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Abstract—In this correspondence, we propose some new designs of2 2

unitary space–time codes of sizes 6, 32, 48, 64 with best-known diversity
products (or product distances) by partially using sphere packing theory.
In particular, we present an optimal 2 2 unitary space–time code of
size 6 in the sense that it reaches the maximal possible diversity product
for 2 2 unitary space–time codes of size 6. The construction and the
optimality of the code of size 6 provide the precise value of the maximal
diversity product of a 2 2 unitary space–time code of size 6.

Index Terms—Differential space–time modulation, optimal diversity
product, packing theory, unitary space–time codes.

I. INTRODUCTION

Unitary space–time codes have been recently proposed in [6], [5]
for differential space–time modulation schemes and in [1]–[4] for pos-
sibly other space–time modulation schemes. Unitary space–time codes
in differential encoding are useful not only when the channel infor-
mation is not known at the receiver and noncoherent decoding is used
but also when the channel information is known at the receiver and
coherent decoding as a recursive trellis coding is used jointly with an
error correction coding as a turbo type coding [19] where a super per-
formance is achieved. There have been several unitary space–time code
constructions in the literature: for example, group and optimal group
constructions [6], [7], [5], [9]; orthogonal designs [8]; parametric codes
[11]; Cayley transforms [10]; Lie groups [13], [16]; and Hamiltonian
constellations or spherical codes using packing theory [9], [16]. It is
known that the performance of a space–time code depends on its di-
versity product and having a good diversity product has become an
important criterion in the design of a space–time code. In [11], some
upper bounds on the diversity products of (unitary) space–time codes
for a given size are presented. It is easy to reach the diversity product
upper bound for 2 � 2 matrices of sizes below 4 and 2 � 2 unitary
matrices of sizes 4 and 5 reaching the upper bound are also presented
in [11] using the parametric forms of unitary matrices. In fact, 2 � 2

unitary matrices of sizes below 6 reaching the upper bound can be also
constructed by using the Hamiltonian constellations from the packing
theory, i.e., the optimal sphere packing points. However, in [11] it is
shown that the upper bound is not reachable when the 2 � 2 unitary
code size is above 5 and a tight upper bound on the diversity prod-
ucts remains open. The optimal or best-known sphere packing points
of sizes above 5 do not provide optimal 2� 2 unitary space–time codes
with optimal diversity products.
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In this correspondence, we propose some 2 � 2 unitary space–time
codes by partially using the optimal sphere packing points [20], [22].
We obtain a determinant relationship for difference matrices between
Hamiltonian and general 2� 2 unitary constellations.We present some
best-known designs for size L = 6; 32; 48; 64, and also show that the
code with size 6 reaches the optimal diversity product.
This correspondence is organized as follows. In Section II,

we present new best-known diversity product designs for size
L = 6; 32; 48; 64. In Section III, we show the optimality of the
new code of size 6 presented in Section II. Since the proof is highly
technical, we leave the most technical parts of the proofs in [23],
which is downloadable via our website.

II. SOME 2 � 2 UNITARY CODES WITH BEST KNOWN
DIVERSITY PRODUCTS

In this section, we present some new 2 � 2 unitary codes for sizes
L = 6; 32; 48; 64 with best-known diversity products.

A. Diversity Product

Let G = fV1; V2; . . . ; VLg be a 2� 2 unitary space–time code of
size L with V H

l Vl = I where H stands for the transpose and complex
conjugate. Define

�(G) min
V ;V 2G;l 6=l

j det(Vl � Vl )j (1)

and

dL max
G

�(G) = max
G

min
V ;V 2G;l6=l

j det(Vl � Vl )j: (2)

Following the convention in the literature, the diversity product for a
2 � 2 code G is defined as follows:

�(G) 1

2
�(G) (3)

and the optimal diversity product for L-point constellation is defined
as

�(L) max
G

�(G) = 1

2

p
dL: (4)

We are interested in designing a code G with large or optimal diversity
product.

B. 2 � 2 Unitary Matrices

The content presented here can be found in many literatures, for ex-
ample, [21], [16]. For the notational convenience for our later study,
we briefly introduce some concepts on 2 � 2 unitary matrices below.
Let UUU(2) be the set of all 2 � 2 unitary matrices, i.e.

UUU(2) fA j A is a 2� 2 matrix with A
H
A = Ig:

Between UUU(2) and the unit ball SSS3 � 4, there exists a close relation-
ship as follows.
For any 2 � 2 matrix A with AHA = I , we have j det(A)j = 1

and thus there is a unique angle � 2 [0; 2�) such that det(A) = ej� .
For any fixed angle � 2 [0; 2�), let

SUSUSU(2; �) fA 2 UUU(2) j det(A) = e
j�g: (5)

Thus, we have

UUU(2) =
�2[0;2�)

SUSUSU(2; �):
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We are particularly interested in the case of � = 0 and denote the set
SUSUSU(2; 0) bySUSUSU(2) for short, i.e.,SUSUSU(2) = SUSUSU(2; 0). We now inves-
tigate the structure of SUSUSU(2). From some theory of unitary matrices
(for example, see [21]), SUSUSU(2) can be isometrically embedded onto
the four-dimensional (4-D) Euclidean real unit sphere. Let SSS3 be the
unit sphere of 4-D real Euclidean space 4, i.e.

