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Abstract.  DNA is used  to implement a simplified version of poker. Strategies are evolved that mix 
bluffing with telling the truth. The essential features are (1) to wait your turn, (2) to default to the 
most conservative course, (3) to probabilistically override the default in some cases, and  (4) to learn 
from payoffs. Two players each use an independent population of strategies that adapt and learn from 
their experiences in competition. 

 
 

1  Introduction 
The long-term goal is to use DNA to construct special purpose computers.  Their special purpose is to learn game-
playing strategies adapting to the strategies of opponents, even while opponent�s strategies are also changing and 
adapting.  It is clear that many real-world problems have this nature --- and it is equally clear that no general method 
is known for these problems. The ultimate payoff for our research is a method for finding adaptive game-theoretic 
strategies. The ultimate aim is to use DNA to encode game strategies that improve over time and adapt to the 
strategies of other players.  In the medium term, this is to be addressed for the game of poker.   

This project demonstrates the necessary DNA laboratory techniques for an example from a textbook on 
game theory (49). This is a simplified version of poker, but it still involves probabilistic strategies of bluffing versus 
truth- telling and calling versus folding. The essential features are to wait your turn, to default the most conservative 
course, to aggressively override this in some contexts, and to learn from the payoffs obtained. Each of two players 
competes using a large population of strategies that adapt and learn from their experiences in competition. 

We employ laboratory evolution of DNA (3-5, 9,13,20,58-61), whiplash PCR (22, 30, 38,39,55), and the 
evolutionary computation paradigm from conventional computing (2,12,21,23,25-28,35, 40,51,52,62,63). All three 
techniques been used before, but have never been combined.   One obtains massively parallel nanoscale computers 
where communication is not dependent on a myriad of fixed physical connections, but rather on pattern matching of 
information encoded in independent free-floating molecules.   
 
!.1  The Advantages of DNA For Computing 
Computations of evolving strategies seem particularly well suited to DNA implementation (4-8,20,41-46,59-61). 
1. Estimated answers for a particular problem can be encoded in DNA molecules using binary representation. 
2. Selection by fitness, and breeding via mutation and crossover, can be implemented by laboratory procedures, as 

demonstrated in (59-61).   
3. Evolutionary computation, like natural evolution, benefits from tolerance of error (18, 19), requiring only that 

selection be correlated with fitness. 
4. Massive parallel processing of up to 1018 independent bytes of data is a characteristic of DNA laboratory 

processes (about one milligram).  This is comparable to1 projected next-generation silicon computers (24). 
5. DNA laboratory procedures can multiplex2 many simultaneously evolving populations at no extra cost.  

Multiplexing permits large-scale sampling of the distribution of possible population evolutions.  
6. A very large amount of information storage is available using DNA.  For example, the entire Internet contains 

about the same amount of data as a milligram of DNA3. 

                                                 
1 Assuming one laboratory operation per minute.  
2 In multiplexing, populations are combined, independently and uniformly processed, and separately recovered. 



  
 
 

  

 
2  Where Do Game Strategies Come From? 
A game is a situation in which two or more players make moves (or plays). The reward received by a player for its 
moves depends in part on the moves made by the other player(s). The broad applicability of game theory not only 
ensures its importance, but also explains why game theory is unlikely to produce general methods for finding good 
strategies4. Consider poker.  While we admire the accomplishments of game theory, we regret that equilibrium and 
hyper-rationality are so often unrealistically assumed.  Playing competitive poker, for example, seems to be a 
dynamic process of adapting one�s strategies to exploit the mistakes of opponents.  Regrettably, neither of these two 
features is usual in game-theoretic analysis.  We depart from what has been the mainstream of game theory in that 
we focus on the dynamics of play and strategy creation, rather than on the statics and the various equilibrium 
concepts (e.g., Nash and its refinements). A recent commentary in Nature (?) nicely captures our perspective: 

�Of course, the main problem with Nash equilibria is still there: they may exist, but how does one reach them? 
. . . .We are in a situation akin to the beginning of mechanics: we can do the statics, but we don't have the 
dynamics.� 

Some of our prior research provided application of evolutionary computation to coalition games (26-28).  
We are led to using evolutionary computation because: (I) It is a general paradigm for exploring large search spaces. 
(II) Its robustness under change or uncertainty is important since the very meaning of "good strategies" dynamically 
changes as opponents evolve their own strategies.  

