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On the Nonexistence of Rate-One Generalized Complex
Orthogonal Designs
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Abstract—Orthogonal space–time block coding proposed recently by
Alamouti [1] and Tarokh, Jafarkhani, and Calderbank [4] is a promising
scheme for information transmission over Rayleigh-fading channels using
multiple transmit antennas due to its favorable characteristics of having
full transmit diversity and a decoupledmaximum-likelihood (ML) decoding
algorithm. Tarokh, Jafarkhani, and Calderbank extended the theory of
classical orthogonal designs to the theory of generalized, real, or complex,
linear processing orthogonal designs and then applied the theory of gen-
eralized orthogonal designs to construct space–time block codes (STBCs)
with the maximum possible diversity order while having a simple decoding
algorithm for any given number of transmit and receive antennas. It has
been known that the STBCs constructed in this way can achieve the max-
imum possible rate of one forevery numberof transmit antennas using any
arbitrary real constellation and for two transmit antennas using any ar-
bitrary complexconstellation. Contrary to this, in this correspondence we
prove that there doesnot exist rate-one STBC from generalized complex
linear processing orthogonal designs formore than twotransmit antennas
using any arbitrary complexconstellation.

Index Terms—Alamouti scheme, complex orthogonal designs, full rate,
generalized complex orthogonal designs, Hurwitz–Radon theory, orthog-
onal designs, space–time block codes (STBCs), transmit diversity.

I. INTRODUCTION

In the recent paper [4], Tarokh, Jafarkhani, and Calderbank pro-
posed a new scheme, termed “space–time block coding,” for transmis-
sion over wireless Rayleigh-fading channels using multiple transmit
antennas. This approach can be thought of as a generalization of the
Alamouti scheme [1], which allows transmission using two transmit
antennas, to an arbitrary number of transmit antennas. From the per-
spective of transmission with multiple transmit antennas, Tarokh, Ja-
farkhani, and Calderbank [4] established a theoretical framework of
generalized orthogonal designs based on the theory of classical orthog-
onal designs and then employed their theory of generalized orthogonal
designs to construct space-time block codes (STBCs) for any given
number of transmit antennas. Due to the underlying orthogonal and de-
coupled structure of STBCs, they possess full diversity order and a de-
coupled maximum-likelihood (ML) decoding algorithm which avoids
the exponential complexity of the ML decoding, in terms of the number
of transmitted information symbols within the given decoding delay, at
the receiver.

In [4], Tarokh, Jafarkhani, and Calderbank first demonstrated
that the theory of classical orthogonal designs can be used as codes
for multiple-antenna wireless communications systems, which have
full transmit diversity and have a fast ML decoding algorithm at
the receiver. However, according to Radon’s classical results [2] on
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real square orthogonal designs, these designs only exist in the set of
dimensions1; 2; 4; and8. Then, in [4], the authors extended Radon’s
results to both rectangular and complex orthogonal designs. They
showed that there exist full-rate generalized real orthogonal designs
for any given number of transmit antennas. Therefore, the STBCs
from generalized real orthogonal designs can achieve the maximum
possible rate for any given number of transmit antennas using any
arbitrary real constellations such as pulse-amplitude modulation
(PAM). Subsequently, in [4], the authors extended these schemes
from real signal constellations to complex signal constellations such
as phase-shift keying (PSK) and quadrature-amplitude modulation
(QAM). They introduced the concepts ofgeneralized complex linear
processing orthogonal designand itsrate as the ratio of the number
of transmitted information symbols to the decoding delay of these
symbols at the receiver for any given number of transmit antennas
using any complex signal constellations. The STBCs constructed
from generalized complex linear processing orthogonal designs were
shown to have full transmit diversity and a simple decoupled ML
decoding algorithm. If the STBCs from the generalized complex linear
processing orthogonal designs can achieve full rate, namely, one, then
the codes have no loss in bandwidth in the sense that the STBCs can
provide the maximum possible transmission rate at full diversity (see
[4] and [3, Corollay 3.3.1, p. 756]). The complex orthogonal design
in dimension2, i.e., the Alamouti scheme for transmission with two
antennas [1], is such an example of rate-one design. Therefore, a
natural question arises whether or not there exist rate-one generalized
complexlinear processing orthogonal designs for transmission with
more than two antennas.

