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Abstract

In this correspondence, we propose some new designs of 2 X 2 unitary space-time codes of sizes
6,32,48,64 with best known diversity products (or product distances) by partially using sphere
packing theory. In particular, we present an optimal 2 x 2 unitary space-time code of size 6 in the
sense that it reaches the maximal possible diversity product for 2 x 2 unitary space-time codes of size
6. The construction and the optimality of the code of size 6 provide the precise value of the maximal
diversity product of a 2 X 2 unitary space-time code of size 6.

Keywords: Unitary space-time codes, differential space-time modulation, optimal diversity prod-
uct, packing theory.

1 Introduction

Unitary space-time codes have been recently proposed in [6, 5] for differential space-time modulation
schemes and in [1, 2, 3, 4] for possibly other space-time modulation schemes. Unitary space-time codes
in differential encoding are useful not only when the channel information is not known at the receiver
and non-coherent decoding is used but also when the channel information is known at the receiver
and coherent decoding as a recursive trellis coding is used jointly with an error correction coding as
a turbo type coding [19] where a super performance is achieved. There have been several unitary
space-time code constructions in the literature: for example, group and optimal group constructions
[6, 7, 5, 9]; orthogonal designs [8]; parametric codes [11]; Cayley transforms [10]; Lie groups [13, 16];
and Hamiltonian constellations or spherical codes using packing theory [9, 16]. It is known that the
performance of a space-time code depends on its diversity product and having a good diversity product
has become an important criterion in the design of a space-time code. In [11], some upper bounds on
the diversity products of (unitary) space-time codes for a given size are presented. It is easy to reach the
diversity product upper bound for 2 x 2 matrices of sizes below 4 and 2 X 2 unitary matrices of sizes 4 and
5 reaching the upper bound are also presented in [11] using the parametric forms of unitary matrices.

In fact, 2 x 2 unitary matrices of sizes below 6 reaching the upper bound can be also constructed by
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using the Hamiltonian constellations from the packing theory, i.e., the optimal sphere packing points.
However, in [11] it is shown that the upper bound is not reachable when the 2 x 2 unitary code size is
above 5 and a tight upper bound on the diversity products remains open. The optimal or best known
sphere packing points of sizes above 5 do not provide optimal 2 x 2 unitary space-time codes with
optimal diversity products.

In this correspondence, we propose some 2 X 2 unitary space-time codes by partially using the
optimal sphere packing points [20, 22]. We obtain a determinant relationship for difference matrices
between Hamiltonian and general 2 x 2 unitary constellations. We present some best-known designs for
size L = 6,32,48,64, and also show that the code with size 6 reaches the optimal diversity product.

This paper is organized as follows. In Section 2, we present new best-known diversity product
designs for size L = 6,32,48,64. In Section 3, we show the optimality of the new code of size 6
presented in Section 2. Since the proof is heavily technical, we leave the most technical parts of the

proof in Appendix.

2 Some 2 x 2 Unitary Codes with Best Known Diversity Products

In this section, we present some new 2 x 2 unitary codes for sizes L = 6,32,48,64 with best known

diversity products.

2.1 Diversity Product

Let G = {V1,Va,--- , V1 } be a 2 x 2 unitary space-time code of size L with VlHVl = ] where  stands

for the transpose and complex conjugate. Define

A
= i det(V; — Vir)|. 1
€9)2 | min | det(Vi = Vi) m
and
A .
dp = mgaxf(g) = mgXVl,Vlrlnelél,lil’ (det(V; — V). (2)

Following the convention in the literature, the diversity product for a 2 x 2 code G is defined as follows:

£(9), (3)

and the optimal diversity product for L-point constellation is defined as

1

n(L) 2 maxy(G) = 5/dy. (4)

We are interested in designing a code G with large or optimal diversity product.



2.2 2 x 2 Unitary Matrices

The content of this subsection can be found in many literature, for example, [21, 16]. For the notational
convenience for our later study, we briefly introduce some concepts on 2 x 2 unitary matrices below.

Let U(2) be the set of all 2 x 2 unitary matrices, i.e.,
U(2) 2 {A| Ais a2 x 2 matrix with AZA = T}.

Between U(2) and the unit ball 83 C R*, there exists a close relationship as follows.
For any 2 x 2 matrix A with AYA = I, we have |det(4)| = 1 and thus there is a unique angle
6 € [0,27) such that det(A) = e/?. For any fixed angle 6 € [0,2x), let

SU(2,0) 2 {4 € U(2) | det(A) = e/}, (5)

Thus, we have

U2 = [(J suEo).
0e[0,2m)

We are particularly interested in the case of § = 0 and denote the set SU(2,0) by SU(2) for short, i.e.,
SU(2) = SU(2,0). We now investigate the structure of SU(2). From some theory of unitary matrices
(for example, see [21]), SU(2) can be isometrically embedded onto the 4-dimensional Euclidean real

unit sphere. Let S? be the unit sphere of 4-dimensional real Euclidean space R*, i.e.,
8*={x e R' [ |x]| =1},

where | - || denotes the conventional /2 norm. Because det(A) = 1 and the unitariness for any element

A in SU(2), it is not hard to see that there are two complex numbers, a = a1 + jas and b = by + jbo,

such that
a b
a=( 50, )

where * denotes the conjugate, and ay, as, by, by are real numbers governed by the condition a? + a3 +
b2 +b3 =1, ie., |a> + |b|> = 1, [21]. From this expression, the following embedding from SU(2) onto
S3 can be obtained, also see for example [16]. Let i be the mapping i : A — i(A) from SU(2) into S?
defined by

i(A) 2 (a1,a2,b1,b2) = (Re(a),Im(a), Re(b), Im(b)), (7)

where ay, a9, by, by are the real numbers defined in (6) and Re and Im stand for the real and imaginary
parts of a complex number, respectively. Clearly, the mapping i is one-to-one and onto. Furthermore,

the following relationship holds:

det(A — B) = [|i(A) —i(B)]*. (8)



This equation also implies that all determinants of difference matrices of two distinct 2 x 2 unitary
matrices in SU(2) are positive. From (8), one can see that the problem to find an optimal 2 x 2
space-time code in SU(2), i.e., it is restricted to have determinant 1, becomes to find optimal packing
points on the sphere S%, which is called Hamiltonian constellations in [9]. Thus, as indicated in [9], if

we denote Dy, as the maximal minimum-distance of L-point packing on S3, then
dy > D3,

i.e., the square of the maximal minimum-distance of L-point packing on S? is a lower bound for dj,.
However, as we shall see later, the above Hamiltonian constellation may not be enough to have good
codes and we need to consider the entire 2 x 2 unitary matrix space U(2). To do so, we need a

determinant formula.

2.3 A Useful Determinant Formula

Let us consider a relationship between SU(2) and U(2) or equivalently between SU(2) and SU(2,0)
for any 6 € [0, 2m).
For a fixed 6, we define a mapping Jy from SU(2,0) to SU(2) as follows:

Jp(A) 2 e 1024, for A € SU(2,0). (9)

Since det(Jy(A)) = e~ det(A) = e %1% = 1, this mapping is well-defined. Furthermore, it is not hard
to see that it is one-to-one and onto. With this notation, one can see that any 2 x 2 unitary matrix A

can be represented by
A=e1927,(4), for some 6 € [0,2m).

An important property from this mapping is that it also provides a determinant formula for a difference
matrix of two matrices selected from different sets SU(2,6;) and SU(2,605), which is stated in the

following proposition.
Proposition 1 For any Ay € SU(2) and A € SU(2,6), we have

|det(A — Ag)| = |det(Ag — Jg(A)) — 4sin?(0/4)].

. a b() . a b
AU — < 7})3 aa >a and JG(A) - < _b* qF > )

where |ag|? + |bo|? = 1 and |a|? + |b|?> = 1. Then

det(Ag — Jp(A)) = det(< —al())E bo ) - < S Cf’ ))

4o
= 2 (ao(l* + bob* + (1,3(1, + bgb),

Proof: Assume



By the definition of J in (5), we have A = ¢7%/2J,(A). Therefore,

B a0 by 0if/2,  @if2p,
|det(Ag — A)[ = |det << —by al > - < —ed0/2px  30/2
= |14 e — 2 (apa* + bob* + ala + bib)|
= 1+l — 22 — det(Ag — Jp(A)))]
= |e 992 4 192 (2 det(Ay — Jp(A)))],
which is the same as the one in the proposition. q.e.d.

From this proposition, we immediately have the following corollary

Corollary 1 For any A; € SU(2,601) and Ay € SU(2,6,), we have
|det(A; — Ay)| = | det(Jg, (A1) — Jp, (A2)) — 4sin?((6; — 62)/4)).

From the above proposition and corollary, one can see that the determinant absolute value of the
difference matrix of two 2 x 2 unitary matrices depends on the distance between their embeddings and
their angle difference. This motivates us to design a 2 X 2 unitary space-time code using two steps: one

is to select good packing points on the sphere S and the other is to select good angles 6.

2.4 Some New Codes with Best-Known Diversity Products

With the help of the above determinant formulas, we can construct some 2 x 2 unitary codes with

best-known diversity products.

2.4.1 Size L =606

Let d = —5/2 + V/22. Select a 4-point packing on S? as follows:
a; = (—a,—b,b,—b), ay = (—a,b,b,b), a3 = (—a,—b,—b,b), a4 = (—a,b,—b, —b),

where a = /1 —3d/8 and b = /(1 — a?)/3. By mapping these points back to SU(2), we have the

following four unitary matrices:

4_( ma=bi b-bj A —atbi b+
YT b—b —a+bi ) TP\ —b+bj —a—bj )

e abi b A athi b—bj
P b+bj —a+bj )0 P\ b=bj —a—bj )"

For other two unitary matrices, we use angle 6. Let
01 = 2arccos(d/2 — a), and 6y =27 — 61,

and

As = /2T € SU(2,6,), Ag = —e?/?T € SU(2,6,).



It is easy to check that the diversity product of the code {A;, Ag,--- , Ag} is %\/—5/2 + /22 = 0.7400.
In next section, we shall prove that 7(6) = %\/ —5/2 4+ /22, i.e., this code reaches the optimal diversity

product of any 2 x 2 unitary space-time codes of size L = 6.

2.4.2 Sizes L = 32,48,64

To construct 32, 48 or 64 unitary matrices with large diversity products, at first, we first construct four
diamonds in S? as follows.

