
DNA Computing Capabilities for Game Theory

David Harlan Wood (wood@cis.udel.edu)�.
Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716

Abstract. Problems in game theory can be used for benchmark DNA computations. Large
numbers of game strategies and chance events can be assembled into finite state machines.
These many machines perform, in parallel, distinct plays of a game. Strategies can be exposed
to selection and breeding. The computational capabilities of DNA are matched with aspects
of game theory, but the most interesting problems are yet to be treated.

1. Introduction

Our main objective is to draw attention to DNA computing capabilities, rather
than particular applications. Capabilities illustrated with game theory exam-
ples can potentially inspire new applications of DNA computing. At mini-
mum, such examples can serve as benchmarks.

We wish to draw attention to the capabilities of DNA, and to leave enter-
prising applications to the future. Historically, computational capability has
usually preceded significant applications by years. For example, the ENIAC
computer preceded payroll and inventory applications and the desktop com-
puter preceded spreadsheets and the Internet.

2. Game Theory

In a game1, players make finite sequences of choices restricted only by a set
of rules. Players receive payoffs depending on their choices and the choices of
others, including chance events. A game strategy must provide decisions for
every possible game situation. A strategy may use deterministic decisions (a
pure strategy) or, more generally and more powerfully, probabilistic decisions
(a mixed strategy).

2.1. FINDING ADAPTIVE STRATEGIES FOR GAMES

DNA computing can be useful for seeking strategies that maximize expected
payoffs. Throughout this paper, payoff means expected payoff obtained by
averaging over all chance events and all strategies involved. In particular,

� This research was partially supported by NSF Grants Nos. 0130385 and 9980092, and
DARPA/NSF grant No. 9725021

c� 2003 Kluwer Academic Publishers. Printed in the Netherlands.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.1



2 David Harlan Wood

the strategies we seek depend on the strategies of the other players, who
have no incentive to reveal them. Clearly, this is a difficult problem. As for
definite procedures for finding good strategies for all games, none are known
that can consistently outperform simple enumeration. Several characteriza-
tions of strategies are known to be N P -hard, even for symmetric two-person
games(Conitzer and Sandholm, 2002).

2.1.1. A Simple Three-Person Poker Game
We use an example game (Nash and Shapley, 1950) to introduce some defi-
nitions and illustrate the nature of probabilistic (mixed) strategies. The game
rules are given below.

1. Each of the three players starts by contributing a euros to the pot.

2. Each player is dealt a hand consisting of one card, with high and low
cards being equally probable.

3. The players take turns in rotation.

4. The game ends if all players pass or when one player has bet (putting
b euros into the pot) and each of the other players have chosen to call
(putting b euros into the pot) or to fold (no additional cost).

5. Antes are retrieved if all players have passed.

6. Otherwise, the pot is divided equally among the highest hands of all
players who have not folded.

As simple as this game is, it is known that good strategies must judi-
ciously bluff (holding a low hand but not passing) and slow-play (holding
a high hand but initially passing) (Nash and Shapley, 1950). Bluffing and
slow-play avoid predictability that could be exploited by opponents. Such
strategic misrepresentations are usually required in games involving private
information (games of imperfect knowledge). In games of this type, including
three-person poker, no deterministic strategy can outperform strategies that
mix misrepresentation with apparent transparency.

2.1.2. Games in Extensive Form
The extensive form (Kuhn, 1953), or game tree, of the above game is shown
in Fig. 1. It should be remarked that Fig. 1 shows only part of the full game
tree. The root is shown at the top and has eight edges descending from it. The
eight edges correspond to 2 2 2, 2 2 A, 2 A 2, 2 A A, A 2 2, A 2 A, A A 2,
and A A A. There is one edge from the root for each possible combination
of cards held by the three players. One edge from the root is shown in the

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.2



DNA Computing Capabilities for Game Theory 3

figure as a dotted line. Each of the edges from the root connects to a subtree
identical to the one shown in Fig. 1.

From a player’s point of view, the subtree in Fig. 1 is a complete char-
acterization of the game. A player merely makes decisions while progressing
down the subtree. During this progress the player knows his or her card but
does not know the cards of the other players. Upon reaching a terminal node
of the tree, payoffs can be calculated from the last two rules of the game.

Pass

Pass

Pass

P1

P2

P3

P1

P2

P3

Typical Deal of Cards

Fo
ld

Fo
ld

Fo
ld

Fo
ld

Fo
ld

Fo
ld

Fo
ld

Fo
ld

Fo
ld

Figure 1. The game tree (extensive form) of 3-person poker.

2.1.3. Mixed Strategies in Behavioral Form
In three-person poker, Player 2 has four decision nodes. These are where the
lines labeled P2 intersect the game tree in Fig. 1. Each of the other players
has four decision nodes, too. Each different decision node (sometimes called
an information set) corresponds to a distinct situation—a different history of
prior choices by the other players. To find good strategies one adjusts the
probabilistic choices to be made at each decision node.