In this correspondence, we prove that there doesnot exist any
rate-one generalized complex linear processing orthogonal design
for more than two transmit antennas, irrespective of any amount of
decoding delay allowed at the receiver. This nonexistence result is in
sharp contrast to the existence of rate-one generalizedreal orthogonal
designs for any given number of transmit antennas and rate-one
complex orthogonal designs for two transmit antennas.

II. NONEXISTENCE OFRATE-ONE STBCS FORTRANSMISSIONWITH

MORE THAN TWO ANTENNAS USING ANY ARBITRARY COMPLEX

CONSTELLATION

In this section, we will present some preliminaries about the STBCs
based on the theory of generalized orthogonal designs established in
[4] and then give the main nonexistence result of rate-one STBCs for
more than two transmit antennas using any arbitrary complex signal
constellation.

A. STBCs From Generalized Complex Linear Processing Orthogonal
Designs

The following preliminaries in the theory of generalized orthogonal
designs are adopted from [4] and its minor correction [5] but stated here
in a compact way.

A real orthogonal designO of sizen is ann � n matrix whose
nonzero entries are the indeterminatesx1; x2; . . . ; xn over the real field

or their negative�x1;�x2; . . . ;�xn such that

O O = (x21 + x22 + � � �+ x2n)In�n

where the superscript represents the transpose of a matrix andIn�n
is then� n identity matrix. Radon [2] provided a complete answer to
the existence problem of such an orthogonal design, i.e., that the real
orthogonal designO of sizen exists if and only if the dimensionn is
1; 2; 4; or 8.

A generalized real orthogonal designG of sizen is ap� n matrix
with entries

0; x1; x2; . . . ; xk;�x1;�x2; . . . ;�xk

wherex1; x2; . . . ; xk are indeterminates over, satisfying

G G = (x21 + x22 + � � �+ x2k)In�n:

The rate ofG is defined asR = k=p.
It has been shown in [4] that, for any given numbern of transmit

antennas, there exists a rate-onep � n generalized real orthogonal
design with the smallest possible decoding delayp depending only
upon n (see [4, Corollary 4.1.2, p. 1461]). The STBCs from this
full-rate generalized orthogonal design have entries of the form
x1; x2; . . . ; xp;�x1;�x2; . . . ;�xp.

A complex orthogonal designOc of sizen is ann�n matrix whose
nonzero entries are

x1; x2; . . . ; xn;�x1;�x2; . . . ;�xn

or their conjugates

x�1; x
�

2; . . . ; x
�

n;�x�1;�x�2; . . . ;�x�n

or the products of the above ones withjjj
def
=
p�1, the imaginary unit in

the complex field , wherex1; x2; . . . ; xn are indeterminates over,
satisfying

Oc Oc = (jx1j2 + jx2j2 + � � �+ jxnj2)In�n
where the superscript represents the Hermitian transpose or complex
conjugate transpose of a complex matrix.

The Alamouti scheme [1] for transmission with double transmit an-
tennas employed the following2 � 2 complex orthogonal design

x1 x2
�x�2 x�1

:

However, it was proved in [4] that a complex orthogonal designOc

of sizen exists only when the dimensionn is 1 or 2. This conclu-
sion remains true even if the complex linear processing is allowed at
the transmitter in the sense that the entries of the complex orthogonal
designs can be complex linear combinations of the complex variables
x1; x2; . . . ; xn and their conjugatesx�1; x

�

2; . . . ; x
�

n (see [4, Theorem
5.4.2, p. 1463]). Such an orthogonal design is called acomplex linear
processing orthogonal design.

A generalized complex orthogonal designGc of sizen is a p � n
matrix with entries

0; x1; x2; . . . ; xk;�x1;�x2; . . . ;�xk

or their conjugates by ignoring the zero

x�1; x
�

2; . . . ; x
�

k;�x�1;�x�2; . . . ;�x�k

or the products of the above ones with the imaginary unitjjj, where
x1; x2; . . . ; xk are indeterminates over, satisfying

Gc Gc = (jx1j2 + jx2j2 + � � �+ jxkj2)In�n:
Furthermore, if the complex linear processing is allowed at the trans-
mitter, i.e., that the entries ofGc are relaxed to be complex linear com-
binations of the complex variablesx1; x2; . . . ; xk and their conjugates
x�1; x

�

2; . . . ; x
�

k, then the designGc is called ageneralized complex
linear processing orthogonal design. The rate ofGc is defined asR =
k=p.

