IV, APSK-UA codes are compared with some known
unitary space–time codes for two transmit antennas. The di-
versity products of PSK-UA codes are obtained from (11). At

b/s/Hz, the APSK-UA code, along with the quaternion
code, and the parametric code, has the largest known diversity
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product. At b/s/Hz, the APSK-UA code offers a diver-
sity product larger than that of the 4 b/s/Hz PSK-UA code. For
other rates, APSK-UA codes have larger diversity products than
PSK-UA codes, cyclic codes, and quaternion codes in the table.
APSK-UA codes have the second largest diversity products in
the table, only inferior but close to parametric codes. However,
parametric codes are general unitary space–time codes, whose
ML decoding is performed through an exhaustive search in (5).

Hamiltonian codes in [5] are constructed from a unitary ma-
trix

(48)

where and to . Therefore,
Hamiltonian codes can be built from four-dimensional spher-
ical codes by mapping to a point in . In
this sense, APSK-UA codes, along with PSK-UA codes, are a
subset of Hamiltonian codes. Furthermore, Hamiltonian codes
can have fast decoding algorithm by using bucketing techniques
[14]. Such decoding algorithm first finds a point on a four-di-
mensional sphere to maximize (5). Then, the final estimation is
the Hamiltonian codeword whose correspondent point in is
nearest to in terms of Euclidean distance. Therefore, such de-
coding algorithm is not ML because the nearest codeword might
not be the one that maximizes (5). Furthermore, the maximal
search time in buckets depends on the structure of the employed
spherical codes.

In short, APSK-UA codes offer a tradeoff solution between
the optimum performance with a high decoding complexity and
the lowest ML decoding complexity.

IV. A TWO-LEVEL BLOCK-MEAN POWER DIFFERENTIAL

MODULATION USING APSK-UA CODES

In Section III, the block-mean power is constant over time be-
cause all space–time codewords are unitary. In [9], a two-level
block-mean power differential modulation using PSK-UA codes
is proposed to increase data throughput in noncoherent com-
munications. An extra information bit is carried by varying the
block-mean power of the transmitted signal matrix. Further-
more, the two-level block-mean power differential modulation
offers a separate decoding algorithm for this extra information
bit. In this section, we combine the two-level block-mean power
differential modulation proposed in [9] with APSK-UA codes
in Section III. This scheme is named combined scheme in what
follows. By using the (8, 4, 4) code, the two-level block-mean
power differential modulation provides a 5 b/s/Hz transmission
scheme.

A. Encoding Algorithm

As in [9], the transmitted signal matrix is the product of
an differentially encoded amplitude (block-mean power),

, and a differentially encoded matrix . In the
real element set with . The

ratio of to is defined as , i.e., . The binary

information sequence is grouped into blocks of 2 bits: at the
th block

where is the rate defined as before. The first bit , along
with the previous block-mean power level , decides the am-
plitude value . The remaining 2 1 bits are mapped to an
APSK-UA codeword in (12). Matrix is obtained by dif-
ferentially encoding . The detailed encoding algorithm is as
follows:

(49)

where

if
if and
if and

(50)

(51)

where

(52)

(53)

where .
Via this encoding scheme, the average transmission power

on each transmit antenna is still (1/2). But the peak power in-
creases by a factor with respect to that of DSTM. There-
fore, the peak-to-average power ratio of combined scheme is

. If , as used in the sim-
ulation, dB. However, such a disadvantage can be
justified by the increase of throughput and the improvement of
performance.

B. Decoding Algorithm

When channel coefficient matrix is constant within a
frame

(54)

where . Thus, the differential decoding
can be implemented in the following two steps [9].

Step 1) Detect from the metric

(55)

which gives the bit according to (50).
Step 2) Detect and of the th block with the metric

(56)

which gives the remaining 2 1 bits. After simple manipu-
lation, the decoder (56) becomes

(57)
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Fig. 2. The performance comparison between the PSK-UA code and the APSK-UA code at R = 3 b/s/Hz: (a) BLER and (b) BER.