A mixed strategy in behavioral form (Kuhn, 1953) is simply a set of
probabilistic decision criteria, one for each decision node. In three-person
poker, decisions depend on whether a high or low card is held. That is to say,
for each decision node a mixed strategy consists of a high-card probability of
passing and a low-card probability of passing. It is essential that probabilities
are determined in advance, but decisions are only made during the play of the
game. Since decisions are made knowing what card is held, such a strategy

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.3



4 David Harlan Wood

can be used on any of the eight branches of the game tree. That is to say
that only the part of the game tree shown in Fig. 1 is relevant to a strategy in
behavioral form. We assume payoffs are computed at the end of the game.

2.1.4. Mixed Pure Strategies
A pure strategy is a fixed series of choices taken at decision nodes. For exam-
ple, in three-person poker the sixteen pure strategies of a player come from
all 24 combinations of two-way choices to be made at four decision nodes.

A mixedpure strategy, often just called a mixed strategy, is a probabilis-
tic rule for choosing some one pure strategy to play a game. It is essential here
that the probabilistic rule for selecting among the pure strategies is found in
advance. This rule selects a single deterministic pure strategy before the game
is played. If the game is played again, another probabilistic choice among the
pure strategies is made.

2.1.5. Behavioral and Mixed Strategies are Equivalent
Mixed strategies in behavioral form and mixed pure strategies are equiva-
lent and interconvertible, if we assume total recall of all prior choices made
playing a game (Kuhn, 1953).

2.2. NASH EQUILIBRIA OF GAMES

It is the celebrated result of Nash (VanDamme, 1991) that for any game
with only a finite number of pure strategies, there exist mixed strategies in
equilibrium. When strategies are in equilibrium, no individual player is able
to improve his or her expected payoff by changing strategy. For many games
Nash equilibria give important insights; for other games Nash equilibria are
more problematic2.

There is a special advantage to zero-sum games, which includes poker.
For these games, all Nash equilibrium strategies are interchangeable and have
the same expected payoff3. For zero-sum games, there are methods for finding
one Nash equilibrium efficiently (Koller and Pfeffer, 1997). This can be done
in time polynomial in the number of nodes in the game tree, even in the worst
case4.

2.3. SEEKING ADAPTIVE STRATEGIES

Nash equilibria yield valuable insights into the possible strategies for a game.
However, for all but the simplest poker variants, these strategies are appar-
ently unknown or unplayed. Even if they were known, equilibrium strategies
are indifferent to exploiting the mistakes of other players5. Given this fact,
the goal of competitive players is evolving strategies that maximize expected
payoffs against the strategies they encounter.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.4



DNA Computing Capabilities for Game Theory 5

2.4. EXAMPLES OF COMPUTING ADAPTIVE POKER STRATEGIES

Example of adaptable poker strategies are given in the examples cited6 and
compared in Table 7. The first four examples in Table 7 use adaptive mixed
strategies in behavioral form. That is, strategies make probabilistic decisions
as a play of the game proceeds. The decision criteria in these strategies adapt
to the (mostly) fixed strategies of opponents.

The last three examples in Table 7 cite highly simplified poker games.
They all involve bluffing, however. An interesting aspect is that populations
of strategies are used . Depending on the example, the strategies in the popu-
lations can be of pure, mixed, or behavioral type.

3. DNA Suitability for Encoding and Playing Games

This section matches some of the computational needs of game theory with
capabilities of DNA computing (Garzon and Deaton, 1999). We often invoke
illustrative poker examples, but our approaches are valid for a larger class of
games. We show DNA can be used to address these aspects of game theory
computations: (1) Strategies can be individually encoded, yet pair off with
opponents in game tournaments, (2) Decisions discriminating among many
alternatives can be made, and (3) Massive populations of strategies offer
special advantages for game theory.

We avoid the details of specific DNA computing instantiations in order
to focus on the underlying matches with game theory8.

3.1. FINITE STATE MACHINES

A player’s strategy cannot play poker by itself, even if it knows what cards it
is to use. A single play of a game requires one strategy from each player. The
play of a game may also require a set of chance moves such as a deal of card
hands. A strategy in behavioral form must act at a decision node. In computer
pseudocode this can take the form shown in Fig. 2.

Let us regard this pseudocode as describing a “state.” Thus, a game of
poker can be played by a finite state machine (Kain, 1972). This is much less
demanding that providing universal computation capability (a stored program
computer with arbitrarily large memory).

An example of executing a single DNA-based finite state machine is
found in Komiya et al. (2000). This machine has no decisions and ten states,
of which six were demonstrated experimentally. Recently, repeated transi-
tions in a two-state machine with four decisions is reported in Benenson
et al. (2001). In principle, all input data DNA strands could be distinct, yet
be processed simultaneously. There is also a project to execute many distinct

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.5



6 David Harlan Wood

Ta
bl

e
I.