SSS3 = fxxx 2 4 j kxxxk = 1g
where k�k denotes the conventional l2 norm. Because det(A) = 1 and
the unitariness for any element A in SUSUSU(2), it is not hard to see that
there are two complex numbers a = a1 + ja2 and b = b1 + jb2 such
that

A =
a b

�b� a�
(6)

where � denotes the conjugate, and a1; a2; b1; b2 are real numbers gov-
erned by the condition a21 + a22 + b21 + b22 = 1, i.e., jaj2 + jbj2 = 1,
[21]. From this expression, the following embedding fromSUSUSU(2) onto
SSS3 can be obtained, also see for example [16]. Let i be the mapping
i : A 7! i(A) from SUSUSU(2) into SSS3 defined by

i(A) (a1; a2; b1; b2) = (Re(a); Im(a);Re(b); Im(b)) (7)

where a1; a2; b1; b2 are the real numbers defined in (6) and Re and Im
stand for the real and imaginary parts of a complex number, respec-
tively. Clearly, the mapping i is one-to-one and onto. Furthermore, the
following relationship holds:

det(A�B) = ki(A)� i(B)k2: (8)

This equation also implies that all determinants of difference matrices
of two distinct 2 � 2 unitary matrices inSUSUSU(2) are positive. From (8),
one can see that the problem to find an optimal 2 � 2 space–time code
in SUSUSU(2), i.e., it is restricted to have determinant 1, becomes to find
optimal packing points on the sphere SSS3, which is called Hamiltonian
constellations in [9]. Thus, as indicated in [9], if we denote DL as the
maximal minimum-distance of L-point packing on SSS3, then

dL � D2

L

i.e., the square of the maximal minimum-distance of L-point packing
onSSS3 is a lower bound for dL. However, as we shall see later, the above
Hamiltonian constellation may not be enough to have good codes and
we need to consider the entire 2 � 2 unitary matrix spaceUUU(2). To do
so, we need a determinant formula.

C. A Useful Determinant Formula

Let us consider a relationship between SUSUSU(2) and UUU(2) or equiva-
lently between SUSUSU(2) and SUSUSU(2; �) for any � 2 [0; 2�).
For a fixed �, we define a mapping J� from SUSUSU(2; �) to SUSUSU(2) as

follows:

J�(A) e�j�=2A; for A 2 SUSUSU(2; �): (9)

Since det(J�(A)) = e�j� det(A) = e�j�ej� = 1, this mapping is
well defined. Furthermore, it is not hard to see that it is one-to-one and
onto. With this notation, one can see that any 2 � 2 unitary matrix A
can be represented by

A = ej�=2J�(A); for some � 2 [0; 2�):

An important property from this mapping is that it also provides a
determinant formula for a difference matrix of two matrices selected
from different sets SUSUSU(2; �1) and SUSUSU(2; �2), which is stated in the
following proposition.

Proposition 1: For any A0 2 SUSUSU(2) and A 2 SUSUSU(2; �), we have

j det(A� A0)j = j det(A0 � J�(A))� 4 sin2(�=4)j:
Proof: Assume

A0 =
a0 b0
�b�0 a�0

and J�(A) =
a b

�b� a�

where ja0j2 + jb0j2 = 1 and jaj2 + jbj2 = 1. Then

det(A0 � J�(A)) = det(
a0 b0
�b�0 a�0

� a b

�b� a�
)

= 2� (a0a
� + b0b

� + a�0a+ b�0b):

By the definition of J� in (5), we have A = ej�=2J�(A). Therefore,

j det(A0 � A)j
= det

a0 b0
�b�0 a�0

� ej�=2a ej�=2b

�ej�=2b� ej�=2a�

= j1 + ej� � ej�=2(a0a
� + b0b

� + a�0a+ b�0b)j
= j1 + ej� � ej�=2(2� det(A0 � J�(A)))j
= je�j�=2 + ej�=2 � (2� det(A0 � J�(A)))j

which is the same as the one in the proposition. QED

From this proposition, we immediately have the following corollary.

Corollary 1: For any A1 2 SUSUSU(2; �1) and A2 2 SUSUSU(2; �2), we
have

j det(A1 � A2)j= j det(J� (A1)�J� (A2))�4sin2((�1��2)=4)j:

From the above proposition and corollary, one can see that the de-
terminant absolute value of the difference matrix of two 2 � 2 unitary
matrices depends on the distance between their embeddings and their
angle difference. Thismotivates us to design a 2� 2 unitary space–time
code using two steps: one is to select good packing points on the sphere
SSS3 and the other is to select good angles �.

D. Some New Codes With Best Known Diversity Products

With the help of the above determinant formulas, we can construct
some 2 � 2 unitary codes with best-known diversity products.
1) Size L = 6: Let d = �5=2+

p
22. Select a four-point packing

on SSS3 as follows:

aaa1 =(�a;�b; b;�b); aaa2 = (�a; b; b; b)
aaa3 =(�a;�b;�b; b); aaa4 = (�a; b;�b;�b)

where a = 1� 3d=8 and b = (1� a2)=3. By mapping these
points back to SUSUSU(2), we have the following four unitary matrices:

A1 =
�a� bj b� bj

�b� bj �a+ bj

A2 =
�a+ bj b+ bj

�b+ bj �a� bj

A3 =
�a� bj �b+ bj

b+ bj �a+ bj

A4 =
�a+ bj �b� bj

b� bj �a� bj
:

For other two unitary matrices, we use angle �. Let

�1 =2arccos(d=2� a) and �2 = 2� � �1

and

A5 = ej� =2I 2 SUSUSU(2; �1); A6 = �ej� =2I 2 SUSUSU(2; �2):
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It is easy to check that the diversity product of the code fA1;

A2; . . . ; A6g is
1

2
�5=2 +

p
22 � 0:7400:

In next section, we shall prove that

�(6) =
1

2
�5=2 +

p
22

i.e., this code reaches the optimal diversity product of any 2� 2 unitary
space–time codes of size L = 6.