Let t is a parameter, and

2
\/lf—t2 1—a?, b—f\/g rlzgt, ﬁ:?w

The four point coordinates of the first diamond are
alz(a,r,0,0), 32:(a7barlao)a
az = (a,b,r cos(B),r1 sin(B)), a4 = (a,b,ry cos(20),r sin(203)).
The ones of the second diamond are
a5 = (CL, —7",0,0), ag = (CL _b -, )7
a7 = (a,—b, —r1 cos(f), —ry sin(f)), ag = (a,—b, —r cos(23), —ry sin(243)).
The ones of the third diamond are
ag = (—a,r0,0), ajg = (—a,b,r1,0),
a1 = (—a, b, cos(8),r1sin(f)), ajg = (—a,b,rycos(283),ry sin(24)).
The ones of the forth diamond are
ajg = (—a,—10,0), ajy = (—a,—b,—r1,0),
ajs = (—a, —b,—ry cos(f), —r1 sin(B)), ag = (—a, —b, —ry cos(23), —r; sin(23)).
Mapping these points back to SU(2) using the map i~ ! given in (7), we obtain 16 matrices, denoted by
Qj, i.e., Q; 2 i’l(aj) for j =1,2,---,16. These matrices can be used to generate best-known diversity
product unitary codes with L = 32, 48 and 64 as follows.
For L = 32, let t = \/2, v = arccos(3/4) and define

Ui:Qiu 221727374: Ui:Q8+i7 i:5767778
Uy = /14712 Q, g, i =9,10,11,12; U; = S/1912)Q, ) i = 13,14, 15, 16;
U; = ™2 Q, 15, i =17,18,19, 20; U; = ™2 Q. 15, i = 21,2223, 24;
U; = edGn/49/2) ;o0 4 = 25,26,27,28; U; = dGm/447/2 ), o0, i = 29,30, 31, 32.
and put g32 = {Ui, -+ ,Usz2}, then the minimum determinant £(Gsy) = ‘[7271, and the diversity product
1(Gs2) is ‘[ 1 > ().4536, which is best-known for size L = 32.

For L:48, let t = /2 and

=Qi, 1=1,2,3,4;
=el™9)Q; 4, i=9,10,11,12;
=T/ Q; 16, i =17,18,19,20;
_ e](ﬂ—/Q Q’L*QUa 7= 25’ 26, 27, 28,
i(
i(;

m/6)Q;_4, i=13,14,15,16;
i(7/6)Q;_g, i =21,22,23,24;
20Q, 20, i =29,30,31,32;
27f/3 Ql 04, 1= 37,38,39,40;

:QH“i_5678
6
6
6

27/3)Qi_32, i =33,34,35,36;
= dOT/0)Q; 36, i = 41,42,43,44;

SSSSSS
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AAEAA



and define Gyg = {Vi,---,Vig}, then the minimum determinant ¢(Gsg) = v/3 — 1, and the diversity
product n(Gas) is £/ V3 — 1 = 0.4278, which is best-known for size L = 48.
For L = 64, let t = +/1.3880, and define

W, =Q,, i=1,234; Wi = Qgpi, i=25,6,7,8

W; =e™/8Q; 4, i=9,10,11,12; W; = eJ(”/g)Q 4, i =13,14,15,16:

W; =ed"/NQ, 14, i=17,18,19,20; W; = 7/ >Q2 g, i=21,22, 23 24;

W; = edB7/8)Q; o0, i=25,26,27,28; W; = edBT/8)Q; o0, i =29,30,31,32;
W; = el ™/2Q, 59, i=33,34,35,36; W, = el"/2Q; o4, i=37,38,39,40;

W; = edOT/8)Q; g6, i =41,42,43,44; W; = dOT/8)Q; 46, i = 45, 46,47, 48;
W; = BN Qi _4s, i =49,50,51,52; W; =edBT/YQ; 40, i =53,54,55,56;
W; = elT7/8)Q; 50, i =57,58,59,60; W; =elT/8)Q, s, i =61,62,63,64.

and define Ggqy = {W1,---,Wss}, then the minimum determinant £(Ggs) = 0.5406, and the diversity

product 7(Gg4) is %m =~ (0.3676, which is best-known for size L = 64.

The following table summarizes the above results and compares with some existing codes, where
diversity sum means the minimum Euclidean distance between codeword matrices [11]. From Table 1,
one can see that the optimal diversity sum, 0.7746, of the 2 by 2 unitary code of size 6 presented in
[11] is slightly better than the one, 0.7400, of the 2 by 2 unitary code of size 6 with optimal diversity
product presented in this paper. Fig. 1 shows the symbol error rates (SER) of these two codes of size
6 over a quasi static fading channel and one can see that the one with the optimal diversity product
performs slightly better than the one with the optimal diversity sum at high SNR, which also confirms

the argument between diversity product and diversity sum in [11].

Table 1: Diversity product and sum comparisons

Hamiltonian Codes [9] Parametric Codes [11] New Codes
Size | Diversity product | Diversity sum | Diversity product | Diversity sum Diversity product | Diversity sum
6 0.7071 0.7071 0.7071 0.7746 (opt.) 0.7400 (opt.) 0.7400
32 0.4496 0.4496 0.4461 0.5621 0.4536 0.5217
48 0.3938 0.3938 0.3875 0.4278 0.5000
64 0.3609 0.3609 0.3535 0.4852 0.3676 0.3827

3 Optimality of 2 x 2 Unitary Space-time Codes of Size L = 6.
The main goal of this section is to prove the optimality of the code of size 6 presented in Section 2.4.1.

Theorem 1 The mazimal diversity product of a 2Xx2 unitary space-time code of size 6 is % —5/2 4+ /22,

i.e.,

n(6) = % ~5/2 +V22.



Two transmit and one receive antennas, 2 by 2 unitary code of size 6

——  Optimal diversity product code of size 6 in this paper
—-—--  Optimal diversity sum code of size 6 in [11]
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Figure 1: Symbol error rate comparison.

This theorem implies that the code presented in Section 2.4.1 has already reached the maximal
diversity product.

To prove this theorem, we need some preparations.

First, we introduce the concept of dual. For any unitary matrix A = eja/QJg(A), its dual is defined
as e/270/2(_ J,(A)) and denoted by A. If § = 0, then A = e727/2(—.Jy(A)) = A, i.e., the dual of
A € SU(2) is itself. With the definition of a dual matrix we have the following corollary.

Lemma 1 For any unitary matrices A1 and Ao with their duals A1 and As, respectively, we have

(i) |det(A; — B)| = \det(fl} — B)|,  for any unitary matriz B € SU(2),
(17) |det(A; — As)| = [det(A; — As)].

This lemma is a direct result of Proposition 1, we omit its proof. In what follows, for the notational
convenience, we use A to denote Jy(A) for a matrix A € SU(2,6) by dropping the subscript 6 without
causing any confusion. Since there exists an embedding i from SU(2) onto S?, we do not distinguish a
matrix in SU(2) and a vector on S? and use the same notation A to express a matrix in SU(2) and a

point on S3. If A is treated as a point on S3, it means its embedding, i.e., i(A4) in (7).

Lemma 2 Let A; € SU(2,6;),i=1,2,--- ,L, and {A1, Ag,--- , A} be an optimal unitary space-time
code of size L with the mazimal diversity product dr, > 2. Then,

\det(AifAj)| :det(fii*fij)*4Sin2((9¢*9]‘)/4) ZdL, Zf ‘91*9]‘ S’IT,

|det(A; — Aj)| = 4sin?((0; — 0;)/4) — det(A; — A;) > dr,, if |0 —0;| >,



where A; = Jy(A,) is the projection of A, from SU(2,6;) to SU(2) as defined in Section 2.2.

Its proof is in Appendix. Lemma 2 basically provides an expression of the absolute value of a
difference matrix determinant from the one of their projections to SU(2) and their angles for an optimal

constellation.

Lemma 3 Let {Ay,--- , AL} be an unitary space-time code with the optimal diversity product dj, > 2
and A; € SU(2,60;), j = 1,2,--- L > 6. If0 =6, < --- < 0 < 2m, then 0,41 — 0; < 7 for

1=1,2,--- ,L —1, i.e., the difference of two adjacent angles is less than .
Its proof is in Appendix.

Lemma 4 Let {Py, -+, P} be L points on the sphere S®. Assume that |P; —P;||? > d for a constant
d>2and1 <1< j<L. Let Py be any a point on this sphere. Then,

o if L =4, there exist s and t, 1 < s,t < L, such that
[Po = P[> >2—2\/1-3d/8 and [Py—Pyl* <2+42\/T-3d/8,
o if L =3, there exist s and t, 1 < s,t < L, such that
Po— P[> >2-2\/1—d/3 and |[Po—P* <2+2y1—-4d/3,
o if L =2, there exist s and t, 1 < s,t < L, such that

IPo—Py|2>2 2/1_d/4, and |Po—Pi?<2+2y/1_d/4
Its proof is in Appendix.

Lemma 5 For any L points {P1,--- ,Pp} on the unit sphere S™ in the n+1-dimensional real Euclidean

space R"1 . we have

> P —PyP <12
1<i<j<L

Its proof can be found in, for example, [11].

Lemma 6 Let A; = ejai/Qfli € SU(2,6;), i = 1,2,3, be three unitary matrices. Assume 01 < 0y < 0.
If 65 — 01 < m, and for i # j, |det(A; — A;)| > dg > V22 —5/2, then,

93 —91 S 57’[’/6

Its proof is in Appendix.



Lemma 7 Let 2 < d <25 and —1 < a,b <1—d/2. If arccos(d/2 + a) + arccos(d/2 + b) > 7/2, then,

b — cos(arccos(d/2 + b) + arccos(d/2 + a)) — d/2

2 si L +df2)/2) — >d 10
sin(arccos(a + d/2)/2) cos(arccos(—a)/2) >d, (10)
where 0 < arccos(z) < 7.
Its proof is in Appendix.
Proposition 2 Let {A, As,---, Ag} be an optimal constellation with A; = 6791/2121]- of the mazimal

diversity product dg. Assume that 0 = 61 < -+ < 05 < 7w < 0 and g — 05 < 7, 05 — 04 > w. Then,
dg < —5/2 4+ +/22.

Its proof is in Appendix.

Proposition 3 Let {A;, Ag,---, As} be an optimal constellation with A; = 6791'/214]-. Assume that
0=60; < <0< <O and g — 04 <, 0 — 03 > 7. Then, dg < *5/24—\/22.

Its proof is in Appendix.

Proposition 4 Let {A;, Ay, -+, As} be an optimal constellation with A; = ejai/QAj. Assume that
0=0,<---<04,<7<05<0g and 05 — 04 <7, O — O3 > w. Then, dg < —5/2+\/22.

Its proof is in Appendix.