As an illustrative example, we present a family ofgeneralized com-
plex orthogonal designswith a special recursive structure for alln � 1
transmit antennas as follows.

Let S1 = (x1) and

S2 =
x1 x2

�x�2 x�1
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be the first two generalized complex orthogonal designs for a single
and two transmit antennas, respectively. For alln � 1, let

p = pn
def
=n(n� 1)=2 + 1:

We can define thep � n matrix Sn for all n � 3 in the following
recursive way:

Sn+1 =

Sn

xn+1
0
...
0

�x�n+1In�n

x�1
x�2
...
x�n

; for n = 2; 3; . . .

wherex1; x2; . . . ; xn are indeterminates overand in the last column
of Sn+1 there arepn� 1 zero entries betweenxn+1 andx�1 . Then, the
p�nmatrixSn for alln � 1 recursively defined above is a generalized
complex orthogonal design satisfying

SnSn = (jx1j
2 + jx2j

2 + � � �+ jxnj
2)In�n

for which the proof is given in Appendix A. It is seen that the rate
of the generalized complex orthogonal designSn for n � 1 transmit
antennas isR = n=pn = 2n=(n2 � n + 2).

Tarokh, Jafarkhani, and Calderbank [4] demonstrated that the
STBCs from generalized complex linear processing orthogonal
designs can achieve full diversity order and have a simple decoupled
ML decoding algorithm which is based only on linear processing at
the receiver. It is the remarkable merit of the STBCs constructed in this
way that renders the space–time block coding a preferable scheme for
information transmission over wireless fading channels with multiple
transmit antennas. Clearly, a fundamental and challenging task in
STBCs within the theoretical framework of generalized orthogonal
designs is to construct high-rate generalized complex linear processing
orthogonal designs while taking into account the minimization of
the decoding delay at the receiver for any given number of transmit
antennas.

According to the above discussion, there exist rate-one generalized
real orthogonal designs for any given number of transmit antennas and
rate-one complex orthogonal design for two transmit antennas. How-
ever, it remains unknown whether or not there exists a rate-one gen-
eralized complex linear processing orthogonal design for more than
two transmit antennas. Our main result in the current correspondence
is thatno such rate-one generalized complex orthogonal design exist
for more than two transmit antennas, irrespective of the amount of de-
coding delay allowed at the receiver, as demonstrated in the following.

B. A Nonexistence Result of Rate-One STBCs for More Than Two
Transmit Antennas Using Complex Constellations

The main result in this correspondence is Theorem 1, the proof of
which is placed at the end of this section.

Theorem 1: Let p � n � 3 andEc be ap � n matrix whose
entries are the complex linear combinations of the complex variables
x1; x2; . . . ; xk and their conjugatesx�1; x

�

2; . . . ; x
�

k. If there existn�n
positive diagonal matricesD1; D2; . . . ; Dk such that

Ec Ec = jx1j
2D1 + jx2j

2D2 + � � �+ jxkj
2Dk (1)

then we have

k � p� 1: (2)

By settingD1 = D2 = � � � = Dk = In�n in Theorem 1, we know
that there donot exist rate-one generalized complex linear processing
orthogonal designs for more than two transmit antennas. In particular,
by settingp = n = k, it is seen thatno complex linear processing
orthogonal design exists for more than two transmit antennas, which
coincides with the result obtained in [4, Theorem 5.4.2, p. 1463]. The-
orem 1 indicates further that no rate-one STBCs exist within the the-
oretical framework of generalized orthogonal designs for more than
two transmit antennas using complex constellations even if the com-
plex linear processing at the transmitter andany amount of decoding
delayp � n � 3 at the receiver are allowed. In other words, the re-
sult obtained in [4, Theorem 5.4.2, p. 1463] only implies the nonex-
istence of rate-one complexsquare(p = n � 3) orthogonal de-
signs for more than two transmit antennas, while Theorem 1 demon-
strates that any rate-one generalized complex orthogonal design for
more than two transmit antennas is nonexistent irrespective of whether
the generalized complex orthogonal design itself issquare or rectan-
gular (p � n � 3).