2) Sizes L = 32; 48; 64: To construct 32; 48; or 64 unitary ma-
trices with large diversity products, at first, we first construct four dia-
monds in SSS3 as follows.
Let t is a parameter, and

a = 1� 3

8
t2; r =

p
1� a2

b = �
p
6

12
t; r1 =

p
3

3
t; � =

2�

3
:

The four-point coordinates of the first diamond are

aaa1 =(a; r; 0; 0); aaa2 = (a; b; r1; 0)

aaa3 =(a; b; r1 cos(�); r1 sin(�));

aaa4 =(a; b; r1 cos(2�); r1 sin(2�)):

The ones of the second diamond are

aaa5 =(a;�r; 0; 0); aaa6 = (a;�b;�r1; 0)
aaa7 =(a;�b;�r1 cos(�);�r1 sin(�))
aaa8 =(a;�b;�r1 cos(2�);�r1 sin(2�)):

The ones of the third diamond are

aaa9 =(�a; r; 0; 0); aaa10 = (�a; b; r1; 0)
aaa11 =(�a; b; r1 cos(�); r1 sin(�));
aaa12 =(�a; b; r1 cos(2�); r1 sin(2�)):

The ones of the fourth diamond are

aaa13 =(�a;�r; 0; 0); aaa14 = (�a;�b;�r1; 0)
aaa15 =(�a;�b;�r1 cos(�);�r1 sin(�))
aaa16 =(�a;�b;�r1 cos(2�);�r1 sin(2�)):

Mapping these points back to SUSUSU(2) using the map i�1 given in (7),
we obtain 16 matrices, denoted by Qj , i.e., Qj i�1(aaaj) for j =

1; 2; . . . ; 16. These matrices can be used to generate best-known di-
versity product unitary codes with L = 32; 48; and 64 as follows.
For L = 32, let t =

p
2, 
 = arccos(3=4) and define

Ui =Qi; i = 1; 2; 3; 4

Ui =Q8+i; i = 5; 6; 7; 8

Ui = ejj
j(�=4+
=2)Qi�8; i = 9; 10; 11; 12

Ui = ejj
j(�=4+
=2)Qi; i = 13; 14; 15; 16

Ui = ejj
j(�=2)Qi�12; i = 17; 18; 19; 20

Ui = ejj
j(�=2)Qi�12; i = 21; 22; 23; 24

Ui = ejj
j(3�=4+
=2)Qi�20; i = 25; 26; 27; 28

Ui = ejj
j(3�=4+
=2)Qi�20; i = 29; 30; 31; 32

and put G32 = fU1; . . . ; U32g, then the minimum determinant
�(G32) =

p
7�1
2
, and the diversity product �(G32) is

1

2

p
7� 1

2
�= 0:4536

which is best known for size L = 32.
For L = 48, let t =

p
2 and

Vi =Qi; i = 1; 2; 3; 4;

Vi =Q8+i; i = 5; 6; 7; 8

Vi = ejj
j(�=6)Qi�4; i = 9; 10; 11; 12

Vi = ejj
j(�=6)Qi�4; i = 13; 14; 15; 16

Vi = ejj
j(�=3)Qi�16; i = 17; 18; 19; 20

Vi = ejj
j(�=6)Qi�8; i = 21; 22; 23; 24

Vi = ejj
j(�=2)Qi�20; i = 25; 26; 27; 28

Vi = ejj
j(�=2)Qi�20; i = 29; 30; 31; 32

Vi = ejj
j(2�=3)Qi�32; i = 33; 34; 35; 36

Vi = ejj
j(2�=3)Qi�24; i = 37; 38; 39; 40

Vi = ejj
j(5�=6)Qi�36; i = 41; 42; 43; 44

Vi = ejj
j(5�=6)Qi�36; i = 45; 46; 47; 48

and define G48 = fV1; . . . ; V48g, then the minimum determinant
�(G48) =

p
3� 1, and the diversity product �(G48) is

1

2

p
3� 1 �= 0:4278

which is best known for size L = 48.
For L = 64, let t =

p
1:3880, and define

Wi =Qi; i = 1; 2; 3; 4

Wi =Q8+i; i = 5; 6; 7; 8

Wi = ejj
j(�=8)Qi�4; i = 9; 10; 11; 12

Wi = ejj
j(�=8)Qi�4; i = 13; 14; 15; 16

Wi = ejj
j(�=4)Qi�16; i = 17; 18; 19; 20

Wi = ejj
j(�=4)Qi�8; i = 21; 22; 23; 24

Wi = ejj
j(3�=8)Qi�20; i = 25; 26; 27; 28

Wi = ejj
j(3�=8)Qi�20; i = 29; 30; 31; 32

Wi = ejj
j(�=2)Qi�32; i = 33; 34; 35; 36

Wi = ejj
j(�=2)Qi�24; i = 37; 38; 39; 40

Wi = ejj
j(5�=8)Qi�36; i = 41; 42; 43; 44

Wi = ejj
j(5�=8)Qi�36; i = 45; 46; 47; 48

Wi = ejj
j(3�=4)Qi�48; i = 49; 50; 51; 52

Wi = ejj
j(3�=4)Qi�40; i = 53; 54; 55; 56;

Wi = ejj
j(7�=8)Qi�52; i = 57; 58; 59; 60

Wi = ejj
j(7�=8)Qi�52; i = 61; 62; 63; 64

and define G64 = fW1; . . . ;W64g, then the minimum determinant
�(G64) = 0:5406, and the diversity product �(G64) is

1

2

p
0:5406 �= 0:3676

which is best known for size L = 64.
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TABLE I
DIVERSITY PRODUCT AND SUM COMPARISONS

Fig. 1. SER comparison.

