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A Family of Distributed Space-Time Trellis Codes
With Asynchronous Cooperative Diversity

Yabo Li and Xiang-Gen Xia, Senior Member, IEEE

Abstract—In current cooperative communication schemes, to
achieve cooperative diversity, synchronization between terminals
is usually assumed, which may not be practical since each terminal
has its own local oscillator. In this paper, based on the stack con-
struction proposed by Hammons and El Gamal, we first construct
a family of space-time trellis codes for BPSK modulation scheme
that is characterized to possess the full cooperative diversity order
without the synchronization assumption. We then generalize
this family of the space–time trellis codes from BPSK to higher
order QAM and PSK modulation schemes based on the unified
construction proposed by Lu and Kumar. Some diversity product
properties of space–time trellis codes are studied and simplified
decoding methods are discussed. Simulation results are given to
illustrate the performance of the newly proposed codes.

Index Terms—Asynchronous cooperative diversity, mul-
tiple-input multiple-output (MIMO), sensor networks, space–time
trellis codes.

I. INTRODUCTION

I N WIRELESS communication systems, to combat fading,
multiple antennas may be equipped at the transmitter and/or

the receiver, where multiple antennas may provide spatial di-
versity gain as well as multiplexing gain. However, in cellular
systems or sensor networking systems, it may be hard for a mo-
bile station or a sensor terminal to equip with multiple antennas
because of their limited sizes and also the cost. If a system is a
single user point-to-point communication system, no spatial di-
versity gain can be exploited without multiple antennas. By re-
alizing that a cellular or sensor networking system usually has
multiple users, the idea of making different users to communi-
cate cooperatively to achieve the spatial diversity gain has been
proposed in, for example, [1]–[4], and such spatial diversity is
called cooperative diversity.

In [3] and [4], different cooperative protocols are devised and
their outage performances are analyzed. In [4], the problem of
space–time code design for the cooperative communication is
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also proposed, and the orthogonal space–time block codes are
used. In [5], to achieve cooperative diversity, transmitted sym-
bols are estimated but not detected in relays, then the relays for-
ward their estimated symbols to the destination according to the
structure of orthogonal matrices. It is shown that this scheme
can achieve diversity order of , where is the number
of relays involved. In [6] and [7], distributed channel codes are
proposed to achieve the cooperative diversity. In [9] and , linear
dispersion space–time codes are used and the achieveable di-
versity order is analyzed. In all these schemes, synchronization
is assumed as an a priori condition. But different from the spa-
tial diversity provided by an antenna array in one terminal where
only one local oscillator is used, the cooperative diversity is pro-
vided by different antennas in different terminals, where each
terminal has its own local oscillator. Thus, the cooperative di-
versity is asynchronous in nature.

The method to achieve the cooperative diversity where syn-
chronization between relays is not a required condition is dis-
cussed in [10]. In [10], intentional delays are introduced in dif-
ferent terminals. At the destination receiver, minimum mean
square error (MMSE) estimator is used to exploit the cooper-
ative diversity. Although some diversity gain can be achieved
in [10], full diversity order is not guaranteed. The full diversity
order means that the diversity order equals to the number of in-
volved relays. The goal of this paper is to present a systematic
construction of space–time trellis codes that can achieve the full
cooperative diversity order in asynchronous cooperative com-
munications for any number of involved relays.

In this paper, based on the stack construction in [14], a family
of space–time trellis codes for BPSK modulation scheme is
constructed. When this family of space–time trellis codes is
used to exploit the cooperative diversity without the symbol
synchronization requirement, the full diversity order is guaran-
teed/proven. Based on the unified construction proposed in [15]
and [16], this family of space–time trellis codes is generalized
to higher order modulation schemes, such as QAM and PSK.
Some diversity product properties of the space–time trellis
codes are studied in asynchronous cooperative communica-
tions. Our simulation results show that when relative timing
errors/differences are known at the destination receiver and
the optimum decoding method is used, the newly proposed
space–time trellis codes perform even better when there are
relative timing errors/differences, i.e., asynchronous case,
than when there is no relative timing errors/differences, i.e.,
synchronous case, which differs from the existing space–time
codes. Simplified decoding methods, such as M-algorithm, are
discussed, and it is shown that we can trade (negligible) perfor-
mance loss for (significantly) reduced decoding complexity.
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Fig. 1. System architecture.

