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Abstract—Filterbank precoding in the intersymbol interference
(ISI) mitigation has recently attracted much attention. Two main
areas of such research have been explored. One of them is on filter-
bank precoding when the ISI channel is known to both the trans-
mitter and the receiver, while the other is on filterbank precoding
when the ISI channel is not known to the transmitter or the re-
ceiver. This paper is in the second area and the aim is two-fold.
We first summarize some recent results onambiguity resistantfil-
terbank precoders for the ISI mitigation when the ISI channel is
not known at the transmitter or the receiver, i.e., for blind equal-
ization. We then present somenewresults on the construction and
characterization of such precoders. The theory presented in this
paper applies to both single antenna (SISO) systems and multiple
antenna (MIMO) systems as space–time precoding.

Index Terms—Blind equalization, filterbank precoding, inter-
symbol interference mitigation, polynomial ambiguity resistant
precoders, space–time precoding.

I. INTRODUCTION

DUE TO the intersymbol interference (ISI), channel
equalization is one of the most important tasks in digital

communications which becomes more and more important in
high-speed communication systems. There have been extensive
studies on this problem in the last several decades, most of
which focus on the following three areas:1) post equalization
techniques, such as zero-forcing (ZF) and decision feedback
equalization (DFE) [32], [33]; 2) precoding techniques, such
as Tomlinson–Harashima (TH) precoding and trellis precoding
[38]–[47]; and 3) multicarrier modulation techniques [34]–[37].
Although many of these techniques have found successful
applications in practical systems, their performance usually
degrades significantly when the channels have spectrum nulls,
and in particular when the SNR is not high. Recently, a new
filterbank precoding method shown in Fig. 1(a) was proposed in
[1], where the filterbank precoder is channel independent, linear
(unlike the TH and trellis precoding, no modulo operation is
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needed), and more importantly, enables an ideal FIR equalizer
for any FIR ISI channel and any kind of signal symbols at the
expense of a minimum amount of bandwidth expansion. To
construct an equalizer using such an approach, however, the
knowledge of an ISI channel is needed at the receiver. This
precoding scheme has been generalized to the level of error
correction coding (ECC) [15], [16], [52], [17], [50] and is
named as modulated coding (MC), i.e., ECC over the complex
field. The advantage of MC is that it can be naturally combined
with an ISI channel and therefore optimally designed for the
ISI mitigation. As a result, the ISI in this case is no longer
distortion but a gain. It is shown [15] that for any finite tap ISI
channel there always exists MC such that it has coding gain
in the ISI channel compared with the uncoded ideal additive
white Gaussian noise (AWGN) channel. For the filterbank
precoding when the ISI channel is known, see also [11] and
[12], where the minimum mean square error (MMSE) criterion
for the optimal precoder design is used. The disadvantage of
this approach is that both the transmitter and the receiver need
to know the ISI channel.

A. Previous Work

As a part of postequalization techniques, blind equalization
has attracted much attention lately due to the recent advances
in channel identification using output diversities (for example,
multiple receivers) [18]–[20]. Spatial diversity (antenna arrays)
and temporal diversity (fractional sampling) are the mostly
studied ones among possible others. Many blind identification
algorithms exploiting either second-order cyclostationary
statistics [18]–[31] or algebraic structures (often referred to
as the deterministic solutions) [22], [23] have been proposed.
However, the use of output diversities inevitably multiplies
the number of data samples and therefore causes additional
computations at the receiver. A new transmitter-assisted
(precoded) blind equalization method has been studied lately
in [2], [3], [51], and [4]–[7] as explained below, where the
overall data rate expansion over the baud rate is not an integer
multiple but a fractional number. The filterbank precoding in
[1] is generalized to the blind equalization in [2] without much
analysis on a precoder. Later, in [7] some precoding analysis in
the time domain is introduced. In [3] and [51], the concept of
ambiguity resistantprecoders (ARP) is first introduced in the
-transform domain for the blind identification by injecting a

minimum amount ofstructuredredundancy at the transmitter.
The paper [3], [51] addresses the blind equalization problem
for both a baud-rate sampled single-receiver system and an
undersampled multi-receiver system by casting them into a
multi-input/multi-output (MIMO) framework with more out-

1057–7122/01$10.00 © 2001 IEEE
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Fig. 1. (a) Filterbank precoding. (b) A general filterbank precoded system of matrix form.

puts than inputs. With existing MIMO identification methods,
for example [22], [23], [9], [28], and [29], the multi-input
signal can be identified up to a nonsingular constant matrix
from the multi-output signal. The ambiguity resistant precoders
proposed in [3] and [51] are capable of removing the constant
matrix ambiguity directly from the receiver outputs. These
precoders can be thought of as a family of the precoders pro-
posed in [1] with an additional ambiguity resistant capability
(by adding memory to the precoding), which is essential to the
blind identifiability. In [5], ARP are systematically studied and
characterized and constructed. To resist an ISI channel, an ARP
is sufficient. However, in practical communication systems, the
additive noise has to be taken into the account. Therefore, a
natural question is which ARP is more robust to the additive
noise. In [6], such an issue is addressed, where an optimality
on ARP is introduced and some optimal ARP are characterized
and constructed. In [4], the concept of the ambiguity resistance
is generalized from resisting only constant matrices to any FIR
polynomial matrices as shown in Fig. 1(b). For obvious rea-
sons, the precoders studied here are called(strong) polynomial
ambiguity resistantprecoders (PARP). Based on the definitions
in [4], strong PARP not only resist the ambiguity in the input
signals but also in the FIR channel inverse, while regular PARP
only resist the ambiguity in the input signal. In this paper, we
shall use the notations and the terminologies used in [4].