Table I summarizes the above results and compares with some ex-
isting codes, where diversity sum means the minimum Euclidean dis-
tance between codeword matrices [11]. From Table I, one can see that
the optimal diversity sum 0:7746 of the 2 � 2 unitary code of size 6
presented in [11] is slightly better than the one 0:7400 of the 2 � 2

unitary code of size 6 with optimal diversity product presented in this
paper. Fig. 1 shows the symbol error rates (SER) of these two codes
of size 6 over a quasi-static fading channel and one can see that the
one with the optimal diversity product performs slightly better than the
one with the optimal diversity sum at high signal-to-noise ratio (SNR),
which also confirms the argument between diversity product and diver-
sity sum in [11].

III. OPTIMALITY OF 2 � 2 UNITARY SPACE–TIME
CODES OF SIZE L = 6

The main goal of this section is to prove the optimality of the code
of size 6 presented in Section II-D-1).

Theorem 1: The maximal diversity product of a 2 � 2 unitary

space–time code of size 6 is 1
2

�5=2 +p
22, i.e.,

�(6) =
1

2
�5=2 +

p
22:

This theorem implies that the code presented in Section II-D-1) has
already reached the maximal diversity product.
To prove this theorem, we need some preparations.
First, we introduce the concept of dual. For any unitary matrix A =

ej�=2J�(A), its dual is defined as ej(2���)=2(�J�(A)) and denoted
by ~A. If � = 0, then ~A = ej2�=2(�J�(A)) = A, i.e., the dual of
A 2 SUSUSU(2) is itself. With the definition of a dual matrix we have the
following corollary.

Lemma 1: For any unitary matrices A1 and A2 with their duals ~A1

and ~A2, respectively, we have

i) j det(A1 �B)j = j det( ~A1 �B)j, for any unitary matrix B 2
SUSUSU(2),

ii) j det(A1 � A2)j = j det( ~A1 � ~A2)j.
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This lemma is a direct result of Proposition 1, we omit its proof.
In what follows, for the notational convenience, we use Â to denote
J�(A) for a matrix A 2 SUSUSU(2; �) by dropping the subscript � without
causing any confusion. Since there exists an embedding i from SUSUSU(2)

onto SSS3, we do not distinguish a matrix in SUSUSU(2) and a vector on SSS3

and use the same notation A to express a matrix in SUSUSU(2) and a point
on SSS3. If A is treated as a point on SSS3, it means its embedding, i.e.,
i(A) in (7).

Lemma 2: Let Ai 2 SUSUSU(2; �i), i = 1; 2; . . . ; L, and
fA1; A2; . . . ; ALg be an optimal unitary space–time code of size L
with the maximal diversity product dL � 2. Then,

j det(Ai � Aj)j = det(Âi � Âj)� 4 sin2((�i � �j)=4) � dL;

if j�i � �j j � �

j det(Ai � Aj)j =4 sin2((�i � �j)=4)� det(Âi � Âj) � dL;

if j�i � �j j � �

where Âl = J�(Al) is the projection of Al from SUSUSU(2; �l) to SUSUSU(2)

as defined in Section II-B.

Its proof is in [23]. Lemma 2 basically provides an expression of the
absolute value of a difference matrix determinant from the one of their
projections to SUSUSU(2) and their angles for an optimal constellation.

Lemma 3: Let fA1; . . . ; ALg be an unitary space–time code with
the optimal diversity product dL > 2 and Aj 2 SUSUSU(2; �j), j =

1; 2; . . . ; L;with � 6. If 0 = �1 � � � � � �L < 2�, then �i+1 � �i <

� for i = 1; 2; . . . ; L� 1, i.e., the difference of two adjacent angles is
less than �.

Its proof is in [23].

Lemma 4: Let fPPP 1; . . . ; PPPLg be L points on the sphere SSS3. As-
sume that kPPP i � PPP jk2 � d for a constant d � 2 and 1 � i < j � L.
Let PPP 0 be any a point on this sphere. Then

• if L = 4, there exist s and t, 1 � s; t � L, such that

kPPP 0 � PPP sk2 � 2� 2 1� 3d=8

and kPPP 0 � PPP tk2 � 2 + 2 1� 3d=8

• if L = 3, there exist s and t, 1 � s; t � L, such that

kPPP 0 � PPP sk2 � 2� 2 1� d=3

and kPPP 0 � PPP tk2 � 2 + 2 1� d=3

• if L = 2, there exist s and t, 1 � s; t � L, such that

kPPP 0 � PPP sk2 � 2� 2 1� d=4

and kPPP 0 � PPP tk2 � 2 + 2 1� d=4:

Its proof is in [23].

Lemma 5: For any L points fPPP 1; . . . ; PPPLg on the unit sphere SSSn

in the n + 1-dimensional real Euclidean space n+1, we have

1�i<j�L

kPPP i � PPP jk2 � L2:

Its proof can be found in, for example, [11].