E
xa

m
pl

e
ev

ol
ut

io
ns

of
st

ra
te

gi
es

fo
r

so
m

e
ve

rs
io

ns
of

po
ke

r7 �

G
am

e
an

d
C

ar
ds

pe
r

B
et

tin
g

A
nt

e,
fo

ld
,

N
um

be
ro

f
op

po
ne

nt
s

V
er

su
s

m
ai

n
pl

ay
er

C
on

ve
rg

en
ce

to

so
ur

ce
ci

ta
tio

n
pl

ay
er

ro
un

ds
st

ay
,r

ai
se

us
in

g
st

ra
te

gy
ty

pe
(s

)
an

d
its

st
ra

te
gy

ty
pe

st
ra

te
gy

of
ty

pe

N
on

-e
qu

ili
br

iu
m

po
ke

r

�

5 52

�

2
hi

or
lo

,
1

er
ro

ne
ou

s
ad

ap
tiv

e
be

ha
vi

or
al

m
ax

im
iz

in
g

(v
on

N
eu

m
an

n
an

d
lo

�

hi
,

st
ra

te
gy

st
ra

te
gy

m
ix

ed

M
or

ge
ns

te
rn

,1
94

4)
0,

-

Te
xa

s
H

ol
d’

em
po

ke
r

�

2 52

�

pr
iv

at
e

an
d

4
al

lv
ar

y
6-

10
va

ri
ou

s
ad

ap
tiv

e
be

ha
vi

or
al

“s
tr

on
g

pl
ay

er
”

(B
ill

in
gs

et
al

.,
20

02
)

�

3 52

�
�

�

1 52

� �

st
ra

te
gi

es
st

ra
te

gy
be

ha
vi

or
al

�

1 52

�

pu
bl

ic

Si
m

pl
ifi

ed
H

ol
d’

em
po

ke
r

�

2 52

�

pr
iv

at
e

+
1

?,
0,

1,
-

1
ad

ap
tiv

e
be

ha
vi

or
al

ad
ap

tiv
e

be
ha

vi
or

al
m

ax
im

iz
in

g

(B
ar

on
e

an
d

W
hi

le
,1

99
8)

�

5 52

�

pu
bl

ic
pl

us
8

tig
ht

/lo
os

e
st

ra
te

gy
be

ha
vi

or
al

(B
ar

on
e

an
d

W
hi

le
,1

99
9)

w
hi

le
pa

ss
iv

e/
ag

gr
es

si
ve

Fi
ve

-c
ar

d
dr

aw
po

ke
r

�

5 52

�

w
ith

�

2 52

�

3
0,

0,
5

le
ve

ls
4

tig
ht

/lo
os

e
w

hi
le

ad
ap

tiv
e

be
ha

vi
or

al
m

ax
im

iz
in

g

(K
en

da
ll

an
d

W
ill

di
g,

20
01

)
re

pl
ac

em
en

t
5

le
ve

ls
w

hi
le

pa
ss

iv
e/

ag
gr

es
si

ve
st

ra
te

gy
pu

re

N
o-

dr
aw

,h
ig

h-
lo

w
po

ke
r

� 1

�

2 2

�

1
1,

0,
va

ri
es

,
1

po
pu

la
tio

n
of

po
pu

la
tio

n
of

un
iq

ue
pu

re

(G
in

tis
,2

00
0,

§3
.1

6)
va

ri
es

pu
re

st
ra

te
gi

es
pu

re
st

ra
te

gi
es

eq
ui

lib
ri

um

O
ne

-c
ar

d,
2

ro
un

d
po

ke
r

� 1

�

2 2

�

2
2,

0,
2,

2
1

po
pu

la
tio

n
of

po
pu

la
tio

n
of

un
iq

ue
m

ix
ed

(G
in

tis
,2

00
0,

§4
.1

1)
m

ix
ed

pu
re

st
ra

te
gi

es
m

ix
ed

pu
re

st
ra

te
gi

es
eq

ui
lib

ri
um

Si
m

pl
ifi

ed
po

ke
r

� 1

�

2 2

�

1
0,

0,
1,

1
1

D
N

A
po

pu
la

tio
n

of
D

N
A

po
pu

la
tio

n
of

co
-e

vo
lu

tio
n

(W
oo

d
et

al
.,

20
01

a)
be

ha
vi

or
al

st
ra

te
gi

es
be

ha
vi

or
al

st
ra

te
gi

es
to

m
ax

im
iz

in
g?