Proposition 5 Let {A1, Ag,--- , Ag} be an optimal constellation with A; = ejaf/QAj. Assume that
0=60; < <0, <7 <0O5<b and g — 03 <7, g — 0y >mn. Then, dg < *5/24‘\/22.

Its proof is in Appendix.

Now we begin to prove Theorem 1.

Proof of Theorem 1: Assume signal constellation G = {A;, Ag,--- , Ag} is an optimal constellation
with the maximal diversity product dg and A; € SU(2,0;),i =1,2,--- ,6. By the construction in Section
2.4 (1), we have dg > —5/2 + v/22. We next need to show that ds < —5/2 + v/22. To do so, let us
consider the different cases of the number of the zero angles of A;: p 2 t{i | 0; = 0}. Without loss of
generality, we can assume that 1 < p < 6. In this proof and the proofs in Appendix, we always use
0 < arccos(x) < 7.

(i) p = 6.

p = 6 means that all 4; € SU(2), i.e., all six matrices A; are on the sphere S3. In other words, there
exist 6-point packing such that the minimal distance is greater than v/2, which contradicts with the
packing result on S? (according to the result [20], the packing angle on S3 is 7/2, that is, the maximal

minimum distance is v/2).

(i) p = 5.

10



Assume 0 = --- = 05 = 0 and 6g > 0. Thus, 4; = A;,i = 1,2,--- 5. By Lemma 3, we have
O — 05 < 7, ie., 0 <m. By Lemma 2,

det(A; — Ag) > dg + 4sin®(0/4) > 2, i = 1,2, ,5.

For 1 <1 # j <5, from the condition, det(fli — Aj) > 2. Therefore, there exists six points {1211, e ,1216}
on the sphere S? such that the minimum distance is greater than v/2, which contradicts with the packing

result as in (i).

(iii) p = 4.
Assume 61 = --- =604, =0 and 0 < 05 < 0 < 27w. By Lemma 3, we have 05 < 7w and 05 — 05 < 7. If
O < m, then, as shown as (ii), {Al, o Ay, As, 1216} consists of a 6-point packing on S? with minimum

distance greater than \/5, which results in a contradiction. Therefore, we can assume that 05 < 7 < fg
and 0g — 05 < .

We next investigate the packing position of {Al, oo Ay, As, —1216} on S3. Denote A; = (a;, bi, ¢i,e),
1 =1,---,6. By a unitary transformation, we can assume As = I, ie, a5 =1,b5 =c5 =e5 =0. We
then convert this problem to a packing problem on the 3-dimensional unit sphere S? as follows. If
a; # 1,—1, define

1
bi = —(bi,ci,ei), 1= 1,2,3,4,6, (11)

Ty

where r; = /1 — (112 Then b; € S? and clearly,
det(A; — Aj) = 2(1 — ajay) + rirj(|[b; — by||* - 2), (12)
2(1 — aja;) — det(A; — A;
Iy — by |2 = 2 2L ) AL ) (13)
TiTj

Two remarks about this conversion are as follows. The mapping S* > (a,b,c,e) — b = (b/r,c/r,e/r) €
S? is not one-to-one. It is because, for different two points (a, b, ¢, ¢) and (—a, b, ¢, €), the images are the
same. However, when we restrict a > 0 or a < 0, the mapping becomes one-to-one and onto. Another
remark is that an image point b does not depend on a, when we restrict a to a < 0 or a > 0. To explain
this, we use the polar coordination. For any point (a,b,c,e) € S, there exist three angles ¢1, ¢o, ¢3,
such that a = sin(¢1) and b = cos(¢1) sin(pa), ¢ = cos(p1) cos(p2) sin(¢s), e = cos(p1) cos(pa) cos(ps).
Hence b = (b/r,c/r,e/r) = (sin(¢p2), cos(p2) sin(¢ps), cos(pa) cos(¢ps)), which is independent of ¢1, i.e.,
a. Therefore, when we restrict a to a < 0 or a > 0, the distance ||b; — b;|| is independent of a; and a;.

For 1 <i <4 and i = 6, because 05 < 7 and 65 — 05 < 7w, by Lemma 2, we have
2 < dg < |det(As — A;)| = det(As — A;) — 4sin’(05/4) = 2 — 2a; — 4sin®(#5/4).

Therefore, a; < 0 for i =1,2,3,4,6.
Since 0; = 6y = 03 = 64 = 0, without loss of generality, we may assume that —1 < a1 < a9 < a3z <

as < 0. If ag = —1, then by = ¢; = e; = 0 and it is not hard to see that det(fl4 — 1211) =24 2a4. It
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implies dg < 24 2ay, i.e., aq > 0, which contradicts with the result a4 < 0 we derived before. Therefore,
ar > —1.
For 1 <i# j <4, from (12) and the fact that §; = ; = 0, we have

dg

IN

[ det(A; — Aj)| = det(A; — Aj) — 4sin®((6; — 6;)/4)
— 2 2a,0; + riry([Iby — by ? — 2).

Because a;a; > 0 and r;7; > 0, we have ||b; — b;||> — 2 > 0. Furthermore, it is easy to see that for a

fixed a;, the right hand side of the above inequality is increasing for a;. Therefore,

d(; S 2 — 2(1,1'(1,]' + Tirj(Hbi — bj”2 — 2) S 2— 2(1,421 + Ti(”bz — bj”2 — 2),

which implies that ay > —/1 — dg/||b; — b;[|2. Because {by,--- ,bs} are on S?, by the packing theory
on S?, there is at least one pair {b;, b;} such that ||b; — b;||> < 8/3. Hence,

ay > —/1— 3dg/8. (14)

Since as =1, -1 < ag <0, and 0 < g — 05 < 7, from Lemma 2 we have

d(; S \det(AG - Ar,)| = det(fi(; - Ag) - 4sin2((96 — 95)/4)
= 2 2ag — 4sin?((fs — 05)/4) <2 — 2(—1) — 4sin?((fg — 05)/4).

Therefore,
COS((G(; —95)/2) > d6/2—1. (15)
Using the fact that dg < |det(As—Ay)| = det(As—Ay)—4sin®(05/4), and noting that det(As—Ay) =
2 — 2ay4, we have

de < 2—2ay4 —4sin?(65/4) <2+ 2y/1 — 3dg/8 — 4sin?(05/4)
= 2cos(05/2) +2+/1 — 3dg/8, (16)

where the second inequality is from (14). Inequality (16) implies

COS(95/2) 2d6/2—\/1—3d6/8. (17)

We now replace As, Ag by their duals As, Ag. From the definition, we have

Ag = I 06)/2(_ Ac) A5 = I2m05)/2(_ 4,

Furthermore, {Aq,--- ,A4,14~16,A5} is also an optimal signal constellation by Lemma 1. We make a

normalization by multiplying —flﬁH from left to the constellation to get a new constellation:

A ~ ~ ~ N Ny~ npr o~
gl = {*AGHAla 7A6HA2a 7A6HA% 7A6HA4a 7A6HA6a 7A6HA5}
= {—AGHAl, _AGHAQ, —AGHA3, —AGHA4, ej(27r766)/21, —Aé{fi5}
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Since —flﬁH is a unitary matrix, G; is also an optimal constellation. Furthermore, G; and {A;,- -, Ag}
have the same angle relationships. Therefore, inequality (17) corresponding to this new constellation

Gy also holds:
cos((27 — 65)/2) > ds/2 — /T 3da]B. (18)
From (17) and (18), we have
05 < 2arccos(dg/2 — /1 —3dg/8), 6s > 2w — 2arccos(dg/2 — /1 — 3ds/8).

Hence,
06 — 05 > 2 — darccos(dg/2 — /1 — 3dg/8).

From (15), we know that 6 — 05 < 2arccos(dg/2 — 1). Therefore,
21 — 4darccos(dg/2 — /1 — 3dg/8) < 2arccos(dg/2 — 1).

Hence,
ds < —4(ds/2 — \/1—3dg/8)* + 4,
which implies the desired result dg < —5/2 + V22,

(iv) p < 3.

Assume 0 = 6 < 6y < 03 < --- < . Using the same argument as in the beginning of Case (iii)
when p = 4 and Lemma 3, we can also assume that 7 < g and 0y < 7, 05 — 05 < 7. We divide the
proof into several cases according to the relationships among the angles 6;.

Case 1 0 > m and 05 < .

We divide this case into 4 subcases.

Case 1.1 Og > 7w, 05 <7 and 05 — 04 > 7.

This subcase is Proposition 2.

Case 1.2 Og > m, 05 <7 and O — 04 <7, 05— 03 > .

This subcase is Proposition 3.

Case 1.3 Og > m, 05 <7 and 05 — 03 < 7, 05 — Oy > .

By taking the rotation of angle —05 to G, we obtain a new constellation
G = {4}, Ay, , A},
where A% = e /%/24;. For j =1,2,3,4,
A; — e*]‘65/2€]‘6j/2121j - e(27r—(05—0]-))/2(_1[15)_
For j = 5, we have AL = e 7%/245 = A5. For j = 6, we have

AL = e 905/20306/2 j — o(06—95)/2 {
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Therefore, the relationship between G’ and G is
{AY, Ay, Ay, Ay AL AG) = {—Ar — Ay, — Ay, - Ay, A5, Ag),
and
10,04,05,0,,0L, 00} = {21 — 05,21 — (05 — 0),27 — (05 — 03),27 — (05 — 04),0,05 — 05}

Clearly, the diversity product of G’ is still dg.
We now consider the dual of ', denoted by G’, which has the same diversity product as G’ by
Corollary 1: G' = {A}, A, ... AL} where A; = 60;’/214;-, 1 < j < 6. By the definition of a dual, the

relationship between G' and G' or G is

(AL Ay, Ay A A Ay = (= AL, — A, — Ay, — Ay, AL — ALy
- {A17A27A37A47A57_146}7

and the corresponding angles are

{91117 agu agu 91117 agu ag = {27T - ,17 2w — 9’27 27 — 9;’)7 27 — 0117 07 27 — 9%}
= {05,05 — 02,05 — 03,05 — 04,0,21 — (0 — 05)}.

It is easy to see that 6f > 7 and 9;-’ <7 for j =1,2,3,4,5. Furthermore,
g — 07 <m, O —0y <m0 —0]>mn j=34,5.

Thus, if we rearrange G' into
g" = {A%, Ailv A{h A,27 Allv A%}v

then the conditions on G” are exactly the same as the ones in Case 1.2. By Proposition 3, we have
proved this theorem in this subcase.

Case 1.4 g >m, 05 <mand g — 0, <7

Make a rotation angle —f3 to the constellation G as done in Case 1.3 and we find that the new
constellation has the same conditions as in Case I.1. Therefore, by Proposition 2, we have proved this
theorem in this subcase.