Lemma 6: Let Ai = ej� =2Âi 2 SUSUSU(2; �i), i = 1; 2; 3, be three
unitary matrices. Assume �1 � �2 � �3. If �3��1 � �, and for i 6= j,
j det(Ai � Aj)j � d6 �

p
22� 5=2, then,

�3 � �1 � 5�=6:

Its proof is in [23].
Lemma 7: Let 2 < d � 2:5 and �1 < a; b � 1 � d=2. If

arccos(d=2 + a) + arccos(d=2 + b) � �=2, then

2 sin(arccos(a+ d=2)=2)

�b� cos(arccos(d=2+ b) + arccos(d=2 + a))� d=2

cos(arccos(�a)=2) � d;

(10)

where 0 � arccos(x) � �.

Its proof is in [23].

Proposition 2: Let fA1; A2; . . . ; A6g be an optimal constellation
with Aj = ej� =2Âj of the maximal diversity product d6. Assume
that 0 = �1 � � � � � �5 � � � �6 and �6 � �5 � �, �6 � �4 � �.
Then, d6 � �5=2 +

p
22.

Its proof is in [23].

Proposition 3: Let fA1; A2; . . . ; A6g be an optimal constellation
with Aj = ej� =2Âj . Assume that 0 = �1 � � � � � �5 � � � �6 and
�6 � �4 � �, �6 � �3 � �. Then, d6 < �5=2 +

p
22.

Its proof is in [23].

Proposition 4: Let fA1; A2; . . . ; A6g be an optimal constellation
with Aj = ej� =2Âj . Assume that 0 = �1 � � � � � �4 � � � �5 �
�6 and �6 � �4 � �, �6 � �3 � �. Then, d6 < �5=2 +

p
22.

Its proof is in [23].

Proposition 5: Let fA1; A2; . . . ; A6g be an optimal constellation
with Aj = ej� =2Âj . Assume that 0 = �1 � � � � � �4 � � � �5 �
�6 and �6 � �3 � �, �6 � �2 � �. Then, d6 < �5=2 +

p
22.

Its proof is in [23].
Now we begin to prove Theorem 1.

Proof of Theorem 1: Assume signal constellation

G = fA1; A2; . . . ; A6g

is an optimal constellation with the maximal diversity product d6 and
Ai 2 SUSUSU(2; �i), i = 1; 2; . . . ; 6. By the construction in Section II-D
1), we have d6 � �5=2 +

p
22. We next need to show that d6 �

�5=2+
p
22. To do so, let us consider the different cases of the number

of the zero angles ofAi: p ]fi j �i = 0g. Without loss of generality,
we can assume that 1 � p � 6. In this proof and the proofs in [23], we
always use 0 � arccos(x) � �.
i) p = 6.
p = 6 means that all Ai 2 SUSUSU(2), i.e., all six matrices Ai are on

the sphere SSS3. In other words, there exist 6-point packing such that
the minimal distance is greater than

p
2, which contradicts with the

packing result on SSS3 (according to the result [20], the packing angle
on SSS3 is �=2, that is, the maximal minimum distance is

p
2).

ii) p = 5.
Assume �1 = � � � = �5 = 0 and �6 > 0. Thus, Ai = Âi; i =

1; 2; . . . ; 5. By Lemma 3, we have �6 � �5 � �, i.e., �6 � �. By
Lemma 2

det(Âi � Â6) � d6 + 4 sin2(�6=4) > 2; i = 1; 2; . . . ; 5:

For 1 � i 6= j � 5, from the condition, det(Âi � Âj) > 2. There-
fore, there exists six points fÂ1; . . . ; Â6g on the sphere SSS3 such that
the minimum distance is greater than

p
2, which contradicts with the

packing result as in (i).
iii) p = 4.
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Assume �1 = � � � = �4 = 0 and 0 < �5 � �6 < 2�. By Lemma 3,
we have �5 � � and �6 � �5 � �. If �6 � �, then, as shown as
ii), fÂ1; . . . ; Â4; Â5; Â6g consists of a 6-point packing on SSS3 with
minimum distance greater than

p
2, which results in a contradiction.

Therefore, we can assume that �5 � � � �6 and �6 � �5 � �.
We next investigate the packing position of fÂ1; . . . ; Â4; Â5;�Â6g

on SSS3. Denote Âi = (ai; bi; ci; ei); i = 1; . . . ; 6. By a unitary trans-
formation, we can assume Â5 = I , i.e., a5 = 1; b5 = c5 = e5 = 0.
We then convert this problem to a packing problem on the 3-D unit
sphere SSS2 as follows. If ai 6= 1;�1, define

bbbi =
1

ri
(bi; ci; ei); i = 1; 2; 3; 4; 6 (11)

where ri = 1� a2i . Then bbbi 2 SSS2 and clearly

det(Âi�Âj) = 2(1� aiaj) + rirj(kbbbi � bbbjk2 � 2) (12)

kbbbi � bbbjk2 =2� 2(1� aiaj)� det(Âi � Âj)

rirj
: (13)

