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An Efficient Frequency-Determination Algorithm
from Multiple Undersampled Waveforms

Xiang-Gen Xia

Abstract—Frequency estimation/determination has applications
in various areas, where the sampling rate is usually above the
Nyquist rate. In some applications, it is preferred that the range of
the frequencies is as large as possible for a given sampling rate and
in some applications, the sampling rate is below the Nyquist rate.
In both cases, frequency estimation from undersampled wave-
forms is needed. In this letter, we present an efficient algorithm
to determine multiple frequencies from multiple undersampled
waveforms with sampling rates below the Nyquist rates.

Index Terms—Chinese remainder theorem, undersampling.

I. INTRODUCTION

FREQUENCY estimation/determination has applications in
almost all engineering fields. In frequency estimation, it is

known that frequencies can be uniquely determined if the sam-
pling rate is above the Nyquist rate. The simplest frequency-es-
timation method is the discrete Fourier transform (DFT) from
a finite data. However, when the sampling rate is below the
Nyquist rate, it is impossible to uniquely determine the fre-
quencies from a sampled waveform. Recently, frequency de-
termination from multiple undersampled waveforms has been
studied in [1]–[3], [7], where multiple sequences sampled from
the same analog waveform using multiple sampling rates were
used. If there is only a single frequency in a complex-valued
waveform, the frequency determination from multiple under-
sampled waveforms can be achieved by using the Chinese Re-
mainder Theorem (CRT), as we will see later. When there is
a single frequency in a real-valued waveform, an algorithm for
the frequency determination using multiple undersamplings was
obtained in [3], which corresponds to two symmetric frequen-
cies in a complex-valued waveform. When there are multiple
frequencies in a complex-valued waveform, a range for the de-
tectable multiple frequencies was given in [1] in terms of the
multiple sampling rates, where no other conditions of the fre-
quencies are needed. This range was maximized in [2] by im-
posing a condition on the distance between the multiple fre-
quencies. A different approach was studied in [7], where the two
sampling rates are the same but the analog waveform is slightly
delayed in the second sampling.

The multiple frequency-determination method proposed in
[1] is the looking-up table method, which is expensive when
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the number of frequencies and the number of sampling rates are
large. Although an efficient multiple frequency-determination
method was proposed in [2] with some restrictions on the
frequencies, there is no general efficient multiple frequency-de-
termination algorithm from multiple undersampled waveforms.
In this letter, we present such a general and efficient algorithm,
which can be thought of as a generalization of the CRT from
a single frequency-determination to multiple undersampled
waveforms.

There are at least two cases where the frequency determi-
nation from undersampled waveforms is useful. The first case
is when only undersampled data is available. The second case
is when it is desired to have as large detectable frequencies as
possible given certain sampling rates. One such application is
the synthetic aperture radar (SAR) imaging of moving targets
using a linear antenna array such as [4], [5], in particular using a
linear antenna array and multiple wavelength-transmission sig-
nals [5]. To detect the accurate locations of a moving target, it
was proved in [5] that it is essential to use multiple antennas and
multiple wavelength-transmission signals unless the velocity of
a moving target is as slow as walking people. The number of
different wavelengths in a transmission signal corresponds to
the number of sampling rates of an analog signal. The multiple
frequencies of interest correspond to the velocities/locations of
the multiple targets. Given the number of wavelengths and the
pattern of an antenna array (corresponding to given sampling
rates), it is desired that the detectable velocities/locations of the
moving targets (corresponding to multiple frequencies to deter-
mine) are as large as possible (such as the velocities of moving
vehicles). Another such application is to increase the dynamic
range of the detectable parameters for polynomial phase signals
using multiple lag diversities in high-order ambiguity functions
[6]. Notice that this paragraph only describes some application
examples and the rest of this letter is self-contained (and the ap-
proach is not hard to follow).

This letter is organized as follows. In Section II, we describe
and formulate the problem. In Section III, we present an efficient
algorithm.

II. PROBLEM FORMULATION

Without loss of generality, we assume that the multiple fre-
quencies in a waveform are Hz, Hz,

Hz, and are all nonnegative inte-
gers

(1)
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where are nonzero complex-valued coefficients,
and is assumed known throughout this letter. The simplest
method to determine these frequenciesis to first sample
at a sampling rate Hz

(2)

then take the -point DFT of , ,
which gives the nonzero values at frequencies , respec-
tively. For explanation convenience, in the above, the additive
noise is not mentioned, otherwise more sophisticated spectra-es-
timation methods are needed when the SNR is low, which is be-
yond the scope of this letter. Also notice that the assumption of
integer-valued frequencies is for the study convenience
similar to the conventional DFT frequency estimation.

The above frequency determination, however, works only
when (i.e., the sampling rate

must be above the Nyquist rate). Otherwise, the de-
tected frequencies have the moduloambiguities. In the rest
of this letter, we are only interested in the latter case (i.e., the
sampling rate is below the Nyquist rate). In this case, although
it is not possible to uniquely determine all the frequencies,

, from a single sampled waveform in (2), it
may be possible to do so from multiple sampled waveforms

with multiple sampling rates ,

(3)

which is the problem of interest in this letter and can be restated
as follows:

Problem A: Determine from the multiple
sampled data in (3)

where may be smaller than
.