B. Outline of This Paper

As one can see, the filterbank precoding is a transmitter-as-
sisted approach and there have been two main areas of research
on filterbank precoders in an ISI channel. They are i) MC, when
an ISI channel is known at the transmitter and the receiver,
where the performance is the key factor and ii) PARP, when
an ISI channel is not known at the transmitter or the receiver,
where the channel information is the key factor. This paper is
focused on the second area, i.e., PARP. The aim of this paper
is two-fold. In the first part of this paper (Section II), we want
to review the concepts of PARP and strong PARP. We also re-
view the related applications and the blind identifiability in an
ISI channel. We show that, for the blind identifiability of the
input signal in the precoded system, it is necessary and suffi-
cient for a precoder to be a PARP. The theory developed in this

paper applies to both single antenna (SISO) systems and mul-
tiple antenna (MIMO) systems as space–time precoding. In the
second part (Section III), we present some new properties and
constructions of (strong) PARP, such as a new connection be-
tween PARP and strong PARP and a new sufficient condition
for strong PARP. In Section IV, we present some simple simu-
lation results.

II. POLYNOMIAL AMBIGUITY RESISTANTPRECODERS(PARP)

In this section, we review the concept of (strong) PARP and
its applications in blind signal identification introduced and
studied in [3], [51], [4]. By using the polyphase representation
of a filterbank, the precoded system in Fig. 1(a) can be recast
into the general one in Fig. 1(b), where is the polyphase
matrix of , and corresponds to the
pseudo-circulant matrix blocked from ; see for example
[48]. In what follows, we focus on the general MIMO system in
Fig. 1(b), where and are two polynomial matrices,
and the problems of interest are: What is the condition on a
precoder such that the receiver is able to blindly recover
an input signal and/or an MIMO channel inverse
given and a received signal ? How to construct such
a precoder? We will answer the first question in this section,
i.e., is PARP, and study the second question, i.e., the
construction of PARP, in the next section.

A. Definitions

A polynomial matrix of size has the following
form:

(II.1)

where are constant matrices. is also referred
to as a matrix polynomial in some literature; see for example,
[48]. A function matrix is a matrix where all entries are
functions of . If , the integer is defined as
theorder of . A polynomial matrix is invertible if it
has full rank for some value, whereas is irreducibleif it
has full rank for all including , which is equivalent
to the conventional definition of the nonfactorizability [49]. A
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square polynomial matrix isunimodularif its determinant is a
nonzero constant. When , the irreduciblility of is
equivalent to the unimodularity of , i.e., its determinant is
a nonzero constant. has FIR inverse if and only if
has determinant for some nonzero constantand integer

. is irreducible implies that it has FIR inverse. Clearly,
the probability of an polynomial matrix having FIR in-
verse is zero. On the other hand, when , is ir-
reducible if and only if all the determinants of all the
submatrices of are coprime, which holds with probability
1 for an arbitrarily given polynomial matrix . It is
clear that an irreducible polynomial matrix with

has an irreducible polynomial matrix inverse
, i.e., , where may not be

unique. For more about unimodular and irreducible polynomial
matrices, we refer the reader to Vaidyanathan [48].

We are now ready to define (strong) polynomial ambiguity
resistant precoders. First, let us define polynomial ambiguity
resistant precoders (PARP).

Definition 1: An irreducible polynomial matrix
is th-order polynomial ambiguity resistant if the fol-

lowing equation for a function matrix has only
trivial solutions of format for some nonzero
polynomial of order at most :

(II.2)

where is an nonzero polynomial matrix of order
at most .

The above polynomial ambiguity resistant property only re-
quires the uniqueness of the right-hand side matrix up to
a nonzero polynomial. Strong PARP are defined as follows.

Definition 2: An irreducible polynomial matrix
is strong th-order polynomial ambiguity resistant if the fol-
lowing equation for an nonzero polynomial matrix
of order at most and a function matrix has only
trivial solutions of format and
for some nonzero polynomial of order at most :

The above strong polynomial ambiguity resistant property re-
quires the uniqueness up to a nonzero polynomial not only for
the right-hand side matrix but also for the left-hand side
nonzero polynomial matrix . Obviously, strong PARP are
PARP. The ambiguity resistant precoders studied in [3] and [51]
are the (strong) zeroth-order PARP here. It can be easily verified
that a (strong) th-order PARP is also a (strong) th-order
PARP. We will see later in Section II-B-1 that: i) the input
is blindly identifiable from the output and the precoder

in the precoded system in Fig. 1(b)if and only if the pre-
coder is PARP and ii) both the input and the ISI
channel inverse are blindly identifiable from the output

and the precoder in the precoded system in Fig. 1(b)
if and only if the precoder is strong PARP. The following
family of strongPARP is first presented in [3], [51], [4].

