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A Robust Chinese Remainder Theorem With
Its Applications in Frequency Estimation

From Undersampled Waveforms
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Abstract—The Chinese remainder theorem (CRT) allows to
reconstruct a large integer from its remainders modulo several
moduli. In this paper, we propose a robust reconstruction algo-
rithm called robust CRT when the remainders have errors. We
show that, using the proposed robust CRT, the reconstruction
error is upper bounded by the maximal remainder error range
named remainder error bound, if the remainder error bound is
less than one quarter of the greatest common divisor (gcd) of all
the moduli. We then apply the robust CRT to estimate frequencies
when the signal waveforms are undersampled multiple times. It
shows that with the robust CRT, the sampling frequencies can be
significantly reduced.

Index Terms—Chinese remainder theorem (CRT), frequency es-
timation, robust CRT, sensor networks, undersampling.

I. INTRODUCTION

T HE Chinese remainder theorem (CRT) allows to recon-
struct a large integer from its remainders modulo a set of

moduli. When all the moduli are co-prime, CRT has a simple
single formula, which is well-known not robust, i.e., small er-
rors from any remainders may cause a large reconstruction error.
This is perhaps why CRT has applications in cryptography but
not desired in some other applications, such as frequency es-
timation from undersampled waveforms with its applications,
for example, phase unwrapping in radar signal processing [1],
[6]–[10] and sensor networks [5]. In terms of reconstruction of
large integers from remainders, it is not restricted to co-prime
moduli. The unique reconstruction is possible if and only if the
large integers are less than the least common multiple (lcm) of
all the moduli. A type of robust CRT has been recently proposed
in [2] when the large integers to determine are of some special
forms, which was motivated from a robust phase unwrapping al-
gorithm also proposed in [2] with applications in radar imaging
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of moving targets [1], [6], [7]. Their fast implementations are
recently reported in [3] and [4].

Motivated from the robust phase unwrapping algorithm and
the special form of the robust CRT obtained in [2], we propose
a general robust CRT, i.e., robust reconstruction of general large
integers from their remainders with errors, which often occurs
in practical applications. Note that this general robust CRT is
different from the preliminary one in [2] that is only limited to
special integers with the form of for some
integer while are fixed integers as indicated in Section III
in [2].

In this paper, we show that, using the newly proposed robust
CRT, the reconstruction error is upper bounded by the max-
imal remainder error range named remainder error bound,
if the remainder error bound is less than one quarter of the
greatest common divisor (gcd) of all the moduli , i.e.,

, where is the number of moduli
used. Note that this robust CRT is different from the existing
CRT with errors in for example [5], [13] where sufficiently many
moduli are used so that only a few of the remainders have errors
does not affect the unique reconstruction, i.e., if there are only
a few remainder errors, then they can be corrected and the re-
construction is accurate. This robust CRT is also different from
the one in [14], whose correctness is probabilistic over a suf-
ficiently large number of prime moduli, where all remainders
contaminated by a small additive noise bounded in the Lee norm
(even with wraparound errors) may be corrected [14]. In con-
trast, in our proposed robust CRT, the reconstruction may not
be accurate but with an error deterministically in the same range
of the remainder errors and every remainder may be erroneous,
where all remainders are assumed non-negative. After saying
so, although its correctness is probabilistic, the algorithm in [14]
may tolerate much larger errors in the remainders than our pro-
posed algorithm does when the gcd of the moduli is small.
(The algorithm in [14] can tolerate errors with magnitudes ap-
proaching probabilistically whereas the proposed algo-
rithm in this paper tolerates errors with non-negative amplitudes
approaching deterministically.)

We then apply the robust CRT to estimate frequencies when
the signal waveforms are undersampled multiple times. It shows
that with the robust CRT, the sampling frequencies can be sig-
nificantly reduced, and/or the number of samples can be signif-
icantly reduced.

The remaining of this paper is organized as follows. In
Section II, we first briefly describe the problem and then
present the robust CRT. In Section III, we present fast imple-
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mentation and efficient algorithms. In Section IV, we present
an application of the robust CRT in frequency estimation from
multiple undersampled waveforms. We also present some
simulation results.