This paper is organized as follows. In Section II, the system
model is described and the problem of interest is formulated.
In Section III, the space–time trellis code family is constructed.
In Section IV, some diversity product properties of space–time
trellis codes are studied. In Section V, some simplified de-
coding methods are discussed and some simulation results are
presented.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In our system, we assume that there are terminals
that communicate cooperatively. The system is shown in Fig. 1.
We assume that is the source terminal, is the destination
terminal, and , , are the potential relays.
As in the analysis carried out in [3] and [4], we assume that
there are two phases during the cooperative communication. In
Phase I [Fig. 1(a)], broadcasts its information to potential re-
lays , , and the destination . In Phase II
[Fig. 1(b)], stops transmission, and the potential relays start
to transmit. There are two different transmission schemes for
a potential relay [3], [4]: one is amplify-and-forward, i.e., the
relays just amplify the received noisy signal and transmit it to
the destination; the other scheme is decode-and-forward, where
each potential relay detects the source information first, and if
it can successfully detect the source information, then it will be
enrolled in Phase II transmission. In this paper, we adopt the
second scheme, i.e., decode-and-forward. During Phase I, each
potential relay receives

where we assume that the channel is quasi-static Rayleigh flat
fading, is the channel coefficient between and and
is Rayleigh distributed with unit power. We also assume that

is known at the receiver. is the AWGN at
and has zero mean and variance per real dimension.
is the transmitted symbol by . During Phase II, first, de-
modulates the received signal and does CRC check [18] to see
whether the detected information is correct or not. We assume

that those can pass the CRC check do not have any errors in their
detected information. We use to denote the set of potential
relays that can successfully detect the source information during
a packet/frame from , and use to denote the cardinality of
the set , i.e., . Then, those will be en-
rolled in the transmission of Phase II. Clearly, the elements and
the cardinality of set depend on the channel quality between
the source and the potential relays. It is usually assumed that

is a random variable [4]. As analyzed in [4], the protocol
that relays transmit space–time coded signals on the overlapped
channels performs better than the protocol that relays just repeat
their detected information on the orthogonal channels. There-
fore, in this paper, we assume that a space–time coded transmis-
sion is used during Phase II. In Phase II, if the enrolled relays
are symbol synchronized, the destination receives

(1)

In the scenario of exploiting the user cooperative diversity, we
usually assume that the channel is quasi-static, i.e., we assume
that the channel keeps constant during the transmission of
one packet/frame, and then changes independently in the next
packet/frame. Assuming the packet/frame length is , (1) can
be written in matrix form as

(2)

where , , , and
is the space–time coded signal matrix of dimension

...
...

. . .
...

Different rows in are transmitted by different relay termi-
nals. is the set of all the complex numbers, i.e., the com-
plex plane. There are two major differences between the con-
ventional space–time codes [12], and the space–time codes in
the cooperative communication. One is that the row number
in is a random variable instead of a constant in the conven-
tional space–time codes which equals to the number of co-lo-
cated transmit antennas. The other is that each row in matrix

may not be symbol aligned, and the relative timing errors
between different relays may be random. For example, can
be equal to in (3), shown at the bottom of the page.

In the following, we call as an asynchronous version of
. This is due to the asynchronous nature of the cooperative

...
...

...
...

...
...