Case 11 Og,05 > 7 and 04 < 7.

We divide this proof into 4 subcases.

Case I1.1 0g,05 > m, 04 < 7 and O — 04 > 7.

In this case, we make a rotation to the constellation as follows. Let A;- = e*jeﬁ/QAj forj=1,2,--- ,6.
Then {A}, AL, ---, A} is also an optimal constellation. Since, for j = 1,2,3,4,5, A; = e*jeﬁ/QAj =
el (2m—(06-0;))/2 . (fflj), we obtain A; = fflj and the angle 0} of A} is 21 — (06 — 6;). For j =6, 05 = 0,
i.e., Aj belongs to SU(2) and Af = Ag. Furthermore, we have that 6,07, 05, 0%, 0} are all less than or
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equal to 7, and 6} is greater than or equal to 7. Therefore, {A}, AL, --- , Ay} satisfies the conditions in
Case I. Thus we have proved this theorem in this subcase.

Case I1.2 Og,05 > m, 04 <7 and 05 — 0, <7, Og— 03 > .

It is proved in Proposition 4.

Case I1.3 0,05 > m, 0y <mand 0 — 05 < m, O — Oy > .

It is proved in Proposition 5.

Case 11.4 0,05 > m, 04y < mand 0 — 0y < 7.

Let A% | = e 102/2A; for j = 2,3,4,5,6, and Af = e27392)/24; Note that Ay = A since 6, = 0.
Then, {4}, A}, A}, A}, AL, Ay} satisfies the conditions of Case I.

Case III  64,05,04 > m and 05 < 7.

Under this assumption, we consider the dual constellation: 61 = 0 is fixed, and 65, 3 are changed to
21 — 09,27 — 03, which belong to [, 27|, and 604, 05.05 are transferred to 2w — 64, 21 — 05, 2m — 05, which
belong to [0, w]. Therefore, through this duality, we change this subcase into Case II.

Case IV 0g, 05,604,035 > m and 6y < 7.

Also we consider its dual constellation and find that this case can be converted to Case I.

By summarizing all the above cases, this theorem is proved. q.e.d.

4 Conclusion

In this correspondence, we have partially used sphere packing theory to construct 2 x 2 unitary space-
time codes. Although the optimal ones of sizes L below 6 can be constructed from the sphere packings
on S3, i.e., Hamiltonian constellations [9, 16] that reach the upper bound %\/m of the maximal
diversity products derived in [11]. This upper bound can not be reached when the sizes are above 5
as shown in [11]. The critical boundary on the sizes is size L = 6. In this correspondence, we have
constructed 2 x 2 unitary space-time code of size 6 that has been shown in this correspondence to have
the optimal diversity product. The optimal diversity product dg = %\/ —5/2 4 1/22 = 0.74 < 0.7746 ~
%\/m when L = 6. Some constructions of 2 X 2 unitary space-time codes of sizes 32,48, 64
of non-Hamiltonian constellations with best known diversity products have been also presented by
partially using sphere packing theory. To obtain these results, we have presented a determinant identity
between the difference matrices of two matrices in a Hamiltonian constellation and two matrices in

non-Hamiltonian constellations.

Appendix

In this Appendix, we always assume that 0 < arccos(z) < 7.
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Proof of Lemma 2
Condition d;, > 2 implies that for any i, j, |det(4; — A;)| > 2. Therefore, from Corrollary 1, we have
|det(A; — Aj) — 4sin®((6; — 6,)/4)| > 2.

If ‘91 - 9]‘ S T, then
0 < 4sin’((6; — 0;)/4) < 2.

Therefore, by noting that det(A; — A;) > 0 from (4) and Corollary 1, we obtain
‘ det(AZ- - A])| = det(fli - A]) — 4sin2((9¢ — 9])/4)
The second inequality can be similarly proved. q.e.d.

Proof of Lemma 3

Assume that there is an index u such that 6,1 — 6, > m, we want to derive a contradiction.

Since 0,41 — 0, > mand 0 < 0, < 0,41 < 27, we have 0, < m < 0y41. Let us consider a new
constellation {Al, s, Ay, fAuH, e ,fflL} C SU(2). We want to show that this new constellation
on S? has the minimum Euclidean distance v/dr..

Fori<j<wu,0<6;,<60; <6, <m, hence §; —0; < 7. By Lemma 2,
det(A; — Aj) = |det(A; — Aj)| + 4sin®((0; — 0;)/4) > dp, > 2.

For i > j > u+1, since 6,41 > m, we have 6; — 6; < w. Therefore, by Lemma 2, we have

det(—A; — (—A;)) = det(A; — Aj) = | det(A; — A;)| + 4sin®((0; — 0;)/4) > dp, > 2.
Fori <u<wu+1<j,since §; —6; > 0,41 — 0, >, by Lemma 2 we have

det(A; — A;) = 4sin®(6; — 00)/4) — | det(4; — A7),
Note that det(—A; — A;) =4 — det(A; — A;). Thus,
det(~A; — A;) =4 — 4sin?((0; — 0;)/4) + |det(A; — A))| > | det(A; — A;)| > dy.

Therefore, using (4) we have shown that the minimum Euclidean distance of the points {1211, N T
—fluH, —AL} on S? is greater than /d; > v/2. This contradicts with the fact that, when L > 6, the
maximal minimum distance of L-point packing on the sphere S? is v/2 from the packing theory [20].

q.e.d.
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Proof of Lemma 4

We only prove the case of L =4 and the other cases can be similarly proved.

We first prove that there exists ¢, 1 < t < 4, such that |[Py — P;||? < 2 + 2,/1 —3d/8. Since
an orthogonal transformation does not change the distance between any two points, without loss of
generality, we may assume Pg = (1,0,0,0). Let P; = (a;, bi, ¢;, ;). Then, [|P; — Po[? =2 — 2a;.

We may assume that a; # 1, —1. In fact, if a; = 1, we let ¢ = 4, which is because |P; — Py|[> =0 <
2 +2y/1—3d/8. If a; = —1, then |P; — P> = 4. Let ¢ # i and we have

P —Pol? = 2 2a,=4— (2+2a;) =4 ||P, — P;|?
< 4—-d<2424/1-3d/8,
where the third equality is from the assumption a; = —1, and the first inequality is from the assumption

P, — P;||? > d.
We next derive a contradiction by assuming |P; — Pg|? > 2+ 2,/1 — 3d/8 for i = 1,2,3,4. Since
|P; — Pyl|? =2 — 2a;, we have

a; < —\/1— 3dJ8. (19)
On the other hand, since |P; — P,||* > d, we have
2 — 2a;a; + (|[bi — by||® — 2)ryr; > d,

where r;, 7, b;, b; are the same as those described in (11)-(13) in the proof of Theorem 1. Since a;,a; # 1

or —1, we have r;,r; > 0. Therefore, we obtain

d—2 +2(I,i(1,j

T

From (19), we know that a; < 0. It is not hard to check that, on interval (—1,0], the right hand side of

(20) is strictly decreasing for a; and a;. Therefore, by using (19), we obtain

d—2+4 2aa;
b= byl > 24 S
Ty
d—2+2(1 —3d/8) - .
2 =8/3 =1,2,3,4 . 21
+ 1_(1_3d/8) /7 7’7.7 ’7’72#] ( )

Clearly, (21) contradicts with the result of 4-point packing on S?. This proves that there exists a
t € {1,2,3,4} such that

IPo — P42 < 2+21/1— 3d/8.

We next prove that there exists an s € {1,2, 3,4} such that

Py — Py||? >2—2/1—3d/8. (22)
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To do so, let us consider point —Py. By the above result, there exists an s € {1,2,3,4} such that

| — Py — Py||* <2+2y/1—3d/8.

Since
| =Py —P,||? =2+ 2a, =4 — (2 —2a,) =4 — ||Py — P,|J%,
we obtain
4— Py —Py|* <2+2y/1-3d/8,
or

|Po — Py|> > 2 —2y/1 - 3d/8.

Proof of Lemma 6

Let Aj = (aj,bj,¢j,ej) for j = 1,2,3. We want to convert these three 4-dimensional unit vectors

equivalently into three 3-dimensional unit vectors by employing orthogonal transformations. We may

(0 #)

on S3, we can assume Ay = (ag,72,0,0), where R is a 3 x 3 orthogonal matrix, and r9 = /1 — a%.

first assume A; = I. By using a rotation

Similarly, using a rotation
1 0 0
010
0 0 T

on S3, we can assume Az = (a3, 73, c3,0), where T is a 2 x 2 orthogonal matrix. Thus, after normaliza-

tions, we may assume A;, Ay, A5 of the following forms:
Al = (11 07 Oa 0)’ A? = ((1,2, r2, Oa O)a A? = ((1,3, b3a Cc3, 0)7

which are equivalent to three 3-dimensional vectors on the 2-dimensional sphere S?. Furthermore, we
may assume 6; = 0.

Because 03 — 6; < m and 0 = 6; < 0y < 603, it is obvious that 69,03 < 7 and 03 — 0y < w. Therefore,
by Lemma 2 and the condition |det(A; — A;)| > ds, we have

det(A; — A;) > dg + 4sin®((6; — 0,)/4), 1<i<j<3. (23)

From (23), we have det(A; — Ay) > 2, det(A; — A3) > 2, and det(As — Ay) > 2. This means that the
points 1212, Aj are on the different half sphere from the point Ay.
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Let O be the original point of coordinates and 2 be the angle Z A0 As, 13 be the angle ZA10 Az.
Then,

2 —2cos(yi2) = det(A; — Ay) > dg + 4sin?(hy/4), (24)
2 —2cos(yi3) = det(A; — A3) > dg + 4sin®(H3/4), (25)

Clearly, when 1211, 1212, Aj are on the same circle, the distance between Ay and Aj achieves the maximum.
Therefore,

det(Ay — Ag) <2 —2cos(2m — v12 — Y13) = 2 — 2cos(Y12 + Y13)-
Applying (23) for i = 2 and j = 3, we get that
de + 4Sin2((93 — 92)/4) <2- 2COS(’)/12 + ’)/13).