II. ROBUST CHINESE REMAINDER THEOREM

Let us first see the problem. Let be a positive integer,
be the moduli, and be

the remainders of , i.e.,

(1)

where and is an unknown integer, for
. It is not hard to see that can be uniquely recon-

structed from its remainders if and only if
. If all the moduli are co-prime, then

CRT has a simple formula [11], [12].
The problem we are interested in this paper is how to robustly

reconstruct when the remainders have errors:

(2)

where is the maximal error level, called
remainder error bound. We now want to reconstruct from
these erroneous remainders and the known moduli . With
these erroneous remainders, (1) becomes

(3)

where are unknown and denote the errors of the
remainders. From (2), . The basic idea for our robust
CRT is to accurately determine the unknown integers in (3)
which are the folding integers that may cause large errors in the
reconstructions if they are erroneous. Motivated from the robust
phase unwrapping algorithm in [2], we propose the following
robust CRT.

Let denote the gcd of all the moduli . Then

(4)

and all , , are co-prime, i.e., the gcd of any pair
and for is 1.

For , let

(5)

where and . Since
, we have . For each

with , define

(6)

and let denote the set of all the first components of the
pairs in set , i.e.,

for some (7)

and define

(8)

Then, we have the following result.

Theorem 1: If all , , are pair-wisely co-prime

(9)
and

(10)

then, set defined above contains only element , i.e.,
, and furthermore if , then for
, where , , are the true solutions in (3).

Its proof is similar to the proof of Theorem 1 in [2], which,
for the completeness, can be found in Appendix I. Note that
Although the proof is similar to the one in [2], the result in the
above Theorem 1 is much more general than the one in [2] as
explained in Introduction. In [2], has to be a special form
of multiples of the product while in Theorem 1 is
arbitrary.

When the folding integers in (3) are accurately solved, the
unknown parameter can be estimated as

(11)

where stands for the rounding integer (rounding to the closest
integer) and the estimate error is thus upper bounded by

(12)

when the condition (10) holds. The above estimate error of
is due to the remainder errors that has the maximal level

. One can clearly see that this reconstruction is robust and thus
called robust CRT. Note that, in the above robust CRT, the in-
teger is arbitrary as long as it falls in the range

, while the robust CRT obtained in [2]
requires that has to have the form of for
some integer in the range .

From Theorem 1, one can see that when all moduli are
co-prime, i.e., , the remainder error bound is forced
to be 0 in (10). This means that the above reconstruction may
not guarantee a robust solution that is not conflict with the
well-known knowledge that the traditional CRT is not robust.

One can also see that the above robust CRT is based on the
sets defined in (6) that need many 2 dimensional (2-D)
searches of and in the 2-D range for

. When are large, become large and therefore
the 2-D searches may have a high computational complexity. In
next section, we simplify the searching and also propose a 1-D
searching algorithm.

Another remark is that from (12), one can clearly see that
when the remainders are error-free, i.e., , the reconstruc-
tion is then accurate, i.e., . In this case, different from the
methods in [11], [12], the above result provides an alternative
way to determine integer from its remainders and moduli that
are not co-prime. Furthermore, the fast algorithms presented in
next section still applies in this error-free case, and thus provide
fast algorithms for the reconstruction from error-free remain-
ders and non-co-prime moduli.
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III. FAST ALGORITHMS

The order of the many 2-D searches of and in
the 2-D range for in (6) is about

. This order was reduced significantly in [3]
where the following result was obtained.

Theorem 2: [3] Let

(13)

and be defined in (14) at the bottom of the page. Then, we
have for .

Clearly, Theorem 2 applies to the problem in Section II. From
Theorem 2, one can see that the number of searches to obtain
is only in the order of , i.e., the size of set .

Next, we propose a different fast algorithm to find the folding
integers similar to [4]. Instead of finding the whole set ,
we find only one element in for each with and
then use some properties to determine . We show that one
only needs the order of number of searches for the new
algorithm. To do so, we first present some properties listed in
the following lemmas, whose proofs are similar to those in [4].

Lemma 1: Assume that all the conditions in Theorem 1 hold,
i.e., (9) and (10) hold. Let , , be the true solutions
in (3). Then, if and only if and

for some integer and for
.

Its proof is the same as the proof of Lemma 1 in [4].
Lemma 2: Under the conditions in Theorem 1, let

(15)

Then, for any element , there exists an integer
such that

Its proof is the same as the proof of Lemma 2 in [4].
Lemma 3: Let . If one component of ,
or , is fixed, then, the other one, or is uniquely de-

termined.
The following proof is an improvement of the proof of

Lemma 3 in [4].