...
(3)
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Fig. 2. Code construction.

communication, where the transceivers are distributed in dif-
ferent terminals and a central local oscillator is lacked. In the
previous asynchronous cooperative communication, although
the symbol synchronization is not required, we assume that
each relay terminal is packet/frame synchronized, i.e., the start
and the end of each packet/frame in different enrolled relays are
aligned, which can be implemented by using some signaling
feedback from the destination node. When a relay terminal is
waiting for a packet/frame synchronizing flag, the dumb signal

is transmitted. We also assume that the relative timing errors
between different relays are integers of the symbol duration
and a fractional timing error can be absorbed in the channel
dispersion. We further assume that these relative timing errors
are known at the receiver but not at the transmitter. The timing
errors can be estimated by using some random sequences
transmitted periodically by the relay nodes. For example, in the
WiMAX system [22], the relative timing error of the mobile sta-
tions are estimated by the base station during the initial ranging
and periodic ranging period. The maximum relative timing
error is assumed to be . So the actual transmitted space–time
code matrix is of dimension , where .
In each row, totally dumb symbols are padded to the
beginning and/or the ending of a packet/frame transmission.
Similar to the conventional space–time code design, to achieve
good performance, we need to have the full diversity order and
a good diversity product as shown in [11] and [12], while the
following two differences must be considered:

• number of rows in the space–time code matrix is random;
• rows in the space–time code matrix are not symbol-

aligned.
The first one is, in fact, not too difficult to deal with since every
space–time code of dimension designed to achieve full
diversity order, , also has full diversity order, , if any

rows in are deleted, where it is assumed that the
frame/packet length . However, the second difference is
not easy to handle. For example, the delay diversity codes that
are designed to ensure full diversity order in the conventional
space–time codes [12], [17] do not have the full diversity prop-
erty in the asynchronous cooperative communication. Also, the
existing space–time block codes, for example, the orthogonal
space–time codes and the lattice based space–time block codes,
do not have the full diversity order property when the transmis-
sion is not synchronized. The objective of this paper is to design
space–time codes with full diversity order in the asynchronous
cooperative communication, i.e., in (3) has full diversity
order for any symbol-wise timing errors within a maximal range

.

III. CODE CONSTRUCTION

In this section, we introduce a family of space–time trellis
codes that can achieve full diversity order in the asynchronous
cooperative communication. We first design the space–time
trellis codes where each element in is BPSK modulated
based on the stack construction in [14], and then we generalize
the construction to QAM and PSK symbols by using the unified
construction in [16].

Our space–time trellis code construction, when BPSK mod-
ulation scheme is used, is shown in Fig. 2. The source informa-
tion bits are detected in a relay , . If they are
correct during a packet/frame, they are passed through a tapped
delay line with tapped coefficients , where

for , and is the maximal
delay. We denote and
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, where and in what fol-
lows denotes the delay unit. The coefficient matrix of
is defined as

...
...

...
...

If the binary source information bits detected in the relays in one
packet/frame is , then the binary output of the tapped
delay lines is the set

where for is shown as follows:

...
...

...
...

...
...

...
(4)

The space–time code generated by is defined as the
set

The above space–time codes have trellis structure. For example,
if , then the trellis structure is
shown in Fig. 3, where in the representation , is the input
binary bit, is the tapped delay binary output for , and is
the tapped delay binary output for . In this construction, if
the maximum timing error is , the number information bits in
one packet/frame is , and BPSK modulation scheme is used,
then the rate of the space–time code generated from
is bits/s/Hz. For long packet/frame, the rate
approaches 1 bit/s/Hz. The previous construction in general is
the same as the one obtained by Hammons and El Gamal [14]. In
the following, to achieve the full diversity order in asynchronous
cooperative communications, we investigate conditions on the
generating matrix .