Two remarks about this conversion are as follows. The mapping SSS3 3
(a; b; c; e) ! bbb = (b=r; c=r; e=r) 2 SSS2 is not one-to-one. It is be-
cause, for different two points (a; b; c; e) and (�a; b; c; e), the im-
ages are the same. However, when we restrict a � 0 or a � 0,
the mapping becomes one-to-one and onto. Another remark is that an
image point bbb does not depend on a, when we restrict a to a � 0

or a � 0. To explain this, we use the polar coordination. For any
point (a; b; c; e) 2 SSS3, there exist three angles �1; �2; �3, such that
a = sin(�1) and b = cos(�1) sin(�2), c = cos(�1) cos(�2) sin(�3),
e = cos(�1) cos(�2) cos(�3). Hence bbb= (b=r; c=r; e=r)= (sin(�2),
cos(�2) sin(�3), cos(�2) cos(�3)),which is independent of�1, i.e., a.
Therefore, when we restrict a to a � 0 or a � 0, the distance kbbbi�bbbjk
is independent of ai and aj .
For 1 � i � 4 and i = 6, because �5 � � and �6 � �5 � �, by

Lemma 2, we have

2 < d6 � j det(A5 � Ai)j = det(Â5 � Âi)� 4 sin2(�5=4)

= 2� 2ai � 4 sin2(�5=4):

Therefore, ai < 0 for i = 1; 2; 3; 4; 6.
Since �1 = �2 = �3 = �4 = 0, without loss of generality, we may

assume that �1 � a1 � a2 � a3 � a4 < 0. If a1 = �1, then b1 =

c1 = e1 = 0 and it is not hard to see that det(Â4 � Â1) = 2+2a4. It
implies d6 � 2 + 2a4, i.e., a4 > 0, which contradicts with the result
a4 < 0 we derived before. Therefore, a1 > �1.
For 1 � i 6= j � 4, from (12) and the fact that �i = �j = 0, we

have

d6 � j det(Ai �Aj)j = det(Âi � Âj)� 4 sin2((�i � �j)=4)

=2� 2aiaj + rirj(kbbbi � bbbjk2 � 2):

Because aiaj > 0 and rirj > 0, we have kbbbi � bbbjk2 � 2 > 0.
Furthermore, it is easy to see that for a fixed ai, the right hand side of
the above inequality is increasing for aj . Therefore,

d6 � 2� 2aiaj + rirj(kbbbi � bbbjk2 � 2)

� 2� 2a24 + r24(kbbbi � bbbjk2 � 2)

which implies that

a4 � � 1� d6=kbbbi � bbbjk2:

Because fbbb1; . . . ; bbb4g are on SSS2, by the packing theory on SSS2, there is
at least one pair fbbbi; bbbjg such that kbbbi � bbbjk2 � 8=3. Hence,

a4 � � 1� 3d6=8: (14)

Since a5 = 1;�1 � a6 < 0, and 0 � �6 � �5 � �, from Lemma 2
we have

d6 � j det(A6 � A5)j = det(Â6 � Â5)� 4 sin2((�6 � �5)=4)

=2� 2a6 � 4 sin2((�6 � �5)=4)

� 2� 2(�1)� 4 sin2((�6 � �5)=4):

Therefore,

cos((�6 � �5)=2) � d6=2� 1: (15)

Using the fact that

d6 � j det(A5 �A4)j = det(Â5 � Â4)� 4 sin2(�5=4)

and noting that det(Â5 � Â4) = 2 � 2a4, we have

d6 � 2�2a4�4 sin2(�5=4)�2+2 1�3d6=8�4sin2(�5=4)

=2 cos(�5=2)+2 1�3d6=8 (16)

where the second inequality is from (14). Inequality (16) implies

cos(�5=2) � d6=2� 1� 3d6=8: (17)

We now replace A5; A6 by their duals ~A5; ~A6. From the definition,
we have

~A6 = ej(2��� )=2(�Â6); ~A5 = ej(2��� )=2(�Â5):

Furthermore, fA1; . . . ; A4; ~A6; ~A5g is also an optimal signal constel-
lation by Lemma 1. We make a normalization by multiplying �ÂH

6

from left to the constellation to get a new constellation

G1 f�ÂH
6 A1;�ÂH

6 A2;�ÂH
6 A3;�ÂH

6 A4;�ÂH
6

~A6;�ÂH
6

~A5g
= f�ÂH

6 A1;�ÂH
6 A2;�ÂH

6 A3;

� ÂH
6 A4; e

j(2��� )=2I;�ÂH
6

~A5g:

Since �ÂH
6 is a unitary matrix, G1 is also an optimal constellation.

Furthermore, G1 and fA1; . . . ; A6g have the same angle relationships.
Therefore, inequality (17) corresponding to this new constellation G1
also holds

cos((2�� �6)=2) � d6=2� 1� 3d6=8: (18)

From (17) and (18), we have

�5 � 2 arccos(d6=2� 1� 3d6=8)

�6 � 2� � 2 arccos(d6=2� 1� 3d6=8):

Hence,

�6 � �5 � 2� � 4 arccos(d6=2� 1� 3d6=8):

From (15), we know that �6 � �5 � 2 arccos(d6=2� 1). Therefore,

2� � 4 arccos(d6=2� 1� 3d6=8) � 2 arccos(d6=2� 1):
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Hence,

d6 � �4(d6=2� 1� 3d6=8)
2 + 4

which implies the desired result d6 � �5=2 +
p
22.

iv) p � 3.
Assume 0 = �1 � �2 � �3 � � � � � �6. Using the same argument

as in the beginning of Case (iii) when p = 4 and Lemma 3, we can also
assume that � � �6 and �2 � �, �6 � �5 � �. We divide the proof
into several cases according to the relationships among the angles �j .

Case I �6 � � and �5 � �.

We divide this case into four subcases.
Case I.1 �6 � �, �5 � � and �6 � �4 � �.

This subcase is Proposition 2.
Case I.2 �6 � �, �5 � � and �6 � �4 � �, �6 � �3 � �.