Proof: For with , we claim

(16)

This claim (16) is proved in Appendix II.
We first consider the case when is fixed. In this case, from

(16) its corresponding in must satisfy

(17)

where the right-hand side interval length is for
and therefore this interval contains only one integer,

i.e., is unique and determined by (17).
We next consider the case when is fixed. In this case, from

(16) its corresponding in satisfies

(18)

where the right-hand side interval length is 1, and thus this open
interval contains only one integer as well, i.e., is unique and
determined by (18).

From the above proof of Lemma 3, one can see that the lower
bound (16) plays the key role for the determination. In fact, it
can be further improved as follows.

For , let with ,
i.e., is the remainder of modulo . Since and are
co-prime, we have

(19)

Corollary 1: For with , if ,
then

(20)

This corollary, i.e., inequality (20), is proved in Appendix III.
Lemmas 1-3 tell us that the two dimensional searching for

is not necessary and instead we only need to search one
of possible and and the other then uniquely follows, i.e.,
we only need to do one dimensional searching. With the above
three lemmas, a fast algorithm to determine the folding integers

can be described by the following steps.

if ,

otherwise

(14)
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We first want to find one element for each
with . Based on Lemma 2, we can find an element in

that belongs to and therefore, we only need to search over
set . We first search all integers from 0 to . From
the proof of Lemma 3, when is fixed, its corresponding
in is determined by (17) and denoted by . Then,
this pair is evaluated by the criterion in (6), and its
minimum is searched among all from 0 to . We next
search all integers from 0 to . Also from the above proof
of Lemma 3, we know that when is fixed, its corresponding

in is determined by (18) and denoted as . Then,
similarly the pair is evaluated under (6), and its
minimum is searched among all from 0 to . We then find
the minimum of these two minimums and let denote
the element that minimizes the function in (6) over . From
Lemma 2, . Note that the total number of the
searches in this case is .

After we have found an element for each
with , we next show how to determine the folding
integers for . By Lemma 1, we know that and

have the same remainder, say , for , i.e.,

(21)

Thus, from we obtain the remainder of modulo
for each with . This gives remainders of
modulo for . Therefore, can be determined
by these remainders by using the conventional CRT [11], [12]
if that is ensured by Theorem 1. Thus, we
have

(22)

where is determined from

(23)

When folding integer is determined as above, we can ob-
tain other folding integers for as follows. For each

with , from Lemma 1, we have

(24)

Thus, we have

(25)

When all the folding integers for are deter-
mined, the unknown integer can be estimated as before in
(11) with an estimate error upper bound (12).

We now compare the total numbers of searches needed for
solving for with for the above three different
methods. The total number of searches for region

for in (6) is

(26)

which is in the order of . The total number of
searches for the region for in (13) and (14) is

(27)

which is in the order of . The total number of searches
for the above 1-D searching algorithm is

(28)

which is in the order of .
As an example, let us consider the case when and

three moduli are , , , and
. Thus, in this case, we have ,

, and . The total number of searches in (26) is
; the total number of searches in (27)

is ; and the total number of searches in (28)
is only that is far less than the other two
2-D searching algorithms. This complexity reduction becomes
even more significant when the parameters get larger.

IV. APPLICATION IN FREQUENCY ESTIMATION FROM

UNDERSAMPLED WAVEFORMS

CRT can be naturally applied to frequency estimation when a
signal waveform is undersampled multiple times as discussed in
[5], such as in sensor network applications. Let be
an unknown frequency we are interested in a signal and it may
be high. An analog signal is

(29)

where is a non-zero constant and is an additive noise,
and is a received signal. For , let Hz be
the sampling frequencies and sampled signals are

(30)

and thus, the samples in seconds, an observation time dura-
tion, are

(31)
For the above single frequency signal, the -point DFT of
each of the above sampled signals may provide an estimation
of the frequency . However, if the sampling fre-
quency is smaller than the unknown frequency , , i.e.,
undersampling, then the -point DFT only provides a folded
frequency or remainder of mod : mod ,
and this remainder may be erroneous when the additive noise

is significant and/or the observation time duration is
short. Now the question is how to estimate the true frequency
from these erroneous remainders, which is precisely the robust
CRT problem discussed in this paper and our proposed robust
CRT may provide a robust solution for this problem.