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.6



DNA Computing Capabilities for Game Theory 7

110
120 // This node is labeled
130
140 Node(k) :
150
160 // Knowing the hand of cards held, and knowing the
170 // unique game history leading to this kth node,
180
190 GO TO Node(k+1) UNLESS
200 HistoryDependentRule(k) APPLIED TO Hand
210 IS SIMILAR TO Criterion(k)
220 THEN GO TO Node(k+1)
230
240 // Where Node(k+1) and Node(k+2) are found on this
250 // DNA game strand (in another player’s strategy)
260

Figure 2. Computer pseudocode for a decision node of a behavioral strategy.

acyclic (tree structured) finite state machines of two different types simultane-
ously (Wood et al., 2001a). One type is a four-state machine with two “fuzzy
logic” decisions. The other type is a three-state machine with one “fuzzy
logic” decision. An experiment simultaneously executed 315 � 107 distinct
machines of the second type, achieving all three states.

For playing games we could use any method for implementing finite
state machines using DNA — as long as it provides a GO TO command9

(and decisions, if we want to use strategies in behavioral form). Because of
the GO TO command, any DNA encoded strategy of an individual player can
physically cluster its decision nodes. This allows finite state machines with a
complete set of game nodes to be assembled from one DNA strand per player.

3.2. FUZZY LOGIC FOR DISCRIMINATING DECISIONS

Clearly, strategies in behavioral form need to take actions contingent on their
assessment of the current situation. In poker, for example, each decision node
will have to judge whether the prior history and a particular hand of cards
warrants a bid. In particular, a mere stand of DNA has to discriminate among
the millions of possible poker hands. Yet this turns out to be not unreasonable.

Probabilistic binding of near-complementary DNA strands is inherently
a fuzzy decision (Deaton and Garzon, 2001). Fuzzy logic (Klir and Folger,
1988) methods provide for making definite decisions in situations that are not
fully characterized. This is typical of games of imperfect information. For
example, in poker the cards held by other players are not known.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.7



8 David Harlan Wood

3.2.1. Discrimination via Near-Complementary DNA Sequences
In natural systems, DNA is almost exclusively found in double stranded form.
Each strand is a directed sequence of the bases A, C, G, and T. Naturally
occurring double strands are bound together by mutual attractions of each A
to a T and each C to a G. One easy way to separate complementary strands
is to boil them. But as they cool, they will seek each other out to recombine.
But all DNA sequences may bind to each other to a greater or lesser extent,
or even to parts of themselves10.

There are many single DNA strands with, say, 25 bases, namely 425 �
1015 distinct sequences. Let us concentrate on some one sequence. Out of
all the other strands, only one is complementary to our sequence. But many,
many other strands are near-complements and can bind to our strand to a
greater or lesser extent11. For example, there are

� 1
25

�
31 �

� 2
25

�
32 �

� 3
25

�
33�� 4

25

�
34 �

� 5
25

�
35 �

� 6
25

�
36 � 109�366�867 distinct strands having one to six

mismatches to our strand. That is, we can use our one sequence to discrimi-
nate among very many near-complements. This can be useful for implement-
ing fuzzy sets for DNA computing.

3.2.2. An Example of Discrimination
Figure 3 shows one approach to discriminating by using partial DNA binding
in poker strategy strands 12. A fixed decision criterion is encoded in a stretch
of DNA. And a poker hand to be evaluated is encoded at the outgoing (3’)
end of a DNA sequence that is near-complementary to the encoded criterion.
If the two strands bind well enough, it is possible for the 3’ end of the hand
to be extended as the complement of the sequence adjacent to the criterion
strand. Otherwise, the 3’ end does not get extended. Thus, the DNA sequence
within the decision criterion identifies the poker hands that warrant bidding
before going to the next player’s turn. It should be remarked that each game
node decision usually has different decisions to make. Because of its unique
prior game history, each node can have its own distinct decision criterion.

3.2.3. Self-Programming DNA by Selection
Once poker hands are encoded, how do we know what DNA sequences to
use for the decision criteria? Some experimentation is required13. In partic-
ular, considering strands of length 25 was only illustrative. When we want
a criterion to match similar situations to a greater or lesser extent, we can
use training by examples (Wood et al., 2001a). This is a standard approach
to programming fuzzy decisions in conventional computers (Herrera et al.,
1994; Pena-Reyes and Sipper, 2001).

Programming fuzzy decisions by training is an important advantage.
To design near-complementary sequences that would probabilistically bind
according to arbitrary specifications would be a daunting task. Here we take
a much simpler approach. We simply test, in parallel, a huge sample of all

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.8



DNA Computing Capabilities for Game Theory 9

HandBetNextNode

nextnode’

Extension

bet’

3’

GoTo hand evaluator

criterion

Figure 3. If the hand binds well enough with the criterion, a bet is made before proceeding
to a decision node of the next player. This corresponds to lines 200–220 of the pseudocode in
Fig. 2.

possible sequences. Those that give the desired results are selected; the re-
maining sequences are discarded. This kind of training has yet to be fully
demonstrated using DNA, but results for two similar cases are encouraging
(Wood et al., 2001a; Bi et al., 2002).

Correctly trained fuzzy decisions will presumably produce the same
average payoffs as crisp probabilistically triggered decisions14.