That is

d6/2 + COS(’le + ’}/13) < COS((93 — 92)/2) (26)

From (24),(25), we have 9 > arccos(cos(62/2) — dg/2) and 13 > arccos(cos(f3/2) — dg/2). But from
(26), noticing that m < 12 + y13 < 27, we have 19 + 113 < 7 + arccos(dg /2 — cos((63 — 02)/2)). Hence,

7 + arccos(dg /2 — cos((f5 — 62)/2))
— arccos(cos(02/2) — dg/2) — arccos(cos(03/2) — dg/2) > 0. (27)
We can check that the left hand side of (27), is decreasing for dg. By condition dg > /22 — 5/2, we
then have
7 + arccos((vV22 — 5/2) /2 — cos((63 — 62)/2))
— arccos(cos(fy/2) — (V22 — 5/2)/2) — arccos(cos(3/2) — (V22 — 5/2)/2) > 0. (28)
Assume 65 > 57/6, we want to derive a contradiction. In fact, by investigating the left hand side of
(28), we find that it is decreasing for 65. Therefore, we have
7 + arccos((vV22 — 5/2) /2 — cos((57/6 — 6)/2))
— arccos(cos(fy/2) — (V22 — 5/2)/2) — arccos(cos(57/12) — (V22 — 5/2)/2) > 0, (29)

which is impossible since the maximum of the left hand side of (29) for 6, € [0, 7] is less than —0.02.

Therefore, the lemma is proved. q.e.d

Proof of Lemma 7

Let

z — cos(arccos(d/2 + ) + arccos(d/2 +a)) —d/2
cos(arccos(—a)/2)

d.

f(z) = 2sin(arccos(a + d/2)/2) —
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Then, to prove the lemma, it is enough to prove that f(z) > 0 for —1 < 2 < 1 —d/2. Obviously, f(z)

is an infinitely differentiable function in the interval (—1,1 — d/2). Moreover, its derivative is

V1 —(d/2 + x)? — sin(arccos(d/2 + =) + arccos(d/2 + a))

1 — (d/2 + x)? cos(arccos(—a)/2)

flz) = -
Hence, equation f'(z) = 0 becomes
sin(arccos(d/2 + x) + arccos(d/2 + a)) = sin(arccos(d/2 + z)).

Since arccos(d/2 + ) + arccos(d/2 + a) > m/2 and arccos(d/2 + x) < 7/2, the unique solution zy of the

equation f'(z) = 0 satisfies
arccos(d/2 + xz¢) + arccos(d/2 + a) = m — arccos(d/2 + ).

Hence,

xo = sin(arccos(d/2 4+ a)/2) — d/2.
The second derivative of f(x) at xg is

2sin(arccos(d/2 + a)/2)

cos?(arccos(d/2 + a)/2) cos(arccos(—a)/2) >0

f”(fl?o) _

Thus, we have shown that, the equation f’(z) = 0 has unique solution zg in the interval (—1,1 — d/2)
and f"(xg) > 0. Therefore, f(x() is the minimum value of f(z) in this interval, that is, f(z) > f(zo)
for z € (—1,1 —d/2). On the other hand,

(1 — cos(arccos(—a)/2))(d — 2 sin(arccos(d/2 + a)/2))
cos(arccos(—a)/2)

f(zo) = >0,

where the inequality comes from the assumption d > 2 and a < 1 — d/2 < 0. This proves that, when
be (—1,1—-4d/2), we have f(b) > 0. If b = 1 — d/2, then we have arccos(d/2 + b) = 0, which implies
arccos(d/2 + b) 4+ arccos(d/2 + a) = arccos(d/2 + a) < /2 that contradicts with the condition. This
shows that b # 1 — d/2 in the lemma. Therefore, we have proved the lemma. q.e.d.

Proof of Proposition 2

We denote G = {A;,---, Ag} and inherit the previous notations (a;, b;, ¢;,e;) for A; ;i = 1,--- .6, and
assume that A; = I. Since for 1 < j<4andj=6, |05 —0; <m, from Lemma 2,

2 <dg < |det(A5 — AJ)| =2 2(1,]' — 4sin2((95 — 9])/4) (30)

This implies a; < cos((05 —6;)/2) —ds/2 <1 —ds/2 <0 for j =1,2,--- 6.
We divide the proof of this proposition into two cases according to the number ag: one is ag = —1
and the other is ag > —1.

Case 1 ag=—1.
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Since ag = —1, we have Ag = (=1,0,0,0). If there exists a j € {1,2,3} such that a; = —1, then
bj=cj=e¢; =0and det(Ay — 121]) = 2+ 2a4. Thus, from Lemma 2 we have

2 < dg <|det(Ay — A;)| = det(Ay — A;) — 4sin®((04 — 0;)/4)
= 2cos((fs — 9]‘)/2) + 2ay,

which contradicts with the fact a4 < 0. Hence, a; > —1 for j = 1,2, 3. Similarly, we can prove ay > —1.
Therefore, by, ba, bz, by are well-defined in (11) and belong to S?.

From the result of [11], the optimal determinant for 5 unitary matrices is 12/5, so we have dg <
12/5 = 2.4. We next show that there exists at least one a; for j € {1,2,3,4} such that a; >

—/1 —3ds/8. Otherwise, assume, for all j € {1,2,3,4}, a; < —/1 —3ds/8. Then, from the opti-

mal constellation conditions, we have
dg < det(A; — A;) — 4sin?((0; — 0;)/4) < det(A; — A;).

Using (13), we obtain

deg — 2 + 2az~aj
7’2'7”]‘

- dg —2+2(—+/1 —3ds/8)> 8

b —bj|* > 2+

(1-(—+/1-3ds/8)%) 3

where the second inequality is from the assumption a;,a; < —+/1 — 3ds/8 and the fact that the right

hand side of the first inequality above is decreasing for 1 < a;,a; < 0. Therefore,

8
> |bi —bj|> > 6 x 5 = 16,
1<i<j<4

which contradicts with the result in Lemma 5. Thus, we have proven that there exists an aj, j €
{1,2,3,4}, such that a; > —/1 — 3dg/8.

Since ag = —1 and g — 6; > 7, from Lemma 2 we have

dg

IN

| det(Ag — A;)| = dsin’((65 — 6;)/4) — det(Ag — A;)
= 4sin®((0s — 0,)/4) — (2 + 2a;)

< *QCOS((GG — 9])/2) + 21— 3d6/8,

which implies
cos((0s — 65)/2) < /1 —3dg/8 — dg/2. (31)
On the other hand, from |det(Ag — A5)| > dg, i.e.,

ds < det(Ag — As) — 4sin®((0g — 05)/4) = 2+ 2 — 4sin’((05 — 05)/4),
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we have
cos((0s — 05)/2) = de/2 — 1. (32)
Similarly, from | det(As — A;)| > dg and 05 — 6; < 7, we have
dg < |det(As — Aj)| = det(As — A;) — 4sin®((05 — 0;)/4) =2 — 2a; — 4sin((05 — 0;)/4),
which implies

COS((95—9]‘)/2)Zd6/2+a]‘2d6/2—\/1—3d6/8. (33)

Since (31), (32), and (33) have the same forms as the ones of (15), (17), and (18), we can use the same
technique used in the proof of Case (iii) when p = 4 in the proof of Theorem 1 as follows. From (31)
and (33), we have

6 — 0; > 2arccos(v/1 — 3dg/8 — dg/2) and 605 — 6; < 2arccos(dg/2 — /1 — 3d/8).

Hence,

O — 05 > 2arccos(y/1 —3ds/8 —ds/2) — 2arccos(ds/2 — /1 — 3ds/8)
= 2w —4arccos(dg/2 — /1 — 3ds/8).

From (32), we have 05 — 05 < 2arccos(dg/2 — 1). Therefore,
21w — 4arccos(dg/2 — /1 — 3dg/8) < 2arccos(ds/2 — 1),

which implies dg < —5/2 + v/22.

Case 2 ag > —1.

The main idea of the following proof of this case is to construct a new constellation, G**, that also
has the diversity product dg and satisfies the conditions of Case 1. To do so, we first take some rotations
and duals of G to generate a constellation G”. Using G” and G, we can obtain a desired G**. We next
divide the proof into three steps. The first step is to diagonalize matrix Ag without altering Ay =1
and other properties and to establish an equality on ag. The second step is to construct a constellation
G" through rotations and duals of G. The third one is to construct G**.

Step 1. Diagonalization of Ag and an equality on ag

Since ag > —1, vector bg is a well-defined point on the sphere S2. Then, there exists a real-valued

rotation 7 on S? such that bg -7 = (1,0,0). Let

Then, @ is an orthogonal matrix and

(ag,b6,c6,e6) - Q = (ag, (bs,ce,e6) - T) = (as,76(bs/76,C6/76,¢6/76) - T)
= (aﬁarﬁbﬁ . T) = (GG,TG,0,0),
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and (1,0,0,0) - @ = (1,0,0,0), where rg = /1 — a3. If we let

(@;,b5,¢5,€5) = (a;,b5,¢5,¢;) - Q, 1 <5 <6,

then, these points are on the unit sphere S®. By using the mapping i~ defined in Section 2, we obtain

six 2 x 2 unitary matrices belonging to SU(2). Denote these matrices by Aj for 1 < j < 6. Then, As =1

> [ ag+Jre 0
A6_< 0 (16.7T6>’

and

which is diagonal. Furthermore, since () is an orthogonal matrix, we have

det(A; — A5) = [i(A) —i(A))|1° = i(Ai) —i(A))[?
= det(4d; —4;), 1<i<j<6,

where the first equality is from (8), and the second equality is from the fact that @ is orthogonal, and
the last equality is also from (8). Set flj = ejai/QAj for 1 < 57 < 6. Then, by Corollary 1,

det(A; — A;) = det(4; — A;), 1<i<j<6.

Thus, we have obtained a constellation that has diversity product dg but ;15 = I and ;16 is diagonal.
Therefore, in the following proof, we assume the constellation G has the property: Ay = I and Ag has
the above diagonal form.

We now establish an equality on ag. According to the relationships among the angles, the following

inequality are clear by using the optimality conditions and Corollary 1:

dg < |det(Ag — A;)| = 4sin((0s — 6;)/4) — det(Ag — A;), 5 =1,2,3,4, (34)
dg < |det(As — A;)| = det(As — A;) — 4sin®((05 — 6;)/4)

= 2 2a; —4sin’((05 — 0;)/4) = 2cos((05 — 0;)/2) — 2a;, j=1,2,34, (35)
de < |det(Ag — As)| = det(Ag — As) — 4sin®((0s — 05)/4)

= 2 2ag — 4sin®((0s — 05)/4) = 2cos((0s — 05)/2) — 2as. (36)

Furthermore, we may assume the equality holds in (36), i.e.,

ds | det(Ag — As)| = det(Ag — A5) — 4sin®((6s — 05)/4)

= 2 2ag —4sin®((0s — 05)/4) = 2cos((fs — 05)/2) — 2as. (37)

In fact, if
d6 < det(flﬁ — A5) — 4sin2((96 — 95)/4) =2 2a6 — 4sin2((96 — 95)/4) = 2COS((96 — 95)/2) — 2(16,

then,
ds/2 4+ ag < cos((0s — 05)/2) < 1.
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Since dg > 2 and ag > —1, we have dg/2+4ag > 0. Therefore, 0 < arccos(dgs/2+ag) < 7/2 is well-defined.
Let 6 = 65 + 2arccos(dg/2 + ag). Then 0 < 0y — 05 < 7, 0 < 2w (due to the assumption 65 < 7), and

d
cos((0 — 05)/2) = 7 + a5 < cos((0 — 05)/2).
Therefore, 0% > 6. Let Al = ¢i%/2 A. Clearly,

det(Ay — Ag)| = det(dg — Ay) — 4sin((6 — 0)/4)
= —2a4+ 2(308((9% - 95)/2) = —2a¢ + 2(d6/2 + (16) = dg

On the other hand, for j =1,2,3,4, 6 — 6; > 65 — 6; > 7, and hence,

|det(Af — A;)] = 4sin®((65 — 0;)/4) — det(A
> 4sin2((96 — 9])/4) — det(fi(; — A]) > dg.