Theorem 1: The following polynomial matrix of size
is strong th-order polynomial ambiguity resistant:

...
...

...
...

...

(II.3)

for an integer .
We shall characterize (strong) PARP later in Section III.

B. Applications in Blind Identification

We now discuss the application of the PARP to blind system
identification of a MIMO communication system with ISI/mul-
tipath channels.

1) Blind Identifiability: A general ISI communication
system is shown in Fig. 1(b), where is the input signal of
size , is the precoder of size , is an
ISI channel transfer matrix of size , is the output
signal of size , , and is the additive
noise term of size . Herein, the goal is to identify
from without knowing the ISI channel characteristics.
Note that is chosen by the designer and is thus known
to the receiver. The techniques presented here concern the
exploitation of the precoder structure in removing the unknown
channel effects.

Since is almost surely irreducible, we assume it is ir-
reducible in the remainder of this paper. The irreducibility of

ensures that its inverse is also a polynomial matrix and
thus input can be perfectly recovered from the output using FIR
equalizers.

There are essentially two problems to be studied in blind iden-
tification. One on blind identifiability and the other on blind
identification algorithm development. For convenience, we as-
sume a noise-free system and set to be zero. In the case
of , the overall system in Fig. 1(b) is a single-input/mul-
tiple-output (SIMO) system, which has been extensively studied
[18]–[31]. Therefore, in the following we only consider the case
where . For an input signal with , the
greatest common divisor (gcd) of all component polynomials
of is almost surely a nonzero constant. Such is assumed
throughout our discussions. Note that considering input
signals is equivalent to considering input signals. Clearly,
a column of a input signal is a input signal. Con-
versely, a input signal can be obtained by splitting a

signal into many signals and putting these
many signals together.

We first study the blind identifiability for the input signal.
Knowing , let and be the candidate input and
channel, respectively. The gcd of the components of is
assumed to be a nonzero constant, whereas is an
irreducible polynomials as . Then, the blind identifiability
can be described by the following uniqueness:
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implies

(II.4)

for some nonzero . The uniqueness (II.4) implies that the input
signal can be uniquely determined up to a scale from
the output signal and the known precoder . In other
words, the input signal can be blindly identified. It should
be noticed that without the precoder in Fig. 1(b), the input
signal can only be blindly identified up to a nons-
ingle constant matrix ambiguity by using MIMO blind iden-
tification techniques [22], [28]–[30].

In [3] and [51], blind identification is accomplished in two
steps. First, existing MIMO blind identification techniques are
used to determine the input signal within a matrix ambiguity,,
and then this constant matrix ambiguity is resisted through
a zeroth-order PAR precoder. In this subsection, we study the
possibility of employing a proper order PARP so that the input
signal can be directly identified from the output signal

using a closed-form algebraic algorithm.
The input signal blind identifiability in (II.4) can be refor-

mulated as follows by pre- and post-multiplying and
, respectively, to both sides

implies

(II.5)

for some nonzero constant, where is a left inverse of
, i.e., . Note that (II.4) is stronger

than (II.5) since indi-
cates but not vice
versa.

The matrix is almost surely a nonzero
polynomial matrix. If has order at most, then as
long as is th-order polynomial ambiguity resistant, (II.5)
implies , i.e.,
for a nonzero polynomial of order at most . This implies
that a th-order PARP can reduce the polynomial
matrix ambiguity into a scalar polynomial ambiguity. Under the
assumption that the gcd of all components of is a nonzero
constant, we can easily reduce to a constant scalar,. This
proves that if a signal with the gcd of its all components
as a nonzero constant, and , then

for a nonzero constant. In other words, the
input signal is blindly identifiable.

The above discussions imply that when is th-order
polynomial ambiguity resistant, the input signal can be
blindly identified from the output and the precoder .
In order to choose a proper precoder , it is important
to estimate the minimal order of the polynomial matrix

given the ISI channel order of , .
It is known that the order of satisfies

where the lower bound is achievable; see for example [23] and
[30]. Therefore, the total orderof satisfies

Conversely, if in (II.2) has a nontrivial solution
, the inputs and with

and satisfy

Therefore, it is not possible to identify the input signal.
The above results are summarized in the following theorem.
Theorem 2: Assume the ISI channel is an irre-

ducible polynomial matrix with order . If is a th-order
polynomial ambiguity resistant precoder, then, the input signal

in Fig. 1(b) is blindly identifiable from the output signal
and the precoder , where

(II.6)

On the other hand, if the input signal in Fig. 1(b) is blindly
identifiable from the output signal and the precoder ,

must be a polynomial ambiguity resistant precoder of a
certain order.