It is worth noting that, in the context of STBCs based on the theory
of generalized orthogonal designs, the inequality (2) provides an upper
bound on the numberk of information symbols which can be trans-
mitted within the decoding delayp usingn � 3 transmit antennas,
i.e., k � p � 1. In [4], two STBCs of rateR = k=p = 3=4 were
constructed from generalized complex linear processing orthogonal de-
signs forp� n = 4� 3 and4 � 4, respectively, where in both cases
we havek = 3. Therefore, the above upper bound isreachedwhen
p = 4 andn = 3 or 4, i.e.,k = p� 1 = 3. Consequently, we have the
following.

Corollary 1: The rateR = 3=4 is the highest possible rate of
STBCs from generalized complex linear processing orthogonal designs
for three and four transmit antennas given the decoding delay of four,
i.e.,p = 4, at the receiver.

We would like to mention that thep � n matrix Ec with the prop-
erty (1) given in Theorem 1 was originally proposed in [4] within the
theoretical framework of generalized orthogonal designs. If the posi-
tive diagonal matricesD1; D2; . . . ; Dk in Theorem 1 are equal, then
Ec can be reduced by a linear transformation to a generalized complex
linear processing orthogonal designGc as previously defined (see [5]).

C. Proof of Theorem 1

The following lemma is crucial in our proof.

Lemma 1: LetA,B, andC be threem�m (m � 1) complex con-
stant matrices. For anym-dimensional complex-variable vectorx =
(x1; x2; . . . ; xm) 2 m, we denote its conjugate by

x = (x�1; x
�

2; . . . ; x
�

m)

and conjugate transpose

x = (x�1; x
�

2; . . . ; x
�

m):

If the three matricesA, B, andC satisfy

x Ax + x Bx+ x Cx = 0; for all x 2 m

then we have

A = B +B = C + C = 0m�m;

where0m�m denotes them �m all-zero matrix.
Proof: See Appendix B.

In the sequel, we present the proof of Theorem 1 by the contradiction
method. Assume to the contrary that there exists ap � n matrix Ec
satisfying the properties in the theorem withk � p. We can further
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assumek = pwithout loss of generality, since in the casek > pwe can
set the complex variablesxp+1 = � � � = xk = 0 and, consequently,
obtain again ap� n matrixEc satisfying the properties in the theorem
with k = p.

We denote then� n positive diagonal matrices in the theorem by

Di = diag(di1; di2; . . . ; din) > 0; for i = 1; 2; . . . ; p:

We define thep� p positive diagonal matrices as

�` = diag(d1`; d2`; . . . ; dp`) > 0; for ` = 1; 2; . . . ; n:

Then, thep � n matrix Ec satisfies

Ec Ec = diag(x �1x; x �2x; . . . ; x �nx); (3)

where thep-dimensional complex-variable vector

x = (x1; x2; . . . ; xp) 2
p

with its conjugate transposex = (x�1; x
�

2; . . . ; x
�

p).
In the following, we assume that�1 = Ip�p, which can be obtained

by a linear variable transformation of replacingx 2 p by��1=21 x.
Since the entries of thep� n matrixEc are all complex linear com-

binations of the complex variablesx1; x2; . . . ; xp and their conjugates
x�1; x

�

2; . . . ; x
�

p, each column vector ofEc can be written as the form
of Px +Qx, whereP andQ arep� p complex constant matrices in

p�p andx = (x�1; x
�

2; . . . ; x
�

p) 2 p is the conjugate vector ofx.
We denote the first column vector ofEc by

Ax +Bx 2
p

whereA andB arep � p constant matrices in p�p. It follows from
(3) that

(Ax+Bx) (Ax +Bx) = x �1x = x x; for all x 2 p
:

That is,

x (A A+B B � Ip�p)x+ x A Bx + x B Ax = 0

for all x 2 p, whereB is thep�p conjugate matrix ofB. Therefore,
applying Lemma 1 gives

A A +B B = Ip�p and A B +B A = 0p�p (4)

whereA is thep� p conjugate matrix ofA. Let the2p� 2p matrix

W
def
=

A B

B A
2

2p�2p
:

Then, by using (4), we obtain

W W =
A A+B B A B +B A

B A +A B B B + A A
= I2p�2p;

which means thatW is a 2p � 2p square unitary matrix under the
preceding assumptionk = p.