This subcase is Proposition 3.
Case I.3 �6 � �, �5 � � and �6 � �3 � �, �6 � �2 � �.

By taking the rotation of angle ��5 to G, we obtain a new constel-
lation

G0 = fA0

1; A
0

2; . . . ; A
0

6g

where A0

j = e�j� =2Aj . For j = 1; 2; 3; 4

A0

j = e�j� =2ej� =2Âj = e(2��(� �� ))=2(�Â5):

For j = 5, we have A0

5 = e�j� =2A5 = Â5. For j = 6, we have

A0

6 = e�j� =2ej� =2Â6 = e(� �� )=2Â6:

Therefore, the relationship between G0 and G is

fÂ0

1;Â
0

2;Â
0

3;Â
0

4;Â
0

5;Â
0

6g =f�Â1;�Â2;�Â3;�Â4;Â5;Â6g;
and

f�01; �02; �03; �04; �05; �06g = f2� � �5; 2� � (�5 � �2);

2� � (�5 � �3); 2� � (�5 � �4);

0; �6 � �5g:

Clearly, the diversity product of G0 is still d6.
We now consider the dual of G0, denoted by ~G0, which has the same

diversity product as G0 by Corollary 1: ~G0 = f ~A0

1; ~A
0

2; . . . ; ~A
0

6g, where
~A0

j = e� =2 ~̂A0

j , 1 � j � 6. By the definition of a dual, the relationship
between ~G0 and G0 or G is

f ~̂A0

1;
~̂A0

2;
~̂A0

3;
~̂A0

4;
~̂A0

5;
~̂A0

6g = f�Â0

1;�Â0

2;�Â0

3;�Â0

4; Â
0

5;�Â0

6g
= fÂ1; Â2; Â3; Â4; Â5;�Â6g

and the corresponding angles are

f�001 ;�002 ; �003 ; �004 ; �005 ; �006 g
= f2� � �01; 2� � �02; 2� � �03; 2� � �04; 0; 2� � �06g
= f�5; �5 � �2; �5 � �3; �5 � �4; 0; 2� � (�6 � �5)g:

It is easy to see that �006 � � and �00j � � for j = 1; 2; 3; 4; 5. Further-
more,

�006 � �001 � �; �006 � �002 � �; �006 � �00j � �; j = 3; 4; 5:

Thus, if we rearrange ~G0 into

G00 = f ~A0

5; ~A
0

4; ~A
0

3; ~A
0

2; ~A
0

1; ~A
0

6g

then the conditions on G00 are exactly the same as the ones in Case I.2.
By Proposition 3, we have proved this theorem in this subcase.

Case I.4 �6 � �, �5 � � and �6 � �2 � �

Make a rotation angle��2 to the constellation G as done in Case I.3
and we find that the new constellation has the same conditions as in
Case I.1. Therefore, by Proposition 2, we have proved this theorem in
this subcase.

Case II �6; �5 � � and �4 � �.
We divide this proof into four subcases.

Case II.1 �6; �5 � �, �4 � � and �6 � �4 � �.
In this case, we make a rotation to the constellation as follows. Let

A0

j = e�j� =2Aj for j = 1; 2; . . . ; 6. Then fA0

1; A
0

2; . . . ; A
0

6g
is also an optimal constellation. Since, for j = 1; 2; 3; 4; 5,
A0

j = e�j� =2Aj = ej(2��(� �� ))=2 � (�Âj), we obtain Â0

j = �Âj

and the angle �0j of A
0

j is 2� � (�6 � �j). For j = 6, �06 = 0, i.e.,
A0

6 belongs to SUSUSU(2) and A0

6 = Â6. Furthermore, we have that
�06; �

0

1; �
0

2; �
0

3; �
0

4 are all less than or equal to �, and �
0

5 is greater than
or equal to �. Therefore, fA0

1; A
0

2; . . . ; A
0

6g satisfies the conditions in
Case I. Thus we have proved this theorem in this subcase.

Case II.2 �6; �5 � �, �4 � � and �6 � �4 � �, �6 � �3 � �.
It is proved in Proposition 4.

Case II.3 �6; �5 � �, �4 � � and �6 � �3 � �, �6 � �2 � �.
It is proved in Proposition 5.

Case II.4 �6; �5 � �, �4 � � and �6 � �2 � �.
Let A0

j�1 = e�j� =2Aj for j = 2; 3; 4; 5; 6, and A0

6 =

e(2��j� )=2A1. Note that Â1 = A1 since �1 = 0. Then,
fA0

1; A
0

2; A
0

3; A
0

4; A
0

5; A
0

6g satisfies the conditions of Case I.
Case III �6; �5; �4 � � and �3 � �.
Under this assumption, we consider the dual constellation: �1 = 0

is fixed, and �2; �3 are changed to 2� � �2; 2� � �3, which belong to
[�; 2�], and �4; �5:�6 are transferred to 2� � �4; 2� � �5; 2� � �6,
which belong to [0; �]. Therefore, through this duality, we change this
subcase into Case II.

Case IV �6; �5; �4; �3 � � and �2 � �.