Similar arguments apply to the blind identifiability for both
the channel inverse and the input signal by using
strong PARP:
if and only if and

, i.e., and
for some nonzero polynomial . Following the proof of The-
orem 2 about the gcd division, can be found from

, and then can be found from
. The necessity is also similar to the one for The-

orem 2. This proves the following result.
Theorem 3: Assume the ISI channel is an irre-

ducible polynomial matrix with order . If the precoder
is strong th-order polynomial matrix ambiguity resistant, then
the input signal and the ISI channel inverse in
Fig. 1(b) are blindly identifiable from the output signal
and the precoder , where is defined in (II.6). On the other
hand, if the input signal and the channel inverse
in Fig. 1(b) are blindly identifiable from the output signal
and the precoder , must be a strong polynomial am-
biguity resistant precoder of a certain order.

As a remark on the blind identifiability, since is not
a square matrix, its inverse is not unique. The above
blind identifiability means the unique solution (up to a nonzero
constant difference) for the input signal and a solution for
the inverse of . Although the overall solutions for

and may not be unique due to the nonuniqueness
of , the input signal part is always unique. Another
remark is that although a PARP is good to resist an ISI channel,
its sensitivity to additive noise is not addressed in this paper.
A design property was proposed in [6]. As a final remark, the
irreducibility of an MIMO channel in Theorems 2 and 3
is satisfied almost surely as mentioned before for a randomly
given polynomial matrix when .
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2) An Algebraic Blind Identification Algorithm:Results
in Section II-B-1 suggest an algebraic algorithm for the
blind identification: solve for in the equation

from the known output
and the precoder ; then remove the scalar polynomial,

, from to obtain .
Although the input and output signals and are in

matrix forms in the previous sections, they can also be column
vectors by equating corresponding columns in the matrices.
To derive a time-domain closed-form algorithm, we adopt the
vector representation for the input and output in the following
discussion. More specifically, we consider

(II.7)

where is of size and is of size . is
the irreducible ISI channel of order , and the
strong th-order PARP, where takes the value in (II.6). The
parameters satisfy the inequalities .

It is established in the previous section that solutions of

(II.8)

satisfy and .
Replacing with in the above equation yields

(II.9)

where and are the solutions corresponding to
the received signal . Clearly, .
To exploit the precoder structure and remove the scalar polyno-
mial from the input estimate in one shot, consider the following
equation set:

(II.10)

Then and at the same time,
. Since and are of

order at most , it is not difficult to show that must be
of form . Hence, the input sequence can be uniquely
identified by solving the above linear equation set in the time
domain.

Denote . From previous discussion, the min-
imum achievable order of , is given by

(II.11)

Let

and

and

Then from we have

i.e.,

(II.12)

where , , and , , are
unknowns to solve. For each, let

...

where is the th row of the matrix . Denote asuper
column vector containing all unknowns in matrices ,

, i.e.,

(II.13)

The size of is . Let be the block
matrix, shown in (II.14) at the bottom of the next page, of size

for each integer .
Then, the time-domain equivalent of (II.10) is given by

...

(II.15)

and

...

(II.16)

Upon defining , we are able to
combine the above equations and establish a linear equation set
with respect to all unknowns as follows:

...

(II.17)

where is the generalized Sylvester matrix shown in (II.18)
at the bottom of the next page. Since (II.17) is a typical linear
system, it can be solved by using any numerical method of linear
equations, which is not the focus of this paper.
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The input signal as well as the zero-delay and max-
imum-delay zero-forcing equalizers can be readily determined.
It can be easily verified that when the number of data vectors
increases, there are more equations than unknowns in the above
linear homogeneous system, which renders an overdetermined
system with a unique solution.

C. Applications in Communication Systems

In this section, we will apply the theory previously devel-
oped to blind identification of a baud-rate sampled communica-
tion system and an undersampled system with multiple receivers
(antennas). Contrary to most existing blind identification tech-
niques, the use of PARP allows the blind identification to be
accomplished without output diversities.

1) Applications in Single-Receiver, Baud-Rate Sampled
Systems:A precoded single-receiver communication system
is shown in Fig. 2, where the baud-rate sampled ISI channel is
characterized by a polynomial of order .

To apply the blind techniques developed in the previous sec-
tion, we need to formulate the above system and transfer it into
the one shown in Fig. 1(b). To achieve this, we block the output
signal with block size (from serial to parallel) into an

-element vector, . The system in Fig. 2 can then be rep-
resented as in Fig. 3, where is the blocked version (see
[48]) of the channel in Fig. 2

...
...

...
...

(II.19)

where is the th polyphase component of as follows:

(II.20)

The matrix is pseudo-circulant and can be diagonal-
ized as follows (see [42], and [48]): Let be the
DFT matrix, i.e., , where

; the diagonal polynomial matrix

diag

and the following diagonal polynomial matrix in terms of
the polynomial :

diag (II.21)

Then

(II.22)

For a precoder to resist the polynomial ambiguity, and
must be rearranged so that the channel becomes a tall

and irreducible polynomial matrix. Clearly, when is not
a nonzero constant, the polynomial matrix is not irre-
ducible. Although this is true, it has been proved in [1] that any

submatrix of is irreducible as long as two rota-
tions of the zero set of the polynomial at the angles
for do not intersect. Since this condition is
satisfied almost surely for a polynomial , we may assume
that all submatrices of are irreducible when

. Hence we can design the precoder in Figs. 2
and 3 to be

(II.23)

...
...