 
2.1  Complexity of Seeking Game Strategies 
The complexity of the problem of finding good 
strategies can be indicated in the following way. 
Roughly speaking, all interesting games have 
exponentially many possible strategies. As for finding 
good strategies, no definite procedures are known 
which can consistently outperform simple 
enumeration. This is analogous to the complexity of 
seeking solutions or approximations for NP-complete 
problems, plus extra difficulties arising from 
dynamically changing situations. 
 
3  Simplified Poker via DNA  
In this paper, we use an very simplified version of 
poker taken from a game theory textbook (49).  Even 
so, it incorporates bluffing, calling, and folding --- all 
of which must be done with varying probabilities, if 
good payoffs are to be achieved.  

There is a Dealer and a Player.  Each contributes $1 
into the pot to start one hand of play. The Dealer deals 
a single card, an Ace or a 2, so that only the Player can 
see it.  If it is an Ace, the Player must add $1 and say 
�Ace.�  If the card is a 2, the Player may say �2,� 
losing the hand, or may add $1 and bluff by saying 
�Ace.�  If the Player has said �Ace,� it becomes the 
Dealer�s turn.  The dealer may choose to fold, losing 
the hand, or may add $1 and call.  At this point the 
Player shows the card and wins the hand if it is an 
Ace, and loses if it is a 2. 

                                                                                                
Fig. 1.  Evolving poker playing strategies. 

                                                                                                                                                             
3 The Internet is estimated to contain 9 x 1016 bytes (32).  One gram of single-stranded DNA is approximately 1.8x 1021 
nucleotides or about 1022 bytes. 
4 A strategy is a set of instructions for all possible situations that can be encountered in a game. 



  
 
 

  

3.1  Strategies Are Learned by Playing Trillions of Simultaneous Hands Using DNA 
Our DNA based implementation of playing poker is organized as shown in Figure 1.  This gives a broad overview of 
three independent but linked processes.  The overall approach of selection by fitness, adding variation by crossover, 
is similar to in-vitro evolution (1,5,11,14,16,36). 

At the top, differing strategies compete, and the resulting histories of play are separated by outcomes.   
In the middle, the many dealer-strategies are evaluated and selected by using a procedure based on payoffs 

achieved.  This must be done carefully.  Many selection criteria are possible, and it is foolish to insist on consistently 
high payoffs.  Population size is restored by amplifying the selected strategies.  Then, crossover induces variation 
within the population of strategies.  Finally, the new dealer strategies are entered into another round of competition. 

At the bottom, the other player uses a similar process, but with an independent method of selection. 
 
3.2  Encoding Strategies in DNA Strands 
The Player�s strategies are encoded in single-stranded DNA as shown at the top of Figure 2.  This DNA strand 
consists of four pairs of labeled regions, with pairs separated by �stoppers.� The roles of the various regions will be 
explained shortly.  It is important to note that all of the Player�s strategy strands are identical except in one variable 
region, labeled SAY 2�. This region will vary throughout the Player�s population of strategies.  Its purpose, as we 
will see, is to implement diverse 
probabilities of bluffing. 

The Dealer�s strategies are 
similarly encoded, having one variable 
region labeled FOLD� to implement 
various probabilities of calling. 

The cards to be dealt are Ace 
and 2, shown with unlabeled spacers at 
their left (labeled Deals in Figure 2). 

Restriction enzymes, R.E. 1 
and R.E. 2, cut DNA strands at 
specific locations, where indicated.  
This facilitates first joining Dealer 
strategy strands to Player strategy 
strands to Deal strands; and to later 
sever these strands so they can be 
individually recovered (separated by 
length using gel electrophoresis). 

Two situations can result, as 
shown at the bottom of Figure 2.  They 
differ by ending with A or with 2.  Of 
course, the variable regions are not 
predictable in advance.  These variable 
regions will probabilistically 
determine the course of the play. 
 
3.3  The DNA Sequences Used 
The specific DNA sequences used are 
shown in Table 1. These sequences are 
based on (32) where they were used in 
Whiplash5 PCR, which is similar to the 
play of one Hand of simplified poker 
using two  fixed strategies. 

F
i
g. 2. A Player�s and a Dealer�s strategy  join a deal for a hand of  poker. 

                                                 
5 Sometimes called hairpin or banjo PCR. 



  
 
 

  

3.4  Whiplash PCR Plays a Hand of Poker 
At the top of Figure 3 below, two strategies are 
combined with a dealt Ace.  The rest of the 
figure shows how the play of the hand can result 
in two possible outcomes, depending on whether 
the Dealer decides to fold or call.  Figure 4 is 
almost the same, showing the play of a hand 
when a 2 is dealt. 