Assume the timing error of relay is , then dumb sym-
bols are padded to the left of the th row of every matrix
in the set . The resulting asynchronous version matrix is
and the set is . If the dumb symbol , then it
is equivalent to that many 0’s are padded to the left of the th
row of binary matrix in . These matrices can be generated
by , where

. For example, if
and the second relay has one timing error, i.e., , then
the equivalent trellis structure is shown in Fig. 3. To ensure the
full diversity order in the asynchronous cooperative communi-
cation, there are requirements for the tapped coefficients for

Fig. 3. (a) Trellis structure of G (D) = [1 +D ; 1 +D +D ]. (b) Trellis
structure of G (D) for k = 0, k = 1.

and , which are stated in The-
orem 1 and the proof is based on the stack construction in [14],
which is stated in the following lemma.

Lemma 1 [Hammons and El Gamal]: Let
be linear vector-space transformations from to , where

, and let be the set of codeword matrices

...

where denotes an arbitrary -tuple of information bits and
. Then, the space–time code , which consists of the

matrices with its entries ,
achieves the full diversity order if and only if
have the property that :

is nonsingular unless ,
where is the modular 2 addition.

Based on this lemma, we have the following theorem.
Theorem 1: The space–time code generated by

has full diversity order in the asyn-
chronous cooperative communication if and only if the coeffi-
cient matrix of any asynchronous version

of

...
...

...
...

...

has full rank, , in the binary field for arbitrary
, where .
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Proof: According to the construction, the matrix that trans-
forms the vector space to in the potential relay

is

...
...

...
...

...
...

...

for , where is the length of the packet/frame
before encoding.

First, we show that if is full rank, then
is full rank unless

. If is full rank, then
is not equal to zero, unless .

Correspondingly, equals to the first row of after the last
zeros in the row are deleted. Because of the diagonal

structure of , we have is full rank if is not equal to zero.
Second, we show that, if

is full rank unless , then the corre-
sponding is full rank. Again, based on the diagonal struc-
ture of , if is full rank then every row of is not an all zero
vector. Since the first row of after deleting the last zeros
is equal to the linear combination of the rows of with the
same coefficients , we have that the linear com-
bination of the rows of is not equal to zero, which is equiv-
alent to say that is full rank.

Clearly, in Theorem 1, is a row-shifted version of ,
and for each row , , the shift amount is ar-
bitrary. The importance of Theorem 1 is that, in order to con-
struct space–time code generated by with full diver-
sity order in asynchronous cooperative communication, we need
to and only need to construct the generating matrix
such that any row-shifted version of its coefficient matrix

has full rank. We next present some constructions of such
. The following theorem gives some sufficient condi-

tions for to ensure that their asynchronous versions
have full rank for some values of .

Theorem 2:
1) : If the coefficient matrix of has the struc-

ture

and full rank in , then the space–time code generated
by has full diversity order in the asynchronous
cooperative communication, where in , denotes an
arbitrary element in .

2) : If the coefficient matrix of has the struc-
ture

and full rank in , then the space–time code generated
by has full diversity order in the asynchronous
cooperative communication.

3) : If the coefficient matrix of has the struc-
ture

and full rank in , and after two rows of are shifted
together with an arbitrary shift amount, the modular two
sum of each column of the shifted matrix is not equal to
zero, then the space–time code generated by has
full diversity order in asynchronous cooperative commu-
nication.

Proof: It is easy to verify for 1) and 2) that if any relay is
delayed with respect to others, then for , the coefficient
matrix may have the following structure:

and for , may have the following structure:

We can see from the structure that the 1 in the first row and the
first column can not be obtained from any linear combination of
other rows. Furthermore, the other rows are linearly independent
because of the full rank properties of and . Thus,
and have full rank. Based on Theorem 1, we have that the
space–time codes generated by and have full
diversity in the asynchronous cooperative communication.

For 3), there are two cases. The first case is that one row is
shifted more with respected to others. In this case, may have
the following structure:

Because of 2), we can see that the last three rows are linearly
independent. Since the 1 in the first row and the first column
can not be generated by the zeros in other three rows, in this
case is full rank.