...
...

...
...

...
...

...
...

(II.14)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(II.18)
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Fig. 2. A single-receiver communication system with baud-rate sampling.

Fig. 3. A blocked single-receiver system with baud-rate sampling.

where is an PARP studied previously. Conse-
quently, the system in Fig. 3 can be described as follows:

and

(II.24)

where is actually an submatrix of the
pseudo-circulant matrix in (II.19), which is irreducible.
From (II.24), it is clear that the system in Fig. 3 is reduced to the
one in Fig. 1(b). The theory/algorithm developed in Section II-B
becomes readily applicable to the above single-receiver system
in Fig. 2.

Given the order of the ISI channel polynomial , ,
the order of precoder , , can be determined as follows.
From (II.19) and (II.20), the order of the pseudo-circulant ma-
trix and its submatrix is

From (II.6), the corresponding parameters of the precoder in
(II.3) can be set as

and (II.25)

With these parameters, the output data rate relative to the input
signal rate for the above precoded single-receiver system is

, where can be chosen as
. Thus, the relative data rate increase is ,

which approaches zero, i.e., no expansion, whenis large.
This proves the following theorem.

Theorem 4: For any , there exists a positive integer
for the precoder in (II.3) such that the overall data rate

expansion for the single antenna receiver system in Fig. 2 is less
than and at the same time, the input signal can be blindly

identified from the output using the closed-form algorithm
in Section II-B-2.

Notice that the existing blind identification techniques require
the data rate to be at least twice the input symbol rate at the
receiver.

2) Applications in Undersampled Antenna Array Receiver
Systems:Having shown that blind identification can be accom-
plished with a minimum amount of bandwidth expansion using
precoding techniques, we now study the possibility of perfect
signal recovery when the received signals are undersampled.

Without loss of generality, an undersampled antenna
array system can be shown in Fig. 4, where for

are the ISI channel transfer polynomials of
the antennas, and means downsampling by factor,
i.e., taking one sample from each samples. Clearly, only
partial information of the input is available in each antenna
output. It is proved in [3] and [51] that it is impossible to
recover the input blindly from the outputs without using
precoding at the transmitter.

The system in Fig. 4 can be converted to the one in Fig. 5,
where is the polyphase matrix of the polyno-
mials , : . Here

is the th polyphase component of theth polynomial
, and .

As discussed in Section II, when this matrix
is almost surely irreducible. From Fig. 5, one can see that the
undersampled antenna array receiver system in Fig. 4 can be
cast into the exact same framework in Fig. 1(b), allowing direct
applications of the theory/algorithm developed in Section II-B.

Assume is the maximum of the orders of the polyno-
mials for the antennas. The order of the polyphase
matrix is

For blind identification, the parameters for the precoder
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Fig. 4. An undersampled antenna array system.

Fig. 5. An equivalent undersampled antenna array system.

in (II.3) can be chosen as

and (II.26)

It should be noticed that the number of antennas,, in a
system is usually fixed. Because is required, this seems
to provide a lower bound for the data rate expansion in the trans-
mitter, which requires . With the minimum
bandwidth expansion setup: , at least

data rate increase is needed for the blind equalization
given the number of antennas, . In the following, we show
that this limitation can be lifted by blocking the vector output
sequence in Fig. 5 sim-
ilar to the way for the single antenna system studied in the pre-
vious subsection. The blocked equivalent of the undersampled
antenna array receiver system in Fig. 5 is shown in Fig. 6, where
the block size is and the matrix is the blocked ver-
sion of the matrix in Fig. 5

...
...

...
...

(II.27)

Fig. 6. A blocked undersampled antenna array system.

Here, is the th polyphase component of the matrix
as follows:

where are the constant matrices from
. Matrix is block pseudo-cir-

culant. and with size in Fig. 6 are
the blocked forms of the vector sequences and ,
respectively. Correspondingly, The minimum rate-increase
precoder has size . Therefore, if the
blocked channel polynomial matrix in Fig. 6 is still
irreducible, then the system in Fig. 6 is reduced to the one in
Fig. 1(b).

Before proving the irreducibility of the matrix , let us
investigate the effects of the blocking operations above. Notice
that the overall data rate expansion in Fig. 6 is by
choosing and , which approaches zero
when the block size is large. The advantage is that the data rate
expansion at the transmitter can be reduced by employing the
above blocking procedure, even when the number of antennas
is fixed.

We now need to prove that the blocked version
of is irreducible when itself is irreducible. Since

is block pseudo-circulant, by permuting its rows
and columns, it can be converted into the block matrix with

blocks and each of the blocks is an
pseudo-circulant matrix
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where and are the row and column block permutation ma-
trices. Similar to (II.21) and (II.22) the pseudo-circulant
matrix can be diagonalized as

diag

where come from matrix .
Therefore

diag

where

diag

By implementing the same permutations

diag

Since matrices and are irreducible, ma-
trix is irreducible if and only is is irreducible.
This proves the following lemma.