Having been dealt an Ace, the Player 
must say �Ace.� This is accomplished using 
DNA in the following way.  The sequence 
encoding A at the end of the DNA strand 
strongly pairs 6 with its Watson-Crick 
complementary sequence A�.  This enables DNA 
polymerase to extend the strand by appending 

the sequence Say A�.  Extension 
halts at a �stopper.� To continue 
extension into a stopper region 
(encoded with 4 A-bases) would 
require dTTP, which is withheld 
from the reaction.  Raising the 
temperature disrupts interstrand 
pairing.  Recooling begins the 
Dealers turn. 

The Dealer must decide to 
call or fold.  This is an IF-THEN-
ELSE type decision, but we 
implement it in the form, �By 
default, fold, but if the probability is 
large enough, change your mind and 
call.�  That is, in the part of Figure 3 
labeled Dealer Folds, the Dealer�s 
strategy encodes this situation and 
extends the DNA strand with the 
Fold sequence.  After heating 
followed by cooling, the Fold 
sequence may or may not pair with 
the FOLD� sequence, as at the 
bottom of Figure 3.  If and only if 
pairing occurs, the DNA strand is 
extended by the Call sequence, 
essentially changing the Dealer�s                  
decision from Fold to Call. 

Fig. 3  Player is dealt an Ace. 
Success of pairing depends  

on the FOLD� sequence, which is generally different for different Dealer strategy strands.  Therefore, the population 
of Dealer�s strategies will generally produce some fold outcomes and some call outcomes.  These outcomes are later 
used to select strategies by payoffs.  Thus, it is the FOLD� sequences within Dealer�s strategy strands that do the 
adapting.  The FOLD� sequences in the initial population of strategies are randomized during the synthesis of 
Dealer�s strategy strands.  

 

                                                 
6 In Watson-Crick complementary pairing within double stranded DNA, each base A in one strand pairs with a base T in the 
other strand, and similarly, each base G pairs with a base C.  Any such pairings tend to hold two strands together. 

Table 1. 
Names Size             Sequences 
A (Ace)
A’
2
2’
Say A’
Say 2
SAY 2’
Fold’
FOLD’
Call’

Error

15-mer: 5’CCGTCTTCTTCTGCT3’
15-mer: 5’AGCAGAAGAAGACGG3’
15-mer: 5’TTCCCTCCCTCTCTT3’
15-mer: 5’AAGAGAGGGAGGGAA3’
15-mer: 5’CGTCCTCCTCTTGTT3’
15-mer: 5’CCCCTTCTTGTCCTT3’
15-mer: Random with T,G,& C
15-mer: 5’TGCCCCTCTTGTTCT3’
15-mer: Random with T,G,& C
20-mer: 5’CTCCTCTTCCTTGCT

CTTCTCCCTT3’
10-mer: 5’TCCCCTTGTG3’



  
 
 

  

 
3.5  Regular Poker Would Use 
Similar Techniques 
A �Wait Your Turn� feature is also 
shown in the last step in Figure 3.  
Strictly speaking, this feature is not 
needed in simplified poker, but we 
wish to test it because it is needed in 
other games where players may take 
several turns.  In essence, the Player�s 
strategy is prepared to react to folding, 
but must not react before there is a 
chance for the Dealer to change from 
Fold to call.  Thus, as we cool the 
DNA we include a Preventer stand 
that preferentially (at higher 
temperature) pairs as shown in the 
Player�s strategy.  Should prevention 
fail, we would detect the presence of 
the Error sequence in some outcomes. 

In regular poker decisions are         
Fig. 4.  Player is dealt a 2. 
similar but somewhat more complex. 
For example, the Dealer�s decision in 
Figure 3 would become the following.  
�By default, I fold, but append a copy 
of the hand I have been dealt.  If my 
hand is good enough to match an 
evolved criterion, I can change my 
mind and call. But I append another 
copy of my hand and if it is good 
enough, I make a small raise.  An 
additional comparison can result in a 
larger raise, etc. 

F
i
g. 4. Player is dealt a 2. 

 
3.6  The Dealer and Player Independently Evolve Their Strategies 
So far, we have explained how DNA laboratory techniques are able to pair off Dealer strategies and Player strategies 
along with a deal of an Ace or a 2.  The result is a DNA strand recording the entire history of the play of one hand of 
simplified poker.  So far, we have elaborated on the top part of Figure 1.  We now go on to explain how the Dealer 
and the Player can independently evolve their populations of strategies. 