For any givenp-dimensional complex-variable vector

y = (y1; y2; . . . ; yp) 2
p

and its conjugate vector

y = (y�1 ; y
�

2 ; . . . ; y
�

p)

we make the following variable transformation:

x = A y +B y 2
p
: (5)

Then, we have

x

x
=

A B

B A

y

y
=W

y

y
:

By the unitarity of the square matrixW , it follows that

y

y
=W

x

x
=

Ax +Bx

Bx+ Ax
:

Therefore, under the variable transformation (5), thep � n matrix Ec
in the theorem will have entries all of which are complex linear com-
binations of the complex variablesy1; y2; . . . ; yp and their conjugates
y�1 ; y

�

2 ; . . . ; y
�

p . Furthermore, by noting that the number of columns in
Ec is n � 3, we see that the first three column vectors ofEc can be
represented byy = Ax+Bx,Cy+Dy, andEy+ Fy, respectively,
whereC,D,E, andF are allp� p constant matrices in p�p.

Since the column vectors ofEc are mutually complex orthogonal, we
have

y (Cy +Dy) = y Cy + y Dy = 0; for all y 2 p

wherey = (y�1 ; y
�

2 ; . . . ; y
�

p) is the conjugate transpose ofy. Ac-
cording to Lemma 1, the above fact gives

C = 0p�p and D = �D :

By using a similar argument, we can also get

E = 0p�p and F = �F :

Then, the first three column vectors ofEc arey, Dy, andFy, respec-
tively.

From the complex orthogonality between column vectors ofEc, we
obtain

(Dy) Fy = y (D F )y = 0; for all y 2 p
:

Therefore, its conjugate also satisfies

y (D F )y = 0; for all y 2 p

which implies, by Lemma 1

D F = 0p�p: (6)

On the other hand, we can prove that thep�pmatricesD andF are
both of full rank as follows. In fact, according to (3) and (5), we have

(Dy) Dy = x �2x = (A y +B y) �2(A y +B y): (7)

If 0 6= y 2 p, i.e.,0 6= y 2 p, then, by virtue of the unitarity of
the square matrixW

W
y

y
=

A y +B y

B y + A y
6= 0 2 2p

:

Noting thatA y +B y andB y +A y are mutually conjugate, we
can conclude that

A y +B y 6= 0 2 p
:

Then, by (7), we get(Dy) Dy > 0 and, hence,Dy 6= 0 2 p.
Therefore, thep � p complex matrixD is of full rank. In a similar
manner, thep � p complex matrixF can also be shown to have full
rank. Consequently, the twop� p complex matricesD andF are of
full rank as well, which is in contradiction to (6). This completes the
proof of Theorem 1.

III. CONCLUSION

STBCs developed within the theoretical framework of generalized
orthogonal designs possess the favorable characteristics of having full
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diversity order and a fast ML decoding algorithm. While the rate-one
STBCs from orthogonal designs exist for any given number of transmit
antennas using any arbitrary real constellation and for two transmit an-
tennas using any arbitrary complex constellation, it has been shown that
there does not exist rate-one STBC from generalized complex linear
processing orthogonal designs for more than two transmit antennas
using any arbitrary complex constellation. As a consequence, the rate
3=4 of the two generalized complex linear processing orthogonal de-
signs for three and four transmit antennas constructed in [4] is the
highest possible one, given the decoding delay of four at the receiver.

APPENDIX A
PROOF OFSn BEING GENERALIZED COMPLEX ORTHOGONAL DESIGNS

FOR ALL n � 1

The proof can be given by a simple induction in terms ofn � 1.
Whenn = 1 andn = 2, it is obvious thatS1 andS2 as defined earlier
are both generalized complex orthogonal designs. Assuming that the
p� n matrixSn is a generalized complex orthogonal design for some
n � 2, which satisfies

SnSn = (jx1j
2 + jx2j

2 + � � �+ jxnj
2)In�n; (8)

we will show thatSn+1 is also as follows.
The Hermitian transpose ofSn+1 for all n � 2 is