(=}
\
>
<.
~—

Therefore, {Ay,--- , A5, A5} is also an optimal design with dg = det(Ag — As) — 4sin?((6} — 05)/4) and
fl% — Ag. Thus, in the following proof of this proposition, we assume (37) holds. From (37), we obtain

ag — COS((@G — 05)/2) — d6/2 (38)

Step 2. Rotations and duals of G.

Let us first make a rotation of angle —6; to G to generate a new constellation. Denote this new
constellation as G*, i.e., we define G* = { A}, A%, A5, A}, A, Af} where A% = e*j94/2A]~. For j =1,2,3,
A7 € SU(2,2m — (04 — 05)), and for j = 4,5,6, A7 € SU(2,(0; — 04)). Therefore,

{AL A;7 A;u AZ? A;a AZ} = {_Alu _A27 _A37 A47 A57 Aﬁ}a

and
{9;0;79:}(’027 g,eé}:{27T*94,27rf(94*92),27rf(94*93), 0, 05*94a06*94}'

Note that 65 = 0 and A% € SU(2).

We next consider the dual of G* and denote this dual as G*, i.e.,
G = {A}, A3, A3, A7, A3, AG),
where fl}" is the dual of A;‘-. By the definition of dual, we have
{1&{7 A;; Agu AZ; A;a Aé} = {_AL —1‘1;7 _A§7 A47 —A;, _AZ}
- {A17A27A37A47_A57_146}
and their corresponding angles
{é; éza é:}(a éL Ng’ éé} = {27T o 9{7 2T — 9; 2m — 9‘; GZa 2T — eéa 2T — 92}
== {94,94 — 02,94 — 93, 0, 2m — (95 — 94),27’[’ — (06 — 94)}
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Notice that in G*, éj[ =0, ie., flj € SU(2). To have the right order of angles, we rearrange the order
of G* as follows. Let

Al = AG Ay = A5, Ay = A5 AL = A A = A, A = A5,
If we write A} = ejgs‘/Q/Al; € SU(2,0}), then
{AS,AQ,AQ,AZ,A%,A%} - {sz‘igv‘i;?/ﬁ(’gagg}
== {1447143714271417_1467_145}7
and
{011791279%70117 1579%} = {ézvé‘?vé;véfvégv ~§}
= {0,94 — 93,94 — 92,94,27’[’ — (06 — 94),27’[’ — (95 — 94)}

It is clear that
0=0] <0 <6 <0 <6 <6 <2m,

and
O >m, 0. <m, O—05>m.

This means that the conditions on {0,605, --- 60} are the same as those on {6,60s,-- ,6s}. Therefore,
constellation {A’} has the same properties as {4;} does if they have the same normalizations on their

projections {fl;} as {A;} do, namely A = I and A is diagonal. Tt is assumed that A5 = I. We now

want to convert A’s to I. Because AL = —Ag, we multiply —AY to {4}, -, AL} from the left and the
resultant constellation is denoted by {AY,---, A{} 2 G If we let AY = ej09’/2fi;-’, then we have

{AlllaA’Qluﬁga AguﬁgaAg} = {_Aglﬁlla_ﬁgiﬁéa_ﬁglﬁg’ﬂ_ﬁgl Ailu_A(iHAgv_ABHAIG}

= {AFA, AP A;, AN Ay, ~AlA 1, A} (39)
and
{911,7912,79%,7921,79,5,79’6’ = {911701279’379270157916}
== {0,94 - 93,94 - 92,94, 2r — (96 - 94),27T - (95 - 94)}, (40)

from which one can see that 121'5' =1 and flg is diagonal since Ag[ is diagonal. Therefore, constellation
G" has the same properties as G does. Additionally, from (39), we have af =1 and af = ag.

Since G" has the same angle relationships as those of G, inequalities (34)-(36) are also true if a; is
replaced by a7, and 6; is replaced by 07. Furthermore, since f — 05 = 05 — 05 and ag = ag, equalities
(37) and (38) hold for G".

We next establish some relationships between a; and a;-' for j =1,2,3,4.

25



Let a = arccos(—ag). Then 0 < a < /2 because ag < 0. From the form of Ag in Step 1, we have

A —cosa + jsina 0
6= 0 —cosa—jsina )’

Going back to (39), we obtain, for j = 1,2,3,4,

( (Jlg—i-jb;-l (’”-I—jd" )
7(4,9/ +jd;’ (1,” ]b”
_ ( cosa + jsina 0 ) ( a4—j+1 +jb4,j_|_1 Ci—j+1 +j€4,j+1 )
0 cosa — jsina —C4j1+Jea—jp1 @a—jp1 — Jba_jqp1 )

In other words,

a; cosa —sina 0 0 aq—jq1
b;-’ sina cosa 0 0 ba_jt1 )
7 - . , ] = 1,2,3 4. (41)
¢ 0 0 cosa —sina Co—ji1
d;.’ 0 0 sinoe cos o €4—j+1

We need more relationships between coefficients a; and a ! for j = 1,2,3,4. For j = 1,2,3,4, from

(35), we have
05 — 0; < 2arccos(dg/2 + a;).

By (40), we obtain g — 0] , ; =27 — (65 — 0;). Hence

O — 04 ;11 > 21 — 2arccos(ds/2 + aj).
Therefore,

O — 05 > 2m — 2arccos(de/2 + aj) — (05 — 04 ;1) (42)

Since (38) holds also for G”, the left hand side of (42) is equal to

2arccos(dg/2 + ag) = 2arccos(dg/2 + ag).
For the right hand side of (42), since

dg

IN

|det(A5 — Ay ;1) = det(AY — Aillfj+1) — 4sin®((65 — 0 j+1)/4)

2 — 2@2(7]'4»1 _48111 ((9 4 ]+1)/4)

ie.,
05 — 0] ;11 < 2arccos(ds/2 + ay_j41).

Hence, (42) can be changed into

arccos(de/2 + ay_j41) > m — arccos(ds /2 + a;) — arccos(ds /2 + ag). (43)
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Or equivalently,
ay_ji1 < — cos (arccos(dg /2 + aj) + arccos(dg /2 + ag)) — dg /2 < 0, (44)

where the second inequality is from dg > 2. Properties (41), (43), and (44) are important for the
following proof, which provides us some relationships between a; and aﬁffj through ag and ds.

Step 3. Construction of a new constellation G** that satisfies Case 1.

Let 0 = «/2. Let o = 04/2 for j = 1,2,3,4, and let 6* = (05 + 07)/2, 05" = (0 + 05)/2. Let
A" =1 and Ag* = —1I. Define, for j =1,2,3,4,

ok

aj c?s B —sing 0 0 a;
b; _ sin3  cosf 0 ' 0 b; . (45)
c;‘-* 0 0 cosfB —sing c;
d;* 0 0 sing  cosf e;
and
A7t =i (0" b " ), (46)

where 7 is the isomorphic mapping defined in Section 2. From (45), we know that fl;‘*, 73 =123.4,
are on S3. Thus, we can view A;* as unitary matrices in SU(2). Furthermore, from (45), we have
det(A" — Ar*) = det(A4; — A;).

G** is defined as follows:
A = eng*/2(_I), A = eng*/H, A;f* - 63'0}‘*/214;*7 j=1,2,3.4. (47)

We next show that the diversity product of this new constellation G** is dg, i.e., we show |det(A;* —
A > dg for 1 <i < j <6.

From the definition of G**, we have

0rF = (21 — 05 + 04 + 05)/2, 02 = (21 — O + 04 + 05) /2, (48)
(0" —057) + (65" = 057) = 27, j=1,2,3,4. (49)

For 1 <i < j <4, from (45) and 6* = 0 = 04/2, we have

|det(A;* — A3)| = det (A — A;*) = det(A; — A))
> dg + 4sin®((0; — 0,)/4) > dg, (50)

where the first inequality is from the conditions of G. For | det(Ag* — A%*)|, we have

|det(Ag* — A:")| = det(—I — 1) — 4sin®((0;* — 0:%)/4) = 2 + 2cos((05* — 0:*)/2)
= 2+ 2cos((0s —05)/2) =2+ 2cos(arccos(ds /2 + ag))
= 2+ 2a¢ + ds > dg, (51)
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where the third equality is from the definitions of ;" and 63*, and the forth equality is from (38).
For j =1,2,3,4, from Corollary 1 we have

[det(Ag* — AT)| = [4sin®((05" — 03%)/4) — det(—1 — A7)
— dsin2((6g" — 657)/4) — 4 + det(T — A5),
— | =2 —2cos((05" — 027)/2) + det(I — A%,
= | —2+2cos((05" —6;7)/2) + det(I — A;*)\
= | 4sin®((05" — 077)/4) + det(I — A")]
= |det(Az — A, (52)
where the forth equality is from (49). Therefore, we now only need to show |det(Az* — A¥*)| > de.