Figure 5 A (the extrinsic form of the game of simplified poker, plus an error output) contains all five 
possible game histories, along with their payoffs, positive or negative, for the Dealer.  The left side corresponds to 
Figure 3 and the right side to Figure 4. Figure 5 A also reflects the different final lengths of the DNA strands 
encoding each of the histories.   

Differing lengths make it convenient to physically separate histories using denaturing gel electrophoresis.  
Readout is provided by quantifying the amounts of DNA in each band of the gel.  Other techniques could also be 
used, for example the 2d-DGGE techniques that we have used in evolutionary computations (4-5, 20, 59-61).  

 



  
 
 

  

Physical separation gel is 
indicated on the left of Figure 5 B.  Each 
lane of the gel corresponds to a different 
payoff.  What follows is that for each 
possible payoff the Dealer receives a 
quantified sample of the strategies that 
led to the given payoff.  These samples 
are obtained by literally cutting the bands 
from the gel and extracting the DNA 
from them.  The Dealer is then able to 
recombine strategies in various dilutions 
of her own choosing.  Using this freedom 
of choice, and a chosen amount of 
crossover to explore further variations, 
the Dealer produces a new generation for 
strategies that will hopefully improve her 
net payoff.  Improvement cannot be 
guaranteed, of course, because the Player 
is independently striving for the opposite 
outcome. 

 
3.7  Implementation of Crossover  
The most common recombining of 
genetic information in evolutionary 
computation is single point crossover (2).  
Here, the beginning part of an offspring�s 
genetic material comes from one parent 
and the rest from a second parent7.  

Laboratory procedures are 
available for crossover (47, 48).  Our 
method (5, 59-61), shown in Figure 6, is 
designed to accommodate highly variable 
regions. It begins with double stranded 
PCR product obtained restoring           

F
i
g. 5.  Each branch of the game tree gives different DNA lengths. 

population size. Part of the PCR product  
is reserved. The unreserved DNA strands are cut at random locations 
about once per strand8 and then combined with the reserved strands.  
The mixture is denatured (strands are melted apart) and allowed to 
reanneal (cool down).  This allows single strands to recombine in 
various configurations. Some of these configurations are suitable for 
completing crossover.  

Recall that the ends of the DNA strands encode PCR primer 
sites.  This means the rightmost (3�) end is designed to Watson-Crick 
pair to its complement in correct alignment at a relatively high 
temperature during cooling.  Thus, a truncated Players� or Dealers� 
strategies DNA strand can pair in proper alignment with an intact 
complement of a different DNA strand.  As shown in Figure 6B (top), 
some of the truncated DNA strands may additionally pair well at their 
                                                 
7 Multiple-point, multiple-parent crossover could be easily obtained by iterating single-point crossover. 
8 We use the enzyme DNAase I to mostly nick (cut only one strand) double stranded PCR product.  Strand nicking could also be 
done by other enzymes or chemicals. 



  
 
 

  

other (3�) ends.  When this happens, they can be extended to full length using DNA polymerase. The result is single-
point crossover. Many undesired products not shown in Figure 6 are also formed in the crossover reactions.  But 
virtually none of the undesired products achieve the same length as the original DNA strands. Therefore, the desired 
single-point crossover products can be purified by length using denaturing gel electrophoresis.  
 
3.8  Experimental Results 
We have constructed the two ssDNAs to represent the two possible plays shown in Figures 3 and 4. Currently, 
demonstration of whiplash PCR is in process. Preliminary experimental results will be presented in the meeting. 
 
4  Anticipated Directions 
We attempt to address some game theoretic questions on the evolution of strategies for simplified poker. For 
simplified poker the questions can also addressed by analytic means, whenever possible, and by computer 
simulation.  However, computer simulation would be difficult for populations as large as using DNA.  

The main outcome sought is to gain confidence in the DNA encodings and techniques that could be applied 
to more challenging games, especially poker. We will address questions such as the following. Is equilibrium 
maintained once it is induced? If one party uses an equilibrium strategy, will the other party evolve to equilibrium? 
If one party does a poor job of learning strategies, does the other party exploit this? What are good choices for 
programmable selection in evolving strategies? Will they result in obtaining equilibrium?  If so, how fast? How 
much does crossover help?  What crossover rates are best? 

Thus, we have cited many more questions than answers. However, we hope to provide a technique for 
answering such questions---namely, taking advantage of the massive parallelism of DNA computing to test huge 
numbers of strategies in competition and to improve them based on their outcomes. 
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