Note that in practice, there might be wraparound effects for
the residues (that has been considered by some other methods
as in [14]), leading to the fact that the condition in (10) does not
always hold. Under this circumstance, the upper bound of the
frequency estimation result in (12) cannot always be guaran-
teed. However, although our error estimate result may not hold
occasionally when the residue errors do not satisfy the proposed
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Fig. 1. Estimation errors and bound using the robust CRT for integers.

conditions, the estimation algorithm still applies as shown later
in our simulations where more practical additive noises (rather
than direct remainder errors) are considered.

We next show some simulation results to illustrate the robust
CRT performance. We first evaluate the proposed robust CRT
algorithm for integers.

Let us first consider the case when , ,
, . In this case, according to Theorem 1, the max-

imal range of determinable is 16 830 from (9) and the max-
imal error level is upper bounded by from (10). In
this simulation, the unknown integer is chosen uniformly at
random from the interval [0, 16 830). We consider the maximal
remainder error levels , 1, 2, 3, 4, and 16 000 trials for
each of them. The mean error between the esti-
mated and the true is plotted by the solid line marked with

, and the estimation error upper bound (12) is plotted by the
solid line marked with in Fig. 1. Clearly, one can see that the
reconstruction errors of from the erroneous remainders are
small compared to the range of .

For the application in frequency estimation, we set two sam-
pling frequencies and , where
three possibilities of are considered: 400, 800, 1000.
According to Theorem 1, these three different give three dif-
ferent remainder error bounds 100, 200, 250, respectively,
with that our robust CRT applies. Fig. 2 shows the mean relative
error between the true and its reconstruc-
tion using the robust CRT for three 400, 800, 1000,
respectively, where the x axis is the signal-to-noise ratio (SNR)
in (29) and the observation time duration is 1 s, and 120 000
trials for each SNR are implemented. In this figure, is
taken integers randomly and uniformly distributed in the range

for each . The additive noise in this sim-
ulation is AWGN. The sampling rates are about 15 times less
than the signal frequency.

In addition, we simulate the probability of detection, , to il-
lustrate the estimation accuracy, where we say that the frequency
is correctly detected if the estimated frequency is within 0.1%
range, i.e., 120 Hz. In this simula-
tion, we set 120 kHz and clearly this frequency falls
in the range (9) where the smallest of the three in terms of is

122 400 Hz, in Theorem 1. Fig. 3 shows the

Fig. 2. Estimation error comparison in terms of different � , signal duration
is 1 s.

Fig. 3. Comparison of the probability of detection in terms of different � ,
signal duration is 1 s.

Fig. 4. Comparison of the probability of detection in terms of different � ,
signal duration is 0.05 s.

three versus SNR curves for 400, 800, 1000, respec-
tively, where the observation time is 1 second. Fig. 4 shows the
three versus SNR curves for 400, 800, 1000, respec-
tively, where the observation time is 0.05 s, and in this case,
if the number of samples is less than the DFT size, i.e., , then
zeros are padded to the end of the samples. In these two figures,
10 000 trials are implemented. One can see that the difference be-
tween Fig. 3 and Fig. 4 is basically an SNR shift due to the zero
paddings.
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Fig. 5. Estimation error comparison in terms of different� , but similar sam-
pling rates and the same number, 6000, of samples.

In the last simulation, we simulate the mean error curves sim-
ilar to the ones in Fig. 2 but for the three curves, the sampling
rates are similar and the numbers of the sampling points used
are the same and all are 6000 samples. The DFT sizes are

and if they are larger than 6000, zeros are padded at the
ends as before. The two sampling rates for the cases when

, , and are 7200 Hz
and 7600 Hz, 7200 Hz and

8000 Hz, and 7000 Hz
and 8000 Hz, respectively. The mean error
curves are shown in Fig. 5. From this figure, one can see that
while other parameters are similar, the larger is, the better
the estimation error is, i.e., the better the performance is, which
confirms our theory.

V. CONCLUSION

In this paper, we proposed a robust Chinese remainder theorem
(robust CRT) that can robustly reconstruct a large integer from
its smaller erroneous remainders modulo several moduli. Our ro-
bust CRT says that the reconstructed integer is within an error
range that is the same as the error range of the remainder errors
as long as the remainder error range is less than one quarter of the
greatest common divisor (gcd) of all the moduli and the true in-
teger to determine is less than the least common multiple (lcm)
of all the moduli. We also proposed one fast 2-D implementation
and another different fast 1-D search algorithm. We then applied
the robust CRT to frequency estimation in multiple undersam-
pled waveforms. We finally presented some simple simulations
to illustrate the theory. We believe that the robust CRT proposed
in this paper will have applications far beyond the frequency es-
timation from undersampled waveforms.