The second case is that two rows are shifted the same amount,
i.e., the structure of is

In this case, we can see that either one of the first two rows can
not be obtained by any linear combination of the last two, and
the first two rows can not be obtained from each other, because

is full rank. So, if the modular two sum of each column is not
equal to zero, is full rank. Based on Theorem 1, we has that
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the space–time code constructed from have full diversity
order in the asynchronous cooperative communication.

The two columns of ones in and are used to guarantee
the equivalence of two way shifting.

Theorem 2 is a sufficient condition for the construction when
2, 3, 4. We can see from Theorem 2 that, the minimum re-

quired number of columns in is 2, in is 4, and in is 5,
respectively. The following theorem gives a sufficient condition
for to ensure the full diversity order of the corresponding
space–time code in the asynchronous cooperative communica-
tion for arbitrary .

Theorem 3: Let denote the weight of binary vector ,
i.e., the number of 1’s in . Assume that the binary matrix

...
...

...
...

...

are row permuted such that ,
where is the th row vector of matrix . If

(5)

for , and is used as the coefficient matrix of
to construct the space–time code , then has the full

diversity order in the asynchronous cooperative communication.
In contrary, if

(6)

with , then there exists such that the space–time
code generated by with coefficient matrix does
not have full diversity order in the asynchronous cooperative
communication.

Proof: It is obvious that the row permutation operation
does not affect the full diversity requirement of the asyn-
chronous cooperative communication. For any shift of a row,
its weight does not change.

We first prove the sufficiency part. Assume that a shifted ver-
sion of is

...

then for . Assume that is a
binary linear combination of the rows, i.e.,

, where for . We show that
the binary row vector is not an all zero vector unless
for .

Assume that is the largest value in , such that
and for . Then, there

should be a 1 in , where in its column position the th row
, for , has 0 as the component. Otherwise,

the condition can not be satisfied.

This shows unless for , i.e., the
sufficiency part of the theorem.

We use counterexamples to show the necessity

...
...

where the weight of the th row vector satisfies the following
identity:

The previous matrix does not have the full rank since the sum
of all rows is the all zero vector, which shows the necessity part
of the theorem.

From Theorem 3, we can give a construction easily. For
example, we can construct as

(7)

as

(8)

and can be constructed as

(9)

For the construction in Theorem 3, the number of columns
in grows very quickly with the number of rows. For ex-
ample, if then the number of columns in should
be at least 8. While if we only need to satisfy the full rank of

itself, the least number of columns is only 4. Although the
necessity part in Theorem 3 implies that if the weight condi-
tion (5) does not hold, there exists a counter example that does
not satisfy the full rank property of for some shifts. How-
ever, the weight requirement (5) in Theorem 3 is still a suffi-
cient condition, i.e., we can construct a which satisfies the
full diversity requirement in asynchronous cooperative commu-
nication with much lower number of columns. For example, in
Theorem 2, for the number of columns in is 5, but
we should check more conditions than that in Theorem 3. The
disadvantage of having large number of columns is that the de-
coding complexity would be high. Since large number of rows
means large maximum memory order. For the Viterbi decoder,
the complexity grows exponentially with the maximum memory
order. For the construction from Theorem 3, the minimum re-
quirement of the weights is
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for , from which we can easily calculate that the
minimum required number of columns of is .

The difficulty of constructing with less number of
columns lies in the fact that even when satisfies the full
diversity order requirement of the asynchronous cooperative
communication, adding a column to , the resulting
may lose the full diversity order property in the asynchronous
cooperative communication. To construct by using the
construction , add a column to existing construction is
necessary. For example, we can verify by using Theorem 2 that

has full diversity in the asynchronous cooperative diversity, but

which is generated by adding a column to , loses
the full diversity order property in the asynchronous cooperative
communication when it is shifted to be

Constructing with a smaller number of columns is an in-
teresting problem. The shifted full rank construction with min-
imum number of column for arbitrary has been recently
found in [23].

Having the BPSK modulated space–time codes that have full
diversity order, using Lu–Kumar’s unified construction [16], we
can generalize them to other PAM, QAM, or PSK modulated
space–time codes, as shown in the following theorem.