3.2.4. Complexity of Encoding Fuzzy Decisions
Let us estimate the space complexity (number of DNA bases) for each deci-
sion in a strategy. An example would be making decisions based on a player’s
poker hand and the prior game history. A DNA strand segment containing

b� O�dlg�d��2e� (1)

bases is the absolute minimum to discriminate among d possible alternatives.
Two illustrative examples (Alspach, 1998) are 5-card poker hands, where
lg�

� 5
52

�
�2� � lg�2�598�960�2�� 11 bases, and 7-card poker hands, where

lg�
� 7

52

�
�2� � lg�133�784�560�2�� 14 bases. Note that Eq. 1 gives only an

order estimate of the number of bases, while the numerical values given are
the theoretical minimums.

3.3. ENCODING GAME THEORY STRATEGIES

On one hand, DNA can encode a strategy in behavioral form using fuzzy
logic. Decisions could be made by probabilistic binding of dealt hands that
are near-complements to decision criteria. Notice that a strategy in behavioral
form can be encoded using only one DNA sequence15.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.9



10 David Harlan Wood

On the other hand, a population of DNA stands could encode a mix-
ture of pure strategies. Probabilistic selection of pure strategies could be
implemented by the relative frequencies of individual pure strategy strands
(Nash, 1996). Notice that encoding a mixed pure strategy requires an entire
population of DNA strands; one strand is not enough.

The previous discussions of this section have indicated how a strategy in
behavioral form can be encoded in a DNA strand. The number of decisions in
a behavioral strategy is a fraction of the depth of the tree. Hence, the length
of a behavioral strategy strand s is

jsj� O�bd�� (2)

where b is defined in Eq. 1 and d� is the depth of the game tree.

3.4. EXPLOITING MASSIVE DNA POPULATION SIZES

The following considerations are important because a population evolved to
convergence theoretically needs to have only one distinct strategy in behav-
ioral form. We may want to reduce population sizes for several reasons. The
total amount of DNA available16 constrains the number of games that can
simultaneously be played. If too many distinct strategies are present, it may
not be possible to form all possible strategy pairings. Smaller populations
also permit game tournaments using more chance events, and also permit
interacting subpopulations.

Prior to being fully evolved, larger populations allow greater diversity.
This helps to explore the space of candidate strategies. This is a universal
theme in evolutionary computation: trading off exploitation against explo-
ration. In DNA computing, evaluating an entire population of candidates costs
no more than evaluating a single candidate. So one might as well use a large
population because it may help and no extra cost is incurred.

However, large populations have an extra advantage when seeking good
game strategies. A population of strategies can, on the average, have opti-
mal performance at equilibrium—performance better than any one individual
strategy in the population. In his thesis, Nash (1996) pointed this out for
populations of pure strategies. This observation remains true for a popula-
tion of strategies in behavioral form because one is optimizing over a less
constrained domain. A pure strategy is, after all, a special case of a strategy
in behavioral form—it just happens to always make the same choices.

To put it colloquially, the final outcome of a game tournament can not
distinguish whether strategies in a population are many and stupid (pure
strategies), unique and smart (behavioral strategies), few and mediocre (in-
completely evolved behavioral strategies), or all of the above.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.10



DNA Computing Capabilities for Game Theory 11

3.4.1. Size and Diversity Tradeoffs
For simplicity we will discuss the case of two players. Modifications allowing
more players and sampling of populations will be obvious. In this section,
strategies will always refer to behavioral strategies.

First, some notation. For any collection X of DNA strands, Let bXc
denote the number of distinct strands. Let jXj denote the total number of
strands in X� Let us assume that each of two game players has a population
of DNA encoded strategies, calling them P1 and P2�

We address two fundamental issues: (1) the total quantity of DNA in an
experiment is limited, and (2) in a tournament, each distinct strategy should
be paired with a competing strategy. The relationships

bP1c � jP1j and bP2c � jP2j (3)

easily yield expressions for the quantities of DNA used when a tournament
includes all parings of strategies:

max�bP1c�bP2c�
2 � min�max�jP1j�bP2c�

2�max�bP1c� jP2j�
2�

� max�jP1j� jP2j�
2� (4)

The three expressions in Eq. 4 express three squared quantities of DNA
to consider. Given one such a quantity as a goal, the sizes of the populations
can be adjusted. First, decrease the size of both populations, if necessary,
to meet the goal by deleting duplicate strategies. Second, increase the size
of the smaller population, if necessary, to meet the goal by adding duplicate
strategies. This guarantees that every distinct strategy in either population will
have an opponent to pair with. Of the three candidate goals from Eq. 4, the
largest one has the advantage that it can be met by modifying only one of the
two populations. It may or may not be necessary to modify both populations
to meet the other two candidate goals. This can be checked in advance using
the expressions in Eq. 4.