Since

[det(A5* — AF)| = |det(] — A3*) — 4sin’((05 — 65%)/4)|
= |2cos((03* — 077)/2) — 2a%"
= [2cos((2m — 05 + 05)/4) — 2a3*| = |2sin((0 — 05)/4) — 2a}"
= [2sin(arccos(ag + dg/2)/2) — 2aj7|, (53)

we need to estimate coefficients a}*. From (41), we have
ay_jiy = cos(a)aj — sin(a)b;.
On the other hand, from (45), we have
a;* = cos(B)a;j — sin(B3)b;.
By noticing that 8 = «/2, we obtain

. " X "
g Y tag aj+ay_jiq

i T T 2cosB 2 cos(arccos(—ag)/2)

<0, (54)

where the second equality is from 8 = a/2 = arccos(—ag)/2 and the last inequality is from the fact that

a; < 0 proved in the beginning of this proof and (44). Since 0 < arccos(z) < 7, we have
2sin(arccos(ag + dg/2)/2) — 2a;" > 0.
Thus, going back to (53), we have

det(AS* — A™)| = 2 dg/2) /2 A+
|det(Az" — A7)| = 2sin(arccos(ag + ds/2)/2) —

cos(arccos(—ag)/2)

But from (44),
ay_ji1 < —cos(arccos(ds/2 + aj) + arccos(ds /2 + ag)) — dg /2.
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From this estimate and the fact that cos(arccos(—ag)/2) > 0 due to —1 < ag < 0, (55) becomes

[det(A3" — A7) >

— cos(arccos(dg/2 + a;) + arccos(ds /2 + ag)) — dg /2

2 sin(arccos(ag + dg/2)/2) — cos(arccos(—ag)/2)

(56)
From (35), (38), and 65 — 6; > w for j = 1,2,3,4, we have
arccos(dg /2 + a;) + arccos(dg /2 4+ ag) > (05 — 6;)/2 + (06 — 05)/2 = (0 — 0;)/2 > 7 /2.

Since —1 < ag,a; <1 —dg/2 and 2 < dg < 2.4, by Lemma 7, the right hand side of (56) is greater than

or equal to dg. Therefore, we have
| det(A5* — A%*)| > de. (57)

From (50), (51), (52), and (57), we have proved that G** has diversity product dg. Furthermore,
ag’ = —1 and 67" = 04/2 for j = 1,2,3,4. If we rotate G** by angle —64/2, we obtain 6;* = 0. Then,
the rotated constellation satisfies the conditions on Case 1 of this proof and therefore, we have the result
deg <22 —5/2. q.e.d.

As a remark, from the last part of the above proof, one can see that after the rotation of angle —6,/2
of the new constellation G**, the first four H;f* =0 for 5 =1,2,3,4. Thus, it corresponds to p = 4 and
is back to the case (iii) in the main proof of Theorem 1, which also proves dg < v/22 — 5/2.

Proof of Proposition 3

Since 0 < 0; < mfor1 <y

<5, we have |6; — ;| < m for 1 <i < j <4 and therefore, from Lemma 2,
|det(A4; — A;)| = det(A; — A;) — 4sin((6; — 6;)/4), hence,

dg — 2COS((9i — 9]‘)/2) + 2(12'(1]'

Ib; — bj|* > 2+
7“2'7“]'

<1<y <4, (58)

where b; and r; are described in (11)-(13). To prove this proposition, we next estimate the above lower
bounds for ||b; — b,|| for 1 < i < j < 4 under the assumption of dg > —5/2 + /22 such that the
inequality in Lemma 5 for these 4-points on the sphere S? is violated. To do so, we estimate lower
bounds on |#; — 6;| and upper bounds on a; in the following.

(i). Upper bound on a;

Similar to the proof of Proposition 2, we can assume that Ay = I. Then

ds < |det(Ag — Aj)| = 4sin’((0s — 0;)/4) — det(Ag — A;), j=1,2,3. (59)
dg < |det(As — A5)| = det(Ag — As) — 4sin’((6s — 05)/4)
= 2 2ag — 4sin®((0s — 05)/4) = 2cos((0s — 05)/2) — 2as. (60)
dg < |det(As — A;)| = det(As — Aj) — 4sin®((05 — 6,)/4)
) —

2—2aj—4sm (05 —0;)/4) = 2cos((65 — 0;)/2) —2aj, j=1,2,3,4. (61)
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From (61), we have that a; < cos(65/2) — dg/2. Hence, to have an upper bound, it is enough to have a
lower bound on 6. For 1 < # j <3, (0; —0;| < m. Thus, by Lemma 2,

det(A; — Aj) > |det(A; — Aj)| > ds.
Thus, by Lemma 4, there exists s € {1,2,3} such that
det(Ag — Ay) > 2—2/1—dg/3.
Combining this with (59) we have
de < 4sin®((05 — 0)/4) — (2 — 2\/1 — dg/3),
or
0 — 0, > 2arccos(—ds/2 + /1 — dg/3).
Therefore,
06 > 2arccos(—dg/2 + /1 — dg/3). (62)
Similarly, by considering Ag with {A4, A5} and Lemma 4, there exists u € {4,5} such that
det(Ag — A,) <24 2y/1 - dg/4,
Since 0 < 6 — 6, < 7, we have
ds < det(Ag — A) — 4sin?((0 — 0,)/4) <2+ 2/T— do/A — 4sin®(65 — 0)/4),
which implies
0 — 0, < 2arccos(dg/2 — /1 — dg/4).
Since 04 < 65 and u € {4,5}, we have
O — 05 < 2arccos(de/2 — /1 — dg/4). (63)
From (62) and (63), we have
05 > 2arccos(—ds/2 + /1 — dg/3) — 2arccos(ds/2 — \/1 — dg/4). (64)
On the other hand, from (61) for j = 1, we have
de < 2 — 2a; — 4sin®(As/4) = 2cos(05/2) — 2a1,

ie.,

ar < cos(05/2) — dg/2.
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Thus, by combining with (64), we obtain an estimation of a; as follows:
ay < cos (arccos(—d6/2 + /1 —dg/3) — arccos(ds /2 — m)) —dg /2.
Note that dg > v/22 — 5/2. Therefore, from the above estimate we have
ar < —0.5975. (65)

(ii). Upper bound on ay
It is similar to (i). By considering Ag with {4y, A3} and Lemma 4, there exists v € {2,3} such that

det(Ag — A,) > 2 —2y/1 —dg/4.
From (59) for j = v, we have
dg < 4sin®((05 — 6,)/4) — det(Ag — A,) < dsin®((65 — 6,)/4) — (2 — 2/1 — dg/4).
Therefore,

0 — 0, > 2arccos(—dg/2 + /1 — dg/4).
Since 6y < 63 and v € {2,3}, we have

0 — 0 > 2arccos(—dg/2 + \/1 — dg/4).
Using 0 — 03 = 0 — 65 + 65 — 0 and (63), we have

05 — 0y > 2arccos(—dg/2 + \/1 — dg/4) — 2arccos(dg/2 — \/1 — dg/4).
On the other hand, from (61) for j = 2, we have as + dg/2 < cos((05 — 62)/2). Therefore,
as < cos (arccos(fdg/Q + /1 — dg/4) — arccos(dg/2 — /1 — d5/4)) —dg /2.
Thus, from dg > /22 — 5/2, we have
as < —0.4524. (66)

(iii). Upper bound on aj

It is not hard to see that matrices
{1467 ej(27r706)/2(_1211)7 ej(27"*06+03)/2(_143)}
satisfies the conditions of Lemma 6. Thus, by Lemma 6 we have 2m — 05 + 03 < 57/6, i.e.,

O — 03 > 2w — 57 /6 = Tm /6.
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Hence,
05 — 03 = 05 — O3 — (05 — 05) > Trr/6 — 2arccos(dg /2 — \/1 — dg /4),
where the inequality is from (63). From (61), we have az < cos((65 — 63)/2) — dg/2. Therefore,
a3 < cos(7m/12 — arccos(dg /2 — /1 — dg/4)) — dg/2.
Using the fact dg > /22 — 5/2, we obtain

az < —0.3292. (67)

(vi). Upper bound on a4 and lower bound on 64

From (61), we have a4 < cos((05 —64)/2) —ds/2 < 1—dg/2. The assumption dg > V22 —5/2 implies
as < —0.0952. (68)

Since {A4, A5, Ag} satisfies the conditions of Lemma 6, we have 65 — 64 < 57/6. By using (62), we

obtain
04 > 2arccos(—dg/2 + /1 —dg/3) — 57 /6.
From dg > v/22 — 5/2, we have

64 > 100.3010°. (69)

(v). Lower Bounds on ||b; — b;||? for 1 <i < j <4

We now apply the estimates in (65), (66), (67), (68), and (69) to estimate some lower bounds of
|b; — bj|| for 1 <i # j <4 through (58).

For 1 <i<j<4and (i,7) # (1,4), we have
dg — 2cos((0; — 6;)/2) + 2a,a;

Ib; —b,[|> > 2+
17(122 17(1?
> 2+\/22*5/2*2+2(I,ia]‘.
1—a22 l—ag

Since the right hand side of the above inequality is decreasing for —1 < a;,a; < 0, by using (65), (66),
(67), and (68), we obtain

by — by [|* >3.0223, |[|by —bs|* > 2.7710, ||by — bs||* > 2.5798,
by — by||2 > 2.3115, ||bs — by||2 > 2.2693.

For ||b; — by||?, we have

d6 -2 COS(94/2) + 2@1@4

Hbl — b4||2 > 2+

B V1—aiy/1—-aj
22 -5/2 -2 100.3010° /2 2
> 2+\/ 5/ cos(200 30 02/ ) +2a1a4 > 3.9811.
V1—aj\/1— a;
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Therefore,

> |Ib; = bj|* > 16.2350 > 16,
1<i<j<4

which contradicts with Lemma 5. This proves the proposition. q.e.d.

Proof of Proposition 4

We also divide this proof into several cases according to the angle 05.

Casel 05—60;3>n

Let
Al = e 05245 = A, Al = ¢ 19/2 45 = I0a=05)/2 4
AL = e 052 4) = dm 002 A)), Ay = e I05/2 4, = (IOm 051012 f,),
AL = e705/2 45 = oI (2m—05+02)/2(_ A,) AL = ¢ 995/2 4, = I 05+00)/2(_ 4,
Then, constellation {A}, Af,---, Ay} satisfies the conditions of Case I in the proof of Theorem 1 and

therefore, we have the result in this case.

Case2 05— 60;3<mandf5— 0y >

Without loss of generality, we assume that Ay = I. Assume dg > —5/2 ++/22. We divide this proof
into two steps. Step 1 is to estimate angles ; for j = 2,3,4,5,6. Step 2 is to use these estimations to
induce a contradiction. Let us begin with Step 1.