Theorem 4: Let , be integers with , . Let

be a collection of sets of binary matrices
generated by using (4) with independent binary
vectors of dimension . Let be a primitive -th root
of unity. Let , , such that belongs to the ideal

generated by 2 in . Let

be the map defined by

where is a nonzero complex number, is a matrix in the
binary matrix set , and the multiplication and exponential of

to are carried out entry by entry. Then, if satisfies
the condition of full diversity order in asynchronous cooperative

communication the same in Theorem 1, then the space–time
code generated by the above map also has full diversity
order in the asynchronous cooperative communication.

This theorem can be proved similarly to that in [16]. The
most important thing to notice is that in this construction the
operations in the map are carried out entry by entry, which
is similar to the BPSK modulation, and the timing errors in re-
lays can be mapped to the shifts in binary matrix sets for

, , which is then re-
flected in . In this case, the dumb symbol a relay sends
is .

Similar to the BPSK modulation case, if the modulation is
PAM, QAM or PSK, and the maximum allowed timing

error in one packet/frame is , when the binary information
bit sequence length is , then the transmission rate is

. When the length of the informa-
tion bit sequence approaches infinity, the rate approaches
b/s/Hz.

We now give two examples. Obviously, if we choose ,
, , and , then the construction is the

same as the BPSK construction shown before. If each entry of
the space–time code matrix is chosen to be a 16-QAM
symbol, then, we can set , , , and

, where . The space–time code is the set

In the construction, are the space–time
code matrices generated by four independent information binary
vectors , each of which has dimension ,
from the generator matrix using (4).

IV. DIVERSITY PRODUCT ANALYSIS

When a space–time code has full diversity, its diversity
product is another important factor to determine its perfor-
mance. Assume and are two different matrices in a full
diversity space–time code , and assume

are the eigenvalues of , then the
diversity product of the space–time code is defined as

Based on the arithmetic mean and geometric mean inequality,
the diversity product is upper bounded by

where is the squared Frobenius norm of matrix .
According to the asynchronous nature, we have the following
theorem which states the relationship of the upper bound of the
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TABLE I
RATE 1=M CONVOLUTIONAL CODES WITH OPTIMAL FREE

HAMMING DISTANCE AND FULL DIVERSITY IN ASYNCHRONOUS

COOPERATIVE COMMUNICATION

diversity products between the space–time code and its asyn-
chronous version .

Theorem 5: Assume is the diversity product upper
bound of the space–time code and is the diversity
product upper bound of , which is the asynchronous version
of the space–time code , as previously defined, then we have

Proof: Since the padded dumb symbols for the asyn-
chronous version of , are the same for all the space–time
code matrices, the squared Frobenius norm of the difference ma-
trix in should be same as the cor-
responding in . So, their diversity
product upper bounds are the same, i.e., .

For the space–time codes constructed in Section III,
is a function of the Hamming distance between elements of the
binary matrices and in the binary matrix set which is
used to construct the space–time code . This Hamming dis-
tance is equal to the Hamming distance of the rate con-
volutional code generated by the corresponding . The
larger this Hamming distance is, the larger the upper bound of
the diversity product is. Therefore, it is suggested that we choose
the rate convolutional code that has the max-
imum free Hamming distance. Table I gives with the
optimal free Hamming distances and full diversity order in asyn-
chronous cooperative communication for 2, 3, 4, and 5. For

, we find that the optimal minimum free Hamming dis-
tance convolutional codes do not satisfy the full diversity order
property in asynchronous cooperative communication.

Although the diversity product upper bound of the space–time
code is the same as its asynchronous version , if we repre-
sent and in trellis, as those represented in Fig. 3(a) and (b),
their minimum error event lengths are not the same but they have
the following relationship.