3.4.2. Techniques for Addressing Population Redundancy
To use the guidance of the previous section, we need techniques to measure
and adjust the diversity of a DNA population, P�

Census Taking in DNA PopulationsWe give a very rough description of one
approach to estimating bPc� the number of distinct DNA strategy strands in
a population. We assume the DNA is single stranded and encoded so that no
strategy strand is the complement of another.

Synthesize a census-taker population of single stranded DNA that con-
sists of the complements of all possible strategy strands. This population is
synthesized uniform randomness in the decision criteria regions, but is com-
plementary in the remaining regions. When the two populations are mixed,

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.11



12 David Harlan Wood

we measure the number of double strands and the number of single strands17.
Any single strand has to be either an irrelevant census-taker or a redundant
strategy. The subpopulation of double strands contains one copy of each
distinct strategy strand.

Inventory Control in DNA PopulationsThe protocol of the previous para-
graph can be continued to obtain a controlled inventory, containing a limited
number of each distinct strategy strand. It is simply a matter of extracting the
double strands from the mixture18.

Increasing Redundancy in a PopulationWe assume strategy strands can be
copied using PCR (Garzon and Deaton, 1999). Conventional PCR uses two
primer sequences and obtains exponential increase by repeated doubling of
strategy strands. Linear PCR uses one primer sequence and obtains repeated
linear increases of strategy strands.

The Intersection of Two PopulationsSuppose we want to obtain strategies
that are common to two populations. First, make an additional population
consisting of the complements of the strands in the first population. When
these complements are mixed with the second population, double strands may
be formed. Each double strand contains one of the strategies that occur in both
populations. Extract the double strands. Finally, separate the strategy strands
from the complementary strands.

Fuzzy Intersection of Two PopulationsFor clarity, we have greatly simpli-
fied our presentation, neglecting practical issues of multiple copies of strands,
populations that we can only sample, strands that bind without being perfectly
complementary, etc. For example, in the procedure in the previous paragraph
many double strands can form that are only partially bound because they are
only near-complementary. Lower temperatures can aggravate this complica-
tion. The desired separation can be approached by using two-dimensional
temperature gradient gel electrophoresis (2d TGGE), because 2d TGGE uses
a continuum of temperatures19. The DNA in a 2d TGGE gel is physically
smeared out according to the meaningful but indistinct criterion of being
near-complementary. This is an example of sorting using a fuzzy ordering.
Conveniently, we can set boundaries on which parts of the gel we extract,
interpreting this as an adjustably less stringent version of intersection.

3.5. TRACKING MULTIPLE INTERACTING SUBPOPULATIONS

If relatively small populations of distinct strands suffice, surplus DNA ca-
pacity can be used to simultaneously evolve multiple populations, even in-
teracting populations. Each strategy might contain some marker. The effect

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.12



DNA Computing Capabilities for Game Theory 13

Player 1’s Selection Among
Strategies Separated by Payoff 

Breeding: Amplify, Mutate,
Crossover, etc?

Player 1’s Private Selection and Breeding of Strategies

Player 3’s Secret Selection for
Strategies Separated by Payoff

Breeding: Amplify, Mutate,
Crossover, other kinds?

Player 3’s Private Selection and Breeding of Strategies

Chance Events  (Deal of Cards)

Physical
Separation
by Payoffs Assemble Finite State Machines

Time-Varying Selection Among 
Payoff-Separated Strategies

Breeding: Amplify, Mutate,
Crossover, varying rates?

Player 2’s Private Selection and Breeding of Strategies

Game Tournament   

Figure 4. This is an outline of evolutionary computation of strategies. Beginning on the right
hand side and proceeding counterclockwise, we have (1) Assembly of finite state machines
from strategies and chance events, (2) A tournament of many simultaneous plays of the game,
(3) Clustering game histories by payoffs, (4) Returning players’ strategies separated by payoffs
obtained, and (5) Private individualized selection and breeding by each player.

of the marker could be to inhibit tournament parings with strands bearing
different markers. Any degree of inhibition could be used, from none (in-
discriminate) to some (clannish) to total (speciation). This permits tracking
entire distributionsof evolutionary outcomes.

4. Evolution of Game Strategies via Learning

The prior section of this paper addressed some aspects of game theory and
how they could be matched with DNA computing capabilities. These aspects
were (1) Game playing by finite state machines, (2) Fuzzy logic for decisions
that discriminate, (3) Encoding mixed strategies in behavioral form.

This section shows how each player can try to improve strategies by
learning from experience. An evolutionary computation (Bäck et al., 1997)
is outlined in Fig. 4. We are able to program most or all of the usual vari-
ants and elaborations of selection by fitness and breeding using mutation and
crossover.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.13



14 David Harlan Wood

4.1. PREPARATION FOR A TOURNAMENT

Each player pits his or her strategies against those of other players. On the
right hand side of Fig. 4 we assemble finite state machines by randomly
linking pairs of strategy strands, one from each of the players. Each pair is
then linked to one of an assortment of chance events, for example dealt poker
hands. Each resulting finite state machine is a single strand of DNA which
contains chance events and one strategy for each player.