This problem can be reformulated after taking the multiple
DFT’s of , ( many DFT’s) as follows.
By taking the -point DFT of in (3), we
obtain

DFT (4)

where

mod (5)

For each , from (4), the residue set

(6)

can be determined. Note that in the above formulation, the am-
plitude information of is not used, which is because the am-
plitudes may be distorted by the additive noise in practical ap-
plications. Problem A then becomes the following equivalent
Problem B.

Problem B: Determine from the residue
sets , obtained in (4)–(6).

The simplest case for Problem B is when there is only a
single frequency in the waveform (i.e., ). In this case,
the problem is to determine from its residues

, , which can be solved by using the
CRT (see for example [8]) if and only if

lcm (7)

where lcm stands for the least common multiple. Under
the condition that each pair and for are co-
prime, the solution is given by the following formulas. Let

lcm and and be the
number with , such that ,
then

(8)

Notice that the above determination formula requires the co-
primeness of each pair , and for , while the unique-
ness does not as we can see, for example, from [1].

When there are multiple frequencies in the waveform
(i.e., ), the problem becomes more complicated. The
complication comes from the fact that the known residue sets

, do not specify the order of
the residues with respect to but only sets of numbers. In
other words, it is not known from these sets which frequency
an element in set comes from (or modulo
from), although is known. Otherwise, the frequency could
be determined using the CRT the same as the single frequency
case, as described in (7) and (8).

There are two issues with Problem B. The first issue is the
range of the detectable frequencies when
. It is given in (7) when . The second issue is the ef-

ficient determination algorithm when all the frequencies are in
the range from the first issue. A result on the first issue has been
recently obtained in [1], which is stated in the following.

Theorem 1: Assume that a complex valued waveform
contains different frequencies for .
Let , be sampling rates in the undersampled
versions of in (3). Let

(9)

where is a nonnegative integer. Then thefrequencies
for can be uniquely determined by using the

-point DFT of for if

(10)

where where is defined in (9).
As an example, let us consider the case of two frequencies

and . We choose four sampling rates Hz,
Hz, Hz, and Hz. In this case, , ,
and therefore in (9). Clearly, in (11),
as shown at the bottom of the following page. By Theorem 1,
all two different frequencies and in the range
can be uniquely determined from the undersampled waveforms
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with sampling rates 19 Hz, 21 Hz, 22 Hz, and 23 Hz by using
19, 21, 22, and 23 point DFT’s, respectively. We can see that the
sampling rates required are about 20 times less than the Nyquist
sampling rate in this simple example.

Regarding the second issue, the determination method sug-
gested in [1] is the looking-up table method as follows. Define
the product set

(12)

List a table including all possible such product
sets for all possible frequencies

in the range given in (9)–(11). Then the
solution can be matched by looking up this table as long as the
true frequencies in the range given in (9)–(11). Clearly, this
matching process is expensive when , , and
are large. Next, we want to propose an efficient determination
algorithm.

III. EFFICIENT ALGORITHM

In this section, we want to present an efficient algorithm
to determine the multiple frequencies from
their residue product set defined in (12)
by assuming the range (9)–(11) of . In the
following, we always assume that in (11) is greater than

, otherwise there are no modulo ambi-
guities in the DFT’s in (4). This also implies in (9).

A. Multiple Frequency-Determination Algorithm

Step 1: Arbitrarily take a vector
, defined in (12).

Step 2: For each with , define a set

and integers (13)

where is defined in (11). Note that all the numbers in set
have the same residue modulo , which is also called the

equivalent class (or coset) of .

Step 3: By (9), there are times more residues than the fre-
quencies themselves (i.e., ). Therefore, there exist inte-
gers with , such
that the residues are from a common frequency

(i.e., ). By the following Lemma
1, has only one element (i.e., ).

Check whether is a valid frequency by checking whether
its residue vector belongs to
the set . If not, find another set of

, such that . Repeat
this process until is a valid frequency denoted by .

Step 4: For , remove
from the set shown in (14), at the bottom
of the page, where denotes the cardinality of set, as shown
in (15), at the bottom of the page.

Step 5: Go to Step 1 by replacingwith and replacing
with . Repeat this

process until is determined.
Lemma 1: The intersection set in Step 3 has only one ele-

ment.
Proof:: Let . By (13) and (11), we have

Therefore, can be uniquely determined from its residues
mod for (see for example, Lemma 1 in

[1]). This proves Lemma 1.
The advantages of this algorithm over the looking-up table

method proposed in [1] is that this algorithm only deals with
the current detected residues and therefore, it does not need the
table, which may be huge, or matching process.

IV. CONCLUSION

In this letter, we presented an efficient algorithm to determine
multiple frequencies from multiple undersampled waveforms,
where the multiple sampling rates are below the Nyquist rate.
The proposed algorithm can be thought of as a generalization of
the CRT. It is believed that its applications may not be limited to
SAR imaging of moving targets mentioned in the introduction.

if
otherwise,

(11)

if
otherwise

(14)

(15)
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