Step 1. Estimations on the angles 6; for j = 2,3,4,5,6

Since sets of matrices {Ay4, A5, Ag}, {As, A4, A5}, and {Ay, Ay, Ay} all satisfy the conditions of

Lemma 6, from Lemma 6 we have
O — 04 <57/6, 65— 03 <57/6, 64 <57/6. (70)
We now estimate these angles in more details. First, from the above, we have
06 = (06 — 04) + 04 < 57/6 + 57/6 = 57/3. (71)

We next estimate some lower bounds on 6; for j = 3,4,5,6.
Similar to the proof of Proposition 3, by considering A5 with {1211, 1212} and det(A; — Ay) > dg, by
Lemma 4, there exists a t, t € {1,2}, such that

det(As — A;) > 2 —2y/1 — dg/4.
Since 65 — 6; > m, we obtain

de < |det(As — A;)| < 4sin?((05 — 6;)/4) — det(As — A;)
< 4sin®((05 — 6;)/4) — (2 — 2\/1 — dg/4)

= —2cos((65 —0:)/2) +2+/1 —ds /4.
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Hence,

05 — 0, > 2arccos(—dgs/2 + /1 — dg/4).

Thus,

05 > 2arccos(—ds/2 + /1 — dg/4) 2 Bs. (72)

Since dg > /22 — 5/2, (72) implies

05 > 5 > 229.9981°. (73)
From (70), i.e., 05 — 03 < 57/6, we have
05 > 2arccos(—dg/2 + /1 — dg/4) — 57 /6 = B — 57 /6 = Bs. (74)
Hence,
65 > 79.9981°. (75)

To have lower bounds on 83 and 64, we consider three matrices
{B\, By, B3} a {Ag, 1@ 00)/2(_4,), ¢i(2m—0s+03)/2(_ j )1

We first claim that these three matrices satisfy the condition of Lemma 6. In fact, since 6 — 03 >

we have 2w — 05 + 03 < w. On the other hand,

/2. {B1,By,B3} = eo/? {/15, ej(%ieﬁ)ﬂ(*Al)’ ej(2ﬂ766+03)/2(7213)}

= el Ay, eI Ay), lPTHV(— Ay L
= {Ag, A1, A3},

ie.,
{B1,By,Bs} = 67j06/2{A67A17A3}-

Therefore,

|det(B; — Bj)| > ds > V22 —5/2, for1<i#j<3.

By Lemma 6, we have
21 — B + 03 S57T/6. (76)
Results (71) and (76) imply

05 < /2 = 90°. (77)
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Results (75) and (76) imply
fg > 289.9981°.
By (70), 684 > 65 — 150°, hence,
04 > 289.9981° — 150° = 139.9981°.
We next estimate an upper bound on 5. From (70) and (77), we have
05 < 150° 4 65 < 240°.

Consider

(B!,B},B}} £ {1215’ IT05)/2(_ 4, ej(27r705+62)/2(ﬂ42)} .

Similar to the previous B;, {B], B}, B}} satisfies the conditions of Lemma 6. Therefore,
2w — 05 + 6 < 150°.
Using (80) and (81), we obtain
0, < 30°.

Using this estimate and (79) and (77), we obtain

04 — 6 > 139.9981° — 30° = 109.9981°, 65 — 62 > 79.9981° — 30° = 49.9981°.

Step 2. Estimations on det(zﬁii — 121]-) for 1 <i<j<4.
For 1 <i < j <4, since §; — 0; < m, we have

V22 —5/2 < dg < |det(A4; — A;)| < det(A; — A;) — 4sin®((0; — 6;)/4).
Therefore,

det(A; — Aj) > V22 — 5/2 + 4sin®((0; — 6;)/4).
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Using (74), (79), (83), and (84), we have

det(As — A1) > V22 —5/2 + 4sin®(04/4)

> V22— 5/2 + 4sin?(139.9981° /4) > 3.5063,
det(Ay — Ay) > V22— 5/2 + 4sin®((64 — 62)/4)

> /22— 5/2 + 45in?(109.9981° /4) > 3.0432,
det(Ay — A3) > V22 —5/2 + 4sin®((64 — 03)/4)

> V22 —5/2 + 4sin?((139.9981° — 90°) /4) > 2.3777,
det(Az — Ay) > V22— 5/2 + 4sin®((63 — 62)/4)

> V22— 5/2 + 4sin?(49.9981° /4) > 2.3777,
det(A; — A;) > V22— 5/2 +4sin®(63/4)

> V22 —5/2 4 4sin?(79.9981° /4) > 2.6583,
det(Ay — Ay) > V22 —5/2 > 2.1904.

Therefore,

> det(4; — Aj) > 16.1536 > 16,
1<i<j<4

which contradicts with Lemma 5. Therefore, we have the result in this case.

Case 3 95—93§7Tand95—92§7r

Let
A= e1%24, 1 for j=1,2,3,4,5
7 J+1 J 3 4y 9y Ty Dy
and
A% = 67]02/2141 = ej(2ﬂ702)/2141.
Then the new constellation {4}, A, --- | A;} satisfies the conditions of the above Case 2. Thus, we have
proved the proposition. q.e.d

Proof of Proposition 5

We divide this proof into two cases according to angle 5.

Casel 05—60;>n

In this case, without loss of generality, we assume As = I. Assume dg > —5/2 +v/22. We want to
derive a contradiction.

Since 05 —0; > w for 7 = 1,2 and 6, — 6; < 7, by considering A5 with {Al, AQ} and using the same

technique as before, i.e., Lemma 4, there exists u € {1,2}, such that

det(As — A,) > 2 —2/1 — dg /4.
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Therefore, from the condition |det(As — A,)| > dg and 65 — 6, > 7, we have

4sin®((05 — 0,)/4) > det(As — A,) +dg > 2 — 2/1 — dg /4 + d.

Since 6, > 0, we obtain

cos(05/2) < —dg/2 + /1 — dg /4. (85)

Since dg > /22 — 5/2, we obtain
05 > arccos(—dg/2 + /1 — dg/4) > 229.9981°. (86)
We now rotate {Ay, -+, Ag} with angle —f05: A} = e 103/24; 5 for j = 1,2,3,4, and AL = e770:/24,
and Af = e 7%/24,. Then, it is clear that {4}, ---, AL} is also an optimal design. Furthermore,

A} € SU(2) and the angle 0} of A is 6;15 — 03 for j = 1,2,3,4. For j = 5, since A = e 103124, =
e 19312 A = ¢7(27=03)/2(_ A;), hence the angle 6% is 27 — 3. Similarly, the angle % is 21 — 65+ 6. Also,
121’]- = A]‘+2 for 5 =1,2,3,4 and Alg = —A; and Al = —A,. In summary, we have

{AIDA’%AQDALA:%A%} = {A37A47A57A67 _Ala _AQ} (87)
and
{9’1,9’2,9%,9&, %,9%} = {0,94 - 93,95 - 03796 - 93,27’[’ - 93, 2m — 93 + 92} (88)

We now have 0 = 0] < 0 < x < 6. Moreover, 0 —0; = 2 — 03+ 02— (05 —03) = 271 — (05 —02) < 7 and
9%*95 = 27‘(*93"‘92*(94*93) = 27T*(94*92) Z . Furthermore, 9%*9’2 = 27T*93*(94*93) = 27T*94 Z
m. Therefore, the conditions on {4}, -, Ay} are the same as those of {A4;,--- , Ag}. Therefore, similar

to (85), we have

cos(05/2) < —ds/2 + /1~ ds /4. (89)
By the definitions of 67 stated in (88), we obtain
cos(03/2) > dg/2 — /1 — dg /4. (90)
Therefore,
05 < 2arccos(dg/2 — \/1 — dg /4). (91)
Since dg > /22 — 5/2, we obtain
05 < 2arccos(dg/2 — /1 — dg/4) < 130.0018°. (92)

By combining it with (86), we have

05 — 03 > 99.9962° (93)
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We next consider {1213, Ay, As, 1216} on the sphere S3. First, from Lemma 5, we have

ST det(4; - 4j) < 16. (94)
3<i<j<6

For 3 <i < j <6, we have ; — 0; < m. by using |det(4; — A;)| > dg, we have det(A4; — A;) >
dg + 4sin?((0; — 6;)/4). Therefore,

det(Ag — As) > dg+ 4sin®((0 — 05)/4) > de, (95)
det(Ag — Ay) > dg+ 4sin®((0s — 04)/4) > dg + 4sin®((65 — 04)/4), (96)
det(Ag — A3) > dg+ 4sin®((0s — 03)/4) > dg + 4sin®((65 — 63)/4), (97)
det(As — Ag) > dg +4sin®((05 — 04)/4), (98)
det(As — A3) > dg+ 4sin®((05 — 03)/4), (99)
det(Ay — A3) > dg+ 4sin®((04 — 03)/4) > dg (100)
Plugging (95)-(100) into (94) we obtain
6dg + 8sin®((05 — 04)/4) + 8sin’((05 — 63)/4) < 16.
By applying (93) and ds > v/22 — 5/2 to solve above inequality, we obtain
05 — 64 < 99.9966°. (101)
Since {A],--- , A} has the same conditions as the ones of {A4;, -, Ag}, we have
0. — 0, < 99.9966°. (102)
By (88), we have 2w — 65 — 0 + 03 < 99.9966°, hence,
B > 260.0034°. (103)

Using (103), we can revise the estimates on 65 — 64 and 05 — 03. In fact, because {4, Ay, A4} satisfies

the conditions of Lemma 6, we have

0y < 5m/6 = 150°. (104)
Hence,

O — 04 > 110.0034°. (105)
For 6 — 603, by using (103) and (92) we have

f6 — 05 > 130.0016°. (106)
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Similarly, for 65 — 64, from (86) and (104), we have
05 — 64 > 229.9981° — 150° = 79.9981°. (107)

Plugging (105),( 106), (107) and (93) into (96), (97), (98) and (99), respectively, we obtain

det(Ag — Ay) > dg+ 4sin®((0s — 04)/4) > dg + 4sin’(110.0034° /4),
det(Ag — A3) > dg+ 4sin®((0s — 03)/4) > dg + 4sin”(130.0016° /4),
det(As — Ay) > dg+ 4sin®((05 — 04)/4) > dg + 4sin”(79.9981° /4),
det(As — A3) > dg+ 4sin®((05 — 03)/4) > dg + 4sin(99.9962° /4).

Therefore, using dg > V22 — 5/2, we obtain

det(Ag — Ag) >2.1904, det(Ag — Ayq) > 3.0433, det(Ag — A3) > 3.3452,
det(As — Ay) > 2.6583, det(As — A3) > 2.9047, det(Ay — A3) > 2.1904.

Therefore,

> det(4; — A;) > 16.3323 > 16,
3<i<j<6

which contradicts with (94). Hence, we have the result in this case.

Case2 05—60,<m

Let
A’] — e*]'GQ/QAj_H’ for 7 =1,2,3,4,5,
and
Ag = €7j02/2A1 = ej(2”702)/21211.
Then, the new constellation {A}, A}, -, A;} satisfies the conditions of Proposition 4. Thus, we have
proved the proposition. q.e.d.
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