Lemma 1: The blocked version in (II.27) of
is irreducible if and only if is irreducible.

This lemma and the previous discussion on data rate expan-
sion in the transmitter lead to the following result.

Theorem 5: For any , there exists a positive integer
for the precoder in (II.3) such that the data rate expansion
at the transmitter for the antenna array system in Fig. 5 is less
than and at the same time, the input signal can be blindly
identified from the undersampled outputs , ,
of the antennas with the undersampling factor
using the closed-form algorithm in Section II-B-2

It should be noticed that, although blind identifiability in the
above two theorems holds theoretically for an arbitrary small
amount of data (or bandwidth) expansion, the implementation
of the closed-form algorithm in Section II-B-2 may become pro-
hibitive when the sizes of the precoders get larger. We want to
emphasize that the focus of this paper is on feasibility studies
rather than algorithm development. There is an evident need for
more sophisticated precoding-based blind identification algo-
rithms which are of practical importance.

Another remark we want to make here is the following ob-
servation. When the order of the ISI channel is large,
the size of the linear system (II.17) is also large due to the large
number of unknowns in in (II.13) for . In this case,
it might be better to use the current MIMO blind identification
methods to reduce the large order ISI channel into a non-
singular constant matrix, i.e., a zero-order ISI channel. Then,
the technique developed in [3] and [51], or zeroth-order polyno-
mial matrix ambiguity resistant precoders in this paper can be
used to blindly identify the input signal and the constant ambi-
guity matrix . The tradeoff between these two approaches is
under our current investigation.

Last but not the least, we want to point out that the precoders
proposed in (II.3) have some interesting features which are es-
sential to applications. For example, assuming that the input data
to the precoders are modulated complex values, such as ,

, in QPSK modulation, since the precoder in (II.3)
only sums the current sample and the past as

, the output data from the precoder,
which are to be transmitted after a pulse shaping filter, preserves
the modulation symbol patterns except some occasional 0 sym-
bols. This implies that the precoding in Fig. 2 and Fig. 4 can be
implemented without introducing undue complexity.

III. CHARACTERIZATION ON POLYNOMIAL AMBIGUITY

RESISTANT PRECODERS

In this section, we want to present some new and known prop-
erties and characterizations of PARP, which are useful in the
PARP construction. It was proved in [4] that for a PARP
polynomial matrix we have . Therefore, in what fol-
lows, we always assume unless otherwise specified. It
was also shown in [3], [51], and [4] that any constant precoders
cannot be PARP of any order when . When , the
precoded system is equivalent to the fractionally spaced equal-
izer system studied in [18] and [19], which is blindly identifi-
able. In what follows, we always assume .

A. PARP-Equivalence and Canonical Forms

Let us first see an equivalence for PARP, which is first in-
troduced in [5] for the ambiguity resistant precoder canonical
forms. Let denote the set of all polynomial
matrices.

Definition 3: The transformation of de-
fined by

where is an nonsingular constant matrix and is a
unimodular polynomial matrix, is called a PARP-equiv-

alence transformation, and and are called
PARP-equivalent.

One can see that a PARP-equivalence transformation includes
all three row elementary operations with constant multipliers
and all three column elementary operations where an operation
of multiplying a nonzero degree polynomial to a column is not
included. From the PARP-equivalence definition, we have the
following result.

Theorem 6: A PARP-equivalence transformation preserves
the (strong) th PARP property, i.e., an polynomial ma-
trix is (strong) th PARP if and only if is
(strong) th PARP for any nonsingular constant matrix

and any unimodular polynomial matrix .
Proof: Consider equation

Then

If is (strong) th PARP, then we have
, for some polynomial

of order at most , i.e., is (strong) th PARP.
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On the other hand, if is (strong) th PARP, then
from we have

So, we have ,
for some polynomial of order at most , i.e.,

is (strong) th PARP.
This theorem tells us that a PARP-equivalent transformation

maintains the PARP property. In other words, as soon as a PARP
is constructed, its all PARP-equivalent transformations are
PARP too. By noticing from Definition 3 that and are
arbitrarily nonsingular and unimodular matrices, respectively,
PARP-equivalent transformations easily provide a rich family
of PARP from a single PARP.

The following canonical form under the PARP-equivalence
transformation was obtained in [5].

Theorem 7: Any irreducible matrix in is PARP-
equivalent to a polynomial matrix of the following form:

(III.1)

with and
. Furthermore, can be

either zero or a nonconstant polynomial (i.e., ) for
and , and
, for some

with .
With the above canonical form, to consider a PARP we only

need to consider a PARP of the form (III.1). The following suf-
ficient condition for strong zeroth PARP with was
obtained in [5].

Theorem 8: Let have the canonical form (III.1) with
. If and

for some , , and if

are linearly independent over the complex filed, and
, where

where span means the set of all linear combinations with con-
stant coefficients, then is strong zeroth order PARP.

It was claimed in [5] that in Theorem 8 the two conditions: i)
are linearly

independent and ii) , are also necessary. How-
ever, they are not necessary from the following counterexample:

(III.2)

Clearly, are not linearly independent, but is
actually strong zeroth PAR as we shall see later.