Also we consider its dual constellation and find that this case can be
converted to Case I.
By summarizing all the above cases, this theorem is proved. qqq:e:d:

IV. CONCLUSION

In this correspondence, we have partially used sphere packing theory
to construct 2� 2 unitary space–time codes. Although the optimal ones
of sizes L below 6 can be constructed from the sphere packings on SSS3,
i.e., Hamiltonian constellations [9], [16] that reach the upper bound
1
2

2L=(L� 1) of the maximal diversity products derived in [11].
This upper bound can not be reached when the sizes are above 5 as
shown in [11]. The critical boundary on the sizes is size L = 6. In this
correspondence, we have constructed 2� 2 unitary space–time code of
size 6 that has been shown in this correspondence to have the optimal
diversity product. The optimal diversity product

d6 =
1

2
�5=2 +

p
22 � 0:74 < 0:7746 � 1

2
2L=(L� 1)
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when L = 6. Some constructions of 2 � 2 unitary space–time
codes of sizes 32; 48; 64 of non-Hamiltonian constellations with
best-known diversity products have been also presented by partially
using sphere packing theory. To obtain these results, we have presented
a determinant identity between the difference matrices of two matrices
in a Hamiltonian constellation and two matrices in non-Hamiltonian
constellations. Since some of the proofs of the lemmas and propositions
in Section III are tedious and long, the longer version of this
correspondence including all the proofs is downloadable through the
website [23].

REFERENCES

[1] T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple-an-
tenna communication link in Rayleigh flat fading,” IEEE Trans. Inform.
Theory, vol. 45, pp. 139–157, Jan. 1999.

[2] B.M. Hochwald and T. L.Marzetta, “Unitary space-timemodulation for
multiple-antenna communication in Rayleigh flat fading,” IEEE Trans.
Inform. Theory, vol. 46, pp. 543–564, Mar. 2000.

[3] B. M. Hochwald, T. L. Marzetta, T. J. Richardson, W. Sweldens, and
R. Urbanke, “Systematic design of unitary space-time constellations,”
IEEE Trans. Inform. Theory, vol. 46, pp. 1962–1973, Sept. 2000.

[4] D. Agrawal, T. J. Richardson, and R. L. Urbanke, “Multiple-antenna
signal constellations for fading channels,” IEEE Trans. Inform. Theory,
vol. 47, pp. 2618–2626, Sept. 2001.

[5] B. M. Hochwald and W. Sweldens, “Differential unitary space-time
modulation,” IEEE Trans. Commun., vol. 48, pp. 2041–2052, Dec.
2000.

[6] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. In-
form. Theory, vol. 46, pp. 2567–2578, Nov. 2000.

[7] , “Optimal space-time constellations from groups,” IEEE Trans. In-
form. Theory, vol. 49, pp. 401–410, Feb. 2003.

[8] V. Tarokh and H. Jafarkhani, “A differential detection scheme for
transmit diversity,” IEEE J. Select. Areas Commun., vol. 18, pp.
1169–1174, July 2000.

[9] A. Shokrollahi, B. Hassibi, B. M. Hochwald, and W. Sweldens, “Rep-
resentation theory for high-rate multiple-antenna code design,” IEEE
Trans. Inform. Theory, vol. 47, pp. 2335–2367, Sept. 2001.

[10] B. Hassibi and B. M. Hochwald, “Cayley differential unitary space-time
codes,” IEEE Trans. Inform. Theory, vol. 48, pp. 1473–1484, June
2002.

[11] X.-B. Liang andX.-G. Xia, “Unitary signal constellations for differential
space-time modulation with two transmit antennas: Parametric codes,
optimal designs, and bounds,” IEEE Trans. Inform. Theory, vol. 48, pp.
2291–2322, Aug. 2002.

[12] K. L. Clarkson, W. Sweldens, and A. Zheng, “Fast Multiple Antenna
Differential Decoding ,” Bell Laboratories, Lucent Technologies, Tech.
Rep. , 1999.

[13] B. Hassibi and M. Khorrami, “Fully-diverse multi-antenna constella-
tions and fixed-point-free Lie group,” IEEE Trans. Inform. Theory, sub-
mitted for publication.

[14] L. Zheng and D. N. C. Tse, “Communication on the Grassmann
manifold: A geometric approach to the noncoherent multiple-antenna
channel,” IEEE Trans. Inform. Theory, vol. 48, pp. 359–383, Feb. 2002.

[15] M. Brehler and M. K. Varanasi, “Asymptotic error probability analysis
of quadratic receivers in Rayleigh-fading channels with applications to
a unified analysis of coherent and noncoherent space-time receivers,”
IEEE Trans. Inform. Theory, vol. 47, pp. 2383–2399, Sept. 2001.

[16] A. Shokrollahi. Design of unitary space-time codes from representation
of SU(2). [Online]. Available: http//mars.bell-labs.com

[17] , A note on double antenna diagonal space-time codes. [Online].
Available: http//mars.bell-labs.com

[18] , Computing the performance of unitary space-time group constel-
lations from their character table. [Online]. Available: http//mars.bell-
labs.com

[19] C. Schlegel and A. Grant, “Differential space-time turbo codes,” IEEE
Trans. Inform. Theory, vol. 49, pp. 2298–2306, Sept. 2003.

[20] N. J. A. Sloane.. [Online]. Available: http://www.research.att.com/
~njas/packings

[21] T. Hirai, Linear Algebras and Representation Theory. Tokyo, Japan:
Sugaku Books, 2001, vol. I, II.

[22] J. H. Conway andN. J. A. Sloane, Sphere Packings, Lattices andGroups,
3rd ed. New York: Springer-Verlag, 1999.

[23] H. Wang, G. Wang, and X.-G. Xia. Some 2 � 2 unitary space-time
codes from sphere packing theory with optimal diversity product of code
size. [Online]. Available: http://www.ee.udel.edu/~xxia/Pub.html