Sn+1 =
Sn �xn+1In�n

x�n+1 0 � � � 0 x1 x2 � � � xn

in the last row of which there arepn � 1 zero entries betweenx�n+1

andx1. It is easy to see that for alln � 1, the first row of thep � n
matrixSn recursively defined above is(x1; x2; . . . ; xn), i.e., that the
first column of then� p matrixSn is (x�1; x

�

2; . . . ; x
�

n) . Hence,

M1
def
= Sn

xn+1

0(p �1)�1
� xn+1(x

�

1; x
�

2; . . . ; x
�

n) = 0n�1;

and equivalently

M2
def
=M1

=(x�n+1 01�(p �1))Sn � x�n+1(x1; x2; . . . ; xn)

=01�n

where0s�t denotes thes � t all-zero matrix for anys � 1 and any
t � 1.

Noting the above facts and the induction assumption (8), we have

Sn+1Sn+1

=
SnSn + jxn+1j

2In�n M1

M2 jx1j
2 + � � �+ jxnj

2 + jxn+1j
2

= (jx1j
2 + jx2j

2 + � � �+ jxn+1j
2)I(n+1)�(n+1) :

By the induction principle, we know that for alln � 1, the p � n
matrix Sn is a generalized complex orthogonal design. The proof is
completed.

APPENDIX B
PROOF OFLEMMA 1

Assume thatA = A1 + jjjA2, (B + B )=2 = B1 + jjjB2, and
(C + C )=2 = C1 + jjjC2, whereAi, Bi, andCi are allm�m real
constant matrices in m�m for i = 1; 2. It is obvious that

B1 = B1 ; B2 = B2 ; C1 = C1 ; andC2 = C2 : (9)

Then, under the conditions of the lemma, we have

x Ax + x Bx+ x Cx (10)

= x Ax +
1

2
x (B +B )x +

1

2
x (C + C )x

= x (A1 + jjjA2)x+ x (B1 + jjjB2)x+ x (C1 + jjjC2)x

= 0; for all x 2 m: (11)

Let x = a 2 m. From (11), it follows that

a (A1 + jjjA2)a+ a (B1 + jjjB2)a+ a (C1 + jjjC2)a = 0

for all a 2 m. Hence, by equating the real and imaginary parts on the
two sides

a (A1 +B1 + C1)a = 0; for all a 2 m (12)

and

a (A2 +B2 + C2)a = 0; for all a 2 m: (13)

Let x = jjja with a 2 m. From (11), we obtain

�a (A1 + jjjA2)a+ a (B1 + jjjB2)a+ a (C1 + jjjC2)a = 0

for all a 2 m. This is equivalent to

a (�A1 +B1 + C1)a = 0; for all a 2 m (14)

and

a (�A2 +B2 + C2)a = 0; for all a 2 m: (15)

From (12)–(15), we can get

a A1a = a A2a = a (B1 + C1)a = a (B2 + C2)a = 0 (16)

for all a 2 m. Noting the symmetry of them � m real constant
matricesBi andCi for i = 1; 2 as stated in (9), we know from (16)
that

A1 = �A1 ; A2 = �A2 ; B1 = �C1; andB2 = �C2: (17)

Now, letx = a + jjjb 2 m, wherea andb are any given two real
vectors in m. By virtue of (9) and (17), from (11) we have

x Ax + x Bx+ x Cx (18)

= (a � jjjb )(A1 + jjjA2)(a+ jjjb)

+ (a � jjjb )(B1 + jjjB2)(a� jjjb)

� (a + jjjb )(B1 + jjjB2)(a+ jjjb)

= 2jjja (A1 + jjjA2)b� 4jjja (B1 + jjjB2)b

= 2a (2B2 �A2)b+ 2jjja (A1 � 2B1)b

= 0; for all a 2 m and allb 2 m (19)

which gives

a (A1 � 2B1)b = 0; for all a 2 m and allb 2 m

and

a (2B2 � A2)b = 0; for all a 2 m and allb 2 m:

Therefore,

A1 = 2B1 and A2 = 2B2: (20)

From (9) and (17), whileA1 andA2 are real antisymmetric matrices,
B1 andB2 are real symmetric ones. Then, from the equality (20), it can
be concluded that

A1 = A2 = B1 = B2 = 0m�m
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and hence, by (17)

C1 = C2 = 0m�m:

Thus, we obtain

A = B +B = C + C = 0m�m

as desired. The proof of Lemma 1 is completed.
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The Rate of Regular LDPC Codes

Gadi Miller and Gérard Cohen, Senior Member, IEEE

Abstract—We find the rate of of a typical code from the regular low-
density parity-check (LDPC) ensemble. We then show that the rate of a
code from the ensemble converges to the design rate in quadratic mean and
almost surely.