To conclude this subsection, we generalize the linear inde-
pendence as follows.

Definition 4: A set of polynomials is said
th-order linearly independent( th LID) if

where are polynomials of orders at most.
In the above definition, when , it reduces to the conven-

tional linear independence of polynomials. To give an intuition
on the above th LID, if , then
are th LID. For example, 1, , and are th LID.

B. (Strong) th PARP with

In this subsection, we want to present a new relationship be-
tween th PARP and strongth PARP. We also derive a new
sufficient condition for the strongth PARP with .

Theorem 9: Let be of the canonical form (III.1). If
is th PARP, then

Proof: If for any with , let

and

Then we can check that , and
is an polynomial matrix of order at most. This is
contradictory to the th PARP of .

This theorem provides a necessary condition for a precoder
to be th PARP, and from this theorem one can clearly see that
any constant matrix cannot be PARP of any order. If we have a
th PARP of size , it is easy to constructth PARP

of size with from the following result.
Theorem 10: If an polynomial matrix is PARP-

equivalent to , and is th PARP, then is
also th PARP. However, must not be strongth PARP,
even when is strong th PARP.

Proof: From equation
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we get . Since is th PARP, so
for some polynomial of order at most ,

i.e., is th PARP.
However, since

where is not equal to any , i.e., is not
strong zeroth PARP. So it is not strongth PARP either.

We now see a new connection between strong PARP and
PARP.

Theorem 11:Suppose that has the form (III.1) with
. If is th PARP, and are th

order linearly independent, then is also strong th PARP.
Proof: can be written as

where

and

...

Consider equation

where , , and are polynomial ma-
trices of orders at most. If is th PARP, then

for some polynomial of order at most . There-
fore

(III.3)

(III.4)

(III.5)

(III.6)

Since are th order linearly indepen-
dent, from (III.5) and (III.6) we have and

. Substituting and
into (III.3) and (III.4), we obtain and

. So is strong th PARP.
Theorem 12:Suppose that has the form (III.1) with

. If

and

are th order linearly independent for some and with
, then is strong th PARP.

Proof: Consider equation ,
where is an nonzero polynomial matrix of order
at most and is a polynomial matrix. Denote

and , then we have the
following equations:

(III.7)

(III.8)

(III.9)

(III.10)

From (III.10) we have

(III.11)

Substituting (III.9) to (III.11), we get

i.e.,

Since are th LID, so
and for with and ,
and for and . Also
we can obtain and for

.
Now from (III.7) and (III.8) we have

(III.12)

(III.13)

(III.14)
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From (III.13) and (III.14) we get

for any with , i.e.,

(III.15)

The th LID of implies that , ,
, are th

LID, i.e., , , ,
are th LID. So from (III.15) we have ,

and for . Thus
we get , i.e., is th PARP.

From the th LID of again, we know
that are th LID, i.e.,

are th LID. According to
Theorem 11, is also strong th PARP.

The above theorem provides us a new and more general suf-
ficient condition for constructing strong th PARP and,
therefore, alsoth PARP for a general with .

C. (Strong) th PARP with

In this subsection, we discuss polynomial matrices only with
and achieve some simplified results. This case is

interesting in practice since, for a given, the case of
corresponds to the minimal data rate expansion case in

the precoding.
Theorem 13:Let has the form (III.1) with .

Then is th PARP if and only if is strong th PARP.
Proof: The sufficiency is obvious. Now we prove the ne-

cessity. If is th PARP, according to Theorem 11, we only
need to prove that are th-order linearly indepen-
dent ( th LID).

If there exist polynomials and of orders at most
such that

since from the canonical form, we have
and . According to Theorem 9,
, . So and ,

i.e., are th LID. This proves the necessity.

The following theorem can be derived from Theorem 12 di-
rectly.

Theorem 14:Suppose that has the form (III.1) with
. If

are th-order linearly independent, then is strong th
PARP.

As a remark, the condition in Theorem 14 is sharper than the
conditions in Theorem 8. Let us see the example in (III.2). We
know does not satisfy the conditions in Theorem 8. But

, , , ,
, , are actually zeroth LID,

i.e., is strong zeroth PARP by Theorem 14.Moreover, we
can show that are zeroth LID if the conditions in Theorem
8 are true. In fact, if there exist constants, , , and

such that

then

From the assumption in Theorem 8, we get , for
, and

i.e.,

Since and , , , , ,
are zeroth LID, we get , , and

. So are zeroth LID.
The th LID of implies that

, are th LID. In fact, the th LID
of , , , is also
necessary for theth PARP of , and is certainly necessary
for the strong th PARP of , as we see from the following
result.
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Theorem 15: If has the form (III.1) with ,
and is th PARP, then , , ,

are th-order linearly independent.
Proof: Assume that

are not th LID, then there
exist polynomials , and , , of order at most

such that

i.e.,

So

and

Now let , where , ,
, and for , and

for any with , , ,
, and , for .

Let , where , for
, and for any with

or

We can check that . It is obvious that
. This is contradictory to that is th PARP.