4.2. A GAME TOURNAMENT

In a tournament (shown in the upper right hand corner of Fig. 4) all the finite
state machines are executed in parallel. In principle, a milligram of DNA
would suffice for a tournament with about 1015 individual plays of a game.

The result of a tournament is that each DNA strand encodes a finite state
machine plus the entire history of one play of the game, including the payoff.
A game history corresponds to one path from the root of the game tree (like
the one in Fig. 1) to a terminal node. We emphasize how tournaments enable
learning from experience. If it is of interest, a winner of the tournament can
be determined by counting the game history strands in each of the payoff
categories.

4.3. PARALLEL FITNESS EVALUATIONS BY PAYOFFS

In the upper left corner of Fig. 4 we see that a game tournament is followed by
separating DNA game history strands according to payoffs. One possibility is
that the history strands are of different lengths according to which player won
and how much money was won. A physical clustering by length is indicated,
but other payoff encodings and separation techniques could be used. Each
cluster of history strands is kept separate from the others; each cluster is
processed in the same way. Within each cluster, strategies are cleaved from
the history strands. Each player’s strategies from that cluster are separately
extracted and returned to that player.

This tournament design stringently suppresses some information: a player
is not able to tell what situations their various strategies experienced. Other
tournament designs would be possible, of course.

4.3.1. Player Strategies Grouped by Payoffs
In this way each player receives, for each possible payoff (including losses),
all of his or her strategies that achieved that payoff. That is to say, the strate-
gies of this player have been physically separated according to their payoffs.
Their strategy strands are returned to them with the rest of the play histories
removed—but the returned strategies are grouped by payoffs. Players will
want their strategies to adaptively learn from experience. Grouping gives

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.14



DNA Computing Capabilities for Game Theory 15

a measure of strategy fitnesses that can be used by evolutionary learning
techniques.

4.4. PLAYERS’ PRIVATE STRATEGY EVOLUTIONARY TECHNIQUES

Strategies separated by payoffs undergo evolution. As Fig. 4 indicates at the
bottom, each player uses his or her unique private evolutionary approach20.
A wide variety of combinations of these techniques and others21. are used in
evolutionary computation (Bäck et al., 1997).

Each evolutionary approach has two parts in Fig. 4. First is selection:
who will die and who will live to breed. Second is breeding: mutation, re-
combination, cloning, etc. Players freely choose their own private techniques
for selection and breeding.

Most, if not all, of the aspects of evolutionary computation can be carried
out in the laboratory on populations of DNA strands (Chen and Wood, 2000;
Chen et al., 2000; Wood et al., 2001b; Vartanian et al., 1996). Thus, the labo-
ratory can perform evolutionary computation in a programmable manner22.

4.4.1. Evolution is Tolerant of Errors
We see that DNA competing is especially suitable for evolutionary computa-
tion. But we also assert that evolutionary computation is especially suitable
for DNA computing (Stemmer, 1995; Chen and Wood, 2000). Evolution-
ary computation is population oriented and inherently parallelizable. It is
also designed to be tolerant of error and self-correcting. This is important
because DNA laboratory manipulations have variability in their outcomes.
Another characteristic of evolution is adaptation to changing circumstances.
Co-evolution of strategies is just one venue profiting this robustness.

4.5. OTHER DNA APPROACHES TO EVOLUTION OF STRATEGIES

One particularly attractive alternative DNA computing approach would use
continuous evolution (Ackermann et al., 1999; Schmitt and Lehman, 1999;
Breaker et al., 1994). The virtue of this approach is that no external in-
tervention is required. After all ingredients are combined, the system seeks
an equilibrium. There is, however, a severe hurtle. The lack of intervention
appears to greatly reduce the available vocabulary of computing commands.

5. Supplementary DNA Computing Techniques

Biochip readouts and microflow reactors are two supplementary resources for
DNA computing.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.15



16 David Harlan Wood

09→29→49→70
09→29→49→69
09→29→47→68
09→29→47→67

09→29→49→70
09→29→49→69

09→29→47→68
09→29→47→67

09→29→49→70

09→29→47→68

09→29→47→67

09→29→49→69

11 12 1413

21 22

01 02 0403 05 06

31

Figure 5. Many of the spots on this 10� 10 biochip are unused. The spots encoding edges
leading to the decision nodes of 3-person poker have been chosen to create a version of Fig.1.
The dotted lines are superimposed for clarity. The numbering scheme for the spots and tree
nodes is indicated in the upper left corner of the chip. For selected spots the right side of the
figure shows what game histories will be found on that spot.

5.1. BIOCHIP READOUT AND SELECTION

There is a technique for observing the choices made at decision nodes by
using a DNA biochip readout23.