As a remark, this paper only considers single integer and
single frequency determination. Multiple integers and multiple
frequencies robust determination would be certainly interesting
as a future research problem, where, for example, iterative
estimations might be applicable. Note that multiple integers
and multiple frequencies determination has been studied in
[5] where only a few remainders/sets have errors and the
reconstruction is accurate. Another interesting future research
problem is how to deal with the wraparound effects as men-
tioned earlier in this paper.

APPENDIX I
PROOF OF THEOREM 1

Proof: If the conditions in Theorem 1 are satisfied, it is
not hard to see that the true solution in (3) falls in the range

for . Thus, for any pair
for , we have

(32)

Let for , and replace by
in both sides of (32) and we then have

(33)

Therefore, according to (2) and (10), we have

(34)

Dividing in both sides of (34), we have

(35)

Since , , , and are all integers, (35) implies

(36)

Since and are co-prime for , we have

(37)

for integer with . Replacing (37) into (32),
we obtain

(38)

which implies for . This proves
. We next show . Property (37) also implies

for integers with (39)

If , then for , and therefore,
according to the definition of in (6) and (39), we have

for some integer with for
. This implies that is divisible by all for

, and thus is a multiple of the product of ,
, i.e., a multiple of . Since ,

we can conclude . This proves that . In
the meantime, implies in (39), i.e., for

. Hence, Theorem 1 is proved.

APPENDIX II
PROOF OF (16)

Proof: If , we then have the following
four cases.

Case A. If , then we have
the following two subcases.

Subcase i. If , from the assumption
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we have

(40)

which leads to . Thus, from in
(19), i.e., , we have

(41)

Also, . Therefore, (41)
contradicts with the definition of .
Subcase ii. If , we have

(42)

and . This contradicts with the
definition of .

Case B. If , we have the
following two subcases.

Subcase i. If , from the assumption

we have

(43)

which leads to . Then, similar to Subcase i in
the previous Case A, we have

(44)

and . Therefore, (44)
contradicts with the definition of .
Subcase ii. If , we have

(45)

and . This means that
. From Lemma 1, for some

integer , i.e., for some integer , which
is impossible.

Case C. If , we then
have the following two subcases.

Subcase i. If , from the assumption

we have

Since is an integer, we thus have .
Similar to Subcase i in Case A,

(46)

Also, . Thus,
and . This contradicts with

the definition of .
Subcase ii. If , we have

(47)

and . This contradicts with the
definition of .

Case D. If , we have
the following two subcases.

Subcase i. If , from the assumption

we have

Since is an integer, we thus have .
Similar to Subcase i in Case C,

(48)

and it contradicts with the definition of .
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Subcase ii. If , we have

(49)

and . This implies
. From Lemma 1, for some

integer , i.e., for some integer , which
is impossible.

By summarizing the above four cases, (16) is proved.
APPENDIX III

PROOF OF (20)

Proof: If , then we have the fol-
lowing two cases.

Case A. If , we then
have the following two subcases.

Subcase i. If , i.e., ,
then, from , we have

(50)

and . We next show
, i.e., . This is true, since otherwise

which contradicts with the assumption of the above
Case A. Thus, (50) contradicts with the definition of

.
Subcase ii. If , i.e., ,
we have

(51)

Also,
and , where

is because . This proves
. In the meantime, .

We next show , i.e., . From
(16), we have . Thus,

which implies , where
is because . Thus,
and (51) contradicts with the definition of
.

Case B. If , we then
have the following two subcases.

Subcase i. If , i.e., , we have

(52)

and . We now show

i.e., . This is true, since from (16),
, and thus we have

which means , where
is because . Also, it is clear that

. Therefore, (52) contradicts with the definition
of .
Subcase ii. If , i.e., , we have

(53)

where the reason why the last inequality holds is the
same as that in (52). We also have .
We next show , i.e., . If , we
then have

which contradicts with the assumption of Case B.
Thus, . Therefore, (53) contradicts
with the definition of .

By summarizing all the above cases, (20) is proved.
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