Combining Theorems 14 and 15, we have the following corol-
lary for a complete characterization of a systematic (strong)
PARP, which also provides a construction method forth strong
PARP by separating the degrees of , , by

from one to another.
Corollary 1: If has thesystematic form, as shown at the

bottom of the page, then is strong th PARP if and only
if are th-order linearly
independent.

Proof: The necessity comes from Theorem 15 immedi-
ately. Now we prove the sufficiency. According to Theorem 14,
we need to prove that , ,

are th LID.
With PARP-equivalence transformations, we can assume

for . If there exist
polynomials , , and , , of orders at most
such thata

(III.16)

then

From the th LID of , we
have and for . Using (III.16)
again, we have and for . So

are th LID.
The special case when in the above corollary has been

obtained in [5]. From Theorem 13, the result in Corollary 1 also
holds for th PARP. The following corollary is not hard to see
from Theorem 14, which provides a convenient way to construct
nonsystematic strongth PARP with .

Corollary 2: Suppose that has the form (III.1) with
. If for some

, and

and , then is strong th PARP.
To see the above result, let us consider the case when .

In this case, when the degrees of the polynomials ,
, in are at least differ from their adjacent

ones, the precoder is then strongth PARP.

IV. NUMERICAL EXAMPLES

In this section, we want to present two numerical examples to
verify the theory/algorithm developed in Section II. Simulated
outputs from a baud-rate sampled single-receiver system and an
undersampled antenna array system are used for blind identi-
fication. The results presented here are to illustrate the feasi-
bility rather than efficiency of the proposed precoding and blind
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Fig. 7. (a) ISI channel outputs with baud sampling; (b) recovered signal after blind identification using precoding techniques.

identification techniques, although some robustness in handling
noisy data is demonstrated by the proposed algorithm.

A. Single Antenna Receiver with Baud Sampling Rate

In this example, we set the order of the baud-rate sampled ISI
channel to be 4. The ISI channel is randomly selected, which in
this example is

The parameters in Fig. 2 and Fig. 3 and (II.23) and (II.24) are
. In this case, the channel matrix

in (II.24) is shown in the matrix at the bottom of the page. The
order of , , is thus 1. Based on (II.25), it is adequate to
use for the precoder in (II.3). The order of is

. is capable of resisting any third-order polyno-
mial matrix ambiguity.

QPSK signals are used as the input signal in this example. The
received data without identification is shown in Fig. 7(a). The
processed data after applying the proposed blind technique is
shown in Fig. 7(b). In this particular example, we use noise-free
observations to demonstrate that the proposed techniques can
provide closed-form solution with a finite number of data sam-
ples.

B. Undersampled Antenna Array Receivers

In this example, we use four antennas and undersample the
received signals by factor 3, i.e., and in Figs.

4 and 5. Four ISI channels , , are randomly
chosen, which in this example are

In this case, the channel matrix in Fig. 5 is of order
. Similar to the previous example, the parameterin
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Fig. 8. (a) Undersampled antenna outputs before blind identification. (b) Recovered signal after blind identification using precoding techniques.

(II.3) is set to be 3, which enables the precoder to resist a
third-order polynomial matrix ambiguity.

Instead of noise-free data, we apply the proposed blind iden-
tification algorithm to a minimum amount of output vectors, 50,
under 30 dB SNR. Fig. 8(a) and (b) compare the signal patterns
before and after the identification.

V. CONCLUSIONS

In this paper, we studied the following two questions of a
precoded MIMO system: Let

and what is the condition on such that and/or
can be recovered from and ? How to

construct such ? By answering these questions, we have
reviewed some results obtained in [3], [51], [4], and [5] and
also presented some new results on filterbank precoding for
blind channel equalization, namely PARP. With PARP, the
transmitter or the receiver does not need to know an ISI channel
for the recovery of the input signal. There are two kinds of
PARP: PARP and strong PARP, where PARP is for the input
signal recovery while the strong PARP is for both the input
signal and the channel inverse recovery. We have shown that a
filterbank precoded system has the blind identifiability if and
only if the filterbank precoder is PAPR. We have also shown
that a filterbank precoder of size is PARP if and
only if it is also strong PARP. Some new characterizations and
constructions of (strong) PARP have been also presented. A
main difference between the study in this paper and others on
equalization and precoding is that the approach in this paper
is deterministic while the others are mostly stochastic that
may need a long segment of a received data at the receiver;
furthermore this paper provides a systematic study of the
questions raised above, which are two natural questions about
the filterbank precoding for the blind equalization.

It is observed that, at least in theory, more memory in the
precoders provides stronger ambiguity resistance and more

powerful equalizers: zeroth-order block precoders without
any memory in [1] only allow ideal FIR equalization at the
receiver when the channel is known; first-order precoders in
[3], [51] allow ideal FIR blind equalizers at the receiver when
the ambiguity is a constant matrix; whileth-order precoders
in [4] allow ideal FIR blind equalization at the receiver when
the ambiguity is a th-order polynomial matrix. For an
optimality on PARP in terms of the robustness of the channel
additive noise, we refer the reader to [6]. Practical applications
of PAPR in wireless communication systems are under current
investigation.
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