Index Terms—Low-density parity-check (LDPC) codes, rate.

I. INTRODUCTION

Most results on low-density parity-check (LDPC) codes are con-
cerned with an ensemble of such codes. In particular, the codes com-
prising the ensemble are not all of the same rate. The most popular way
(originating with [2]) to circumvent this difficulty is to argue that a code
that has a parity-check matrix of sizeL�N has a rateR � R0 where
R0

�
=1� L=N is thedesign rate. This lower boundon the rate is often

sufficient. Moreover, by providing upper bounds on the maximum-like-
lihood decoding error probability of the expurgated LDPC ensemble
(e.g., [2], [3]), the typical rate of the ensemble can be bounded also
from aboveby the capacity of the channel for which reliable commu-
nication is attained.

In this correspondence, we find the rate of a typical code in the(c; d)
regular LDPC ensemble. This is done by finding the rank of the cor-
responding LDPC matrix. We show that as the block length increases,
the parity-check matrix is almost sure to be full rank forc odd, or with
a single degeneracy forc even. We then show that the rate of a code
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randomly drawn from the ensemble converges to the design rate both
in quadratic mean and almost surely.

II. M AIN RESULT

The(c; d) regular bipartite ensemble is expressed in terms of a bipar-
tite graph withN variable nodes andL parity-check nodes. The vari-
able nodes and parity-check nodes are each assignedc andd sockets,
respectively. A random permutation of sizeNc = Ld is then drawn
uniformly from all (Nc)! possibilities to match variable and parity-
check sockets. This ensemble of graphs induces an ensemble of bi-
nary LDPC matrices where the element(i; j) in the matrix is one iff
theith parity-check node is connected to thejth variable node an odd
number of times, and is zero otherwise. Note that while parallel edges
may cause certain rows to have a (Hamming) weight smaller thend,
the parity of the weight is conserved.

The main result of this correspondence is expressed as the following
two theorems.

Theorem 1: Let 2 < c < d be two integers and consider the(c; d)
regular ensemble with block lengthN such thatNc=d is an integer.
Let R(c; d;N) be the random variable corresponding to the rate of a
randomly drawn code from this ensemble. Then

lim
N!1

Pr R(c; d;N) = 1�
c

d
+

even(c)
N

= 1

where even(c) is a function equal to1 if c is even and to0 if c is odd.

Since the rate of any code satisfies0 � R � 1 we immediately get
the following.

Corollary 1: With the same notations as in Theorem 1

lim
N!1

E R(c; d;N)� 1�
c

d

2

= 0

i.e, R(c; d;N) converges to1 � c=d in quadratic mean, and hence
also in probability. The following result, however, does not follow from
Theorem 1.

Theorem 2: With the same notations as in Theorem 1,R(c; d;N)
converges to1 � c=d almost surely.

Comment: Theorem 2 states that the sequence of random variables
converges almost surely regardless to the nature of dependencies (if
any) between them.

Proof of Theorem 1:The proof is slightly different forc even and
odd. We first assume thatc is even, and then describe the modification
for the case wherec is odd. Let us denote the ensemble of(c; d) regular
matrices byA(c; d;N) and letA(c; d;N) be a matrix randomly drawn
fromA(c; d;N). Then

Pr R(c; d;N) = 1�
c

d
+

1

N

= Pr rankA(c; d;N) = N
c

d
� 1 : (1)

We now use the observation

fA : A 2 A(c; d;N)g = BT : B 2 A (d; c;Nc=d)

to write

Pr (rankA(c; d;N) = Nc=d� 1)

= Pr rankAT (c; d;N) = Nc=d� 1

= Pr (rankA (d; c;Nc=d) = Nc=d� 1) : (2)
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