Theorem 6: Assume that is the minimum length
of the error event path of the space–time code gen-
erated by ,
and is the minimum length of the error event
path of , the asynchronous version of generated by

. As-
sume that .
Then, we have

Proof: Based on the construction of the space–time code
, the branches in the error event path of the trellis generated

by correspond to
the columns from the first nonzero column to the last nonzero
column in the corresponding difference matrix of . And the
length of the shortest error event path is equal to the smallest
number of such columns in the difference matrices of . For the
asynchronous version , the number of columns from the first
nonzero column to the last nonzero column for all the difference
matrices of is larger than the corresponding difference
matrices in , so the smallest number of columns is also
larger. Thus, the length of the shortest error event path of the
trellis generated by is larger than that of the trellis
generated by , i.e., .

As a remark, it is usually difficult to compare the exact rela-
tionship between the diversity product of the space–time code

and that of its asynchronous version , since when
achieves the minimum diversity product in , its asyn-

chronous version may not achieve the min-
imum diversity product in .

V. SIMPLIFIED DECODING AND SIMULATION RESULTS

To decode the newly constructed space–time trellis code,
the optimal decoding method is Viterbi algorithm and its
complexity grows exponentially with the maximum memory
order of the generating polynomial , which equals to
the number of columns in the coefficient matrix . Thus, the
decoding complexity grows exponentially with . For the
construction in Theorem 3, to ensure the full diversity order, the
minimum number of columns of equals . When the
number of involved relays is large, the decoding complexity of
Viterbi algorithm is high. However, when there is only one an-
tenna in the destination receiver, the performance gain achieved
by more than four transmit antennas is marginal comparing
with that achieved by four transmit antennas [13], [3]. Hence,
four enrolled relays could be enough when only one destination
antenna is available. On the other hand, is an undetermined
parameter in the system. Although it has an upper limit because
of the packet/frame synchronization, it may be not small.
Therefore, it may be necessary to investigate the performance
of a simplified decoding. The recent shift-full-rank matrices
constructed in [23] have minimum number of columns, thus
the decoding complexity is low.

A natural simplified decoding is sequential decoding, whose
complexity is independent of the maximum memory order
of the generating polynomial . Usually, there are
three kinds of sequential decoding algorithms [20], [21]:
one is breadth-first algorithms which include M-algorithm,
T-algorithm, etc.; one is depth-first algorithms which include
Fano algorithm, etc.; and the other is metric-first algorithms,
which include stack algorithm etc. For depth-first algorithms,
metric-first algorithms and T-algorithm, their complexities are
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Fig. 4. Comparison of FER for Alamouti’s code and space–time trellis code
generated by G (D) = [1 +D ; 1 +D +D ].

random variables depending on the quality of the channel.
Also, there is stack overflow problem in Fano algorithm and
stack algorithm, while M-algorithm does not have the problem
of either random complexity or stack overflow. Furthermore, in
M-algorithm, the complexity and the performance can be easily
traded off by controlling the number of branches existed in the
searching. Therefore, in our simulations, we adopt M-algorithm
and compare it with the optimal Viterbi algorithm.

In all our simulations, we assume that packet/frame length is
200 information bits, and the channel is quasi-static Rayleigh
flat fading, i.e., the channel keeps constant in one packet/frame
and changes independently in the next packet/frame. We further
assume that in Phase I transmission, there is no errors in relays
during a packet/frame, i.e., what relays detected are the same as
what the source terminal has sent. We also assume that there is
only one antenna in the destination terminal.

Fig. 4 compares the frame error rate (FER) performances for
Alamouti’s code and the space–time trellis code generated by

from Theorem 2 and Table I
when two relays are involved. Both the case with symbol syn-
chronization and the case without symbol synchronization are
shown. When simulating the case without symbol synchroniza-
tion, we assume that the maximum timing error is
and that the instant timing error is uniformly distributed in the
set . We also assume that the destination receiver
knows these timing errors. For the space–time trellis code used
in Fig. 4, we use Viterbi algorithm for the decoding. From Fig. 4
we can see that when there is no symbol synchronization, the
performance of Alamouti’s code degrades significantly and it is
even worse than the case when there is no diversity at all. This
is because that the transmission energy is distributed among re-
lays but the destination receiver can not effectively collect this
energy when the symbols are not synchronized.