Let us require that each edge in the game tree corresponds to a unique
preassigned DNA encoding, the complement of an “edge label” sequence.
And let us require that each game history strand contains the complements of
the labels for all of the edges traversed. For each edge in the tree, prepare a
short, so-called “marker,” a DNA strand containing one half of its edge label.
This marker will be attached to what is known as a quantum-dot bead (Han
et al., 2001) having its own unique color spectrum. We call these “colored
q-beads.” Han et al. (2001) estimates 10,000 distinguishable colored q-beads
could be fabricated.

The mixture of all edge markers can be added to any population of game
histories. Then the collection is allowed to hybridize to a DNA microarray.
The microarray contains the other half of the edge label sequences, each at a
known location. The q-beads are excited, and their emitted light is collected
as a colored image. Figure 5 is a compressed version of the game tree for
3-person poker. Each spot on the chip represents and edge shows the colors
of all edges that are part of some game history that includes this spot’s edge.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.16



DNA Computing Capabilities for Game Theory 17

Biochips with up to 10,000 spots can be fabricated (Wurmbach et al.,
2001). However, a 10�10 grid of spots is available on a commercial biochip
(Nanogen, 2002) on which desired sequences can be installed. Ten-thousand
spots chips of this type are said to be possible (Heller, 2001).

5.1.1. Reading Out Decision Node Probabilities
What do we see at a spot on the biochip having the label of a terminal node24?
Every terminal node’s spot contains only the colors of the q-beads labeling
the edges connecting that terminal node back to the root. If a terminal node
has k siblings, its parent node will have k� 1 additional colors. The parent
node will contain the q-beads of its children in proportion to the frequencies
of the choices made at the parent node.

Such frequencies can be obtained at any node in the following way.
Given a particular node, concentrate on the colors corresponding to its chil-
dren nodes. At this node, each of the children’s colors is in proportion to
the choices made at this node. The same proportional distribution of the
children’s colors is also found at the children nodes25.

5.1.2. Selectable Recovery of Strategies from Biochips
With certain biochips it is possible to recover the DNA from a particular spot
(Mills et al., 2001). This capability is also available in commercial biochips
with one hundred spots (Heller et al., 1998). For refining populations of
strategy strands, biochips of this type are particularly useful selection tools.

5.2. MECHANIZING DNA COMPUTING

Ultimately DNA computing will be mechanized. That is, the DNA computer
of the future will be a machine, not a biolaboratory. This will be essential to
reduce errors, increase reproducibility, and facilitate multiple generations of
evolutionary computation. Standard laboratory processes would likely have
to be mechanized if DNA is to be used in more than milligram quantities.

There are special purpose microfluidic devices that already are starting
to be used for DNA computing (van Noort et al., 2002; McCaskill, 2001; Mc-
Caskill et al., 2000)26. At first it might seem that “micro” is the wrong direc-
tion to go because we may want to scale up to processing larger quantities of
DNA. But consider the history of electronic computers. The miniaturization
and standardization of electroninc components have greatly facilitated the
construction of powerful computers.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.17



18 David Harlan Wood

6. Summary of DNA Computational Capabilities

Evolutionary computation techniques, with or without using DNA, can seek
game strategies maximizing expected payoffs against current adversaries. Ex-
ploiting selection while also exploring variation lets strategies evolve through
learning from experience. Evolutionary computation is self-programming.
That is to say, we only need to evaluate candidate solutions and do not need
to provide details on how they are programmed. Evolutionary computation
is designed to be robust under change or uncertainty. This is important since
strategies need to adapt as opponents evolve their strategies. Evolutionary
computation can be tolerant of errors. This is an advantage when using DNA
laboratory techniques. DNA can implement evolutionary computation using
selection and diversification. This includes essentially all selection schemes
based on payoffs. Laboratory reproduction can include variable rates of mu-
tation and crossover; selection can be varied according to payoffs; etc.

Inclusion of labels in DNA strategies means a DNA biochip can be
used for readout. Configurations similar to the game tree in Fig. 1 are avail-
able. Variations in readout intensities report decisions made by populations of
strategies. Furthermore, subpopulations can be extracted from selected spots
for further processing. Microflow reactors are becoming the building blocks
of future DNA computers.

We have presented several capabilities of DNA computing. DNA tech-
niques are capable of (1) Forming finite state machines, (2) Implementing
fuzzy decisions, (3) Encoding game strategies, (4) Staging massive game
tournaments, (6) Physically separating game outcomes by payoff while pre-
serving players’ privacy, (5) Programming evolutionary computation using a
variety of selection and breeding strategies, (6) Tolerating errors and adapting
to change, (7) Reading out details of game histories using a DNA biochip, as
well as extracting certain subsets, and (8) Mechanizing DNA computers.

7. Challenges in Game Theory

DNA computing capabilities, even the ones we have discussed, may find their
most interesting applications outside of game