Fig. 3. The performance comparison between the PSK-UA code and the APSK-UA code at R = 4 b/s/Hz: (a) BLER and (b) BER.

which is equivalent to (41). Therefore, the decoding algo-
rithm developed in Section III-F can be applied to decode the
remaining 2 1 bits by the estimation of , and .

In the above algorithm, only a search over set
is added with respect to the decoding of APSK-UA codes in
DSTM in Section III-D. If the (8, 8, 4) code is used in the 5
b/s/Hz combined scheme, the decoding algorithm needs to cal-
culate , demodulate eight 8-PSK signals, and search over
the eight-element set and over set 1 1 .

V. SIMULATION RESULTS

In this section, the performance of PSK-UA codes in DSTM
and the combined scheme is shown. Simulations confirm
the performance results indicated by the diversity products
of the codes. The channels in the following simulations are

quasi-static. Channel coefficients are constant within a frame
of block length 200. Gray mapping is used for the two PSK
constellations and in PSK-UA codes. For APSK-UA
codes, Gray mapping is used for both and . BER and
BLER are averaged over 10 000 frames. On the -axis in the
following figures, stands for the energy per symbol and
stands for the energy per bit, at each receive antenna.

Figs. 2 and 3 show the performance comparison between
PSK-UA codes and APSK-UA codes at 3, 4 b/s/Hz in DSTM.
Both one and two receive antennas are considered. At
b/s/Hz, the (4, 4, 2) code is 1 dB better than the PSK-UA code
at BLER of 10 with one receive antenna. In terms of BER,
the (4, 4, 2) code outperforms the PSK-UA code by 0.5 dB with
one receive antenna. However, the BER performance gap is ex-
tended to more than 1 dB at BER of 10 when two receive
antennas are used for both codes. At b/s/Hz, the (8, 4,
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Fig. 4. The performance comparison between PSK-UA codes and APSK-UA codes of different rates with one receive antenna. The R = 5 b/s/Hz curve is that
of 5 b/s/Hz combined scheme.

2) code is about 2 dB better than the PSK-UA code at BER of
10 with one receive antenna.

In order to compare BER performance of communication sys-
tems at different rates, Fig. 4 shows BER versus SNR per bit.
The 5 b/s/Hz combined scheme is also shown in the figure. In the
combined scheme, the (8, 8, 4) code is used, as is . Fig. 4
shows that the 4 b/s/Hz APSK-UA code is only 2 dB worse than
the 3 b/s/Hz PSK-UA code while the 4 b/s/Hz PSK-UA code is
4 dB worse. The 4.5 b/s/Hz APSK-UA code is 1 dB better than
the 4 b/s/Hz PSK-UA code. The 5 b/s/Hz combined scheme has
the same BER performance as the 4 b/s/Hz PSK-UA code.

VI. CONCLUSION

In this paper, we propose unitary space–time codes from
Alamouti’s scheme with APSK signals. The resultant unitary
codes have larger diversity products than unitary orthogonal
space–time codes with PSK signals at 1.5, 2.5, 3, 3.5, 4, and
4.5 b/s/Hz. These codes have also been combined with the
two-level block-mean power differential modulation in [9]. In
the combined scheme, both the individual information symbol
power in Alamouti’s scheme and the block-mean power have
multiple levels. Such a combined scheme provides a 5 b/s/Hz
noncoherent transmission scheme.

Interestingly, at 4 b/s/Hz, our proposed code outperforms
the unitary orthogonal space–time codes by 2 dB at BER of
10 with one receive antenna. The 5 b/s/Hz combined scheme
has the same performance as the 4 b/s/Hz unitary orthogonal

space–time code in DSTM. Additionally, our codes and scheme
both have fast decoding algorithm, whose complexity is com-
parable to that of unitary orthogonal space–time codes.
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