Fig. 5 compares the performance of in (7) and the perfor-
mance of the delay diversity codes [12], [17] in synchronous
case, i.e., and in asynchronous cases for
and . In asynchronous cases, the relative timing errors

Fig. 5. Comparison of FER for code G (solid lines) and the delay diversity
code (dotted–dashed lines).

Fig. 6. Comparison of FER for Viterbi algorithm and M-algorithm without
timing error, i.e., L = 0, for the proposed space–time trellis codes.

are uniformly generated from the set . In Fig. 5,
Viterbi algorithm is used. As we have analyzed, for in (7),
full diversity order can be achieved for arbitrary relative timing
errors, while it is not the case for the delay diversity codes. This
can be clearly seen in Fig. 5. In synchronous case performs
slightly better while in asynchronous cases performs signifi-
cantly better than the delay diversity code. Note that and the
delay diversity code have the same decoding complexity, since
both of them have the same number of states. An interesting
property of our newly proposed codes is that their performance
improves when the relative timing error range increases, which
does not hold for the delay diversity code or Alamouti’s code as
discussed previously.

Fig. 6 compares the performance of M-algorithm and Viterbi
algorithm. In M-algorithm we choose the number of total
branches surviving in the search as 4. The codes are constructed
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Fig. 7. Comparison of the effects of different ranges of timing errors to the
performance of Viterbi algorithm for the proposed space–time trellis codes.

from Theorem 3. For 2, 3, and 4, the coefficient matrices
are chosen as in (7)–(9), respectively. In this figure, we assume
no relative timing errors, i.e., or synchronized, between
involved relays. From this figure we can see for , when
the complexity of M-algorithm is comparable with Viterbi
algorithm, their performances are also comparable. For ,
the number of states in M-algorithm is still remained as 4, but
the number of states in Viterbi algorithm has increased to 16.
From the simulation we can see that in this case, there is only
0.2-dB performance loss of M-algorithm with respect to Viterbi
algorithm. When , because of the larger difference of
the numbers of states in M-algorithm and Viterbi algorithm, the
performance gap between M-algorithm and Viterbi algorithm
becomes larger.

Fig. 7 shows the simulation results of the comparison of the
effects of different ranges of relative timing errors to the per-
formances when these relative timing errors are known in the
receiver and when the optimal Viterbi algorithm is used. In the
simulation, the space–time trellis codes we choose are generated
from Theorem 3, and the coefficient matrices are (7) and (8), re-
spectively, for and . The maximal relative timing
errors are , i.e., no timing error, and .
When we implement the simulation, the timing errors for each
relay are generated uniformly from the set . We
can see from Fig. 7 that, as the timing error ranges increase,
the performance improves. Although we have seen in Section IV
that as increases, the diversity product upper bound of the
constructed space–time trellis codes does not increase, for the
construction in Theorem 3 we can see from the simulation that,
as increases, the diversity product is suspected to increase
too.

VI. CONCLUSION

In this paper, to consider the asynchronous nature of the co-
operative diversity, we construct a family of space–time trellis
codes that have full diversity order without the symbol synchro-
nization requirement. This family of space–time trellis codes

can be used for BPSK, QAM and PSK modulation schemes.
Some diversity product properties of this family of space–time
trellis codes are studied, and M-algorithm is used to decode this
family of space–time trellis codes to reduce the decoding com-
plexity. The simulation results are presented to illustrate the
promising performances of the newly constructed space–time
trellis codes for the asynchronous cooperative communication.
Also, from the simulations we find that, as the relative timing
error ranges increase, when the timing errors are known at the
receiver and the optimal Viterbi algorithm is used, the perfor-
mance of the newly constructed space–time trellis codes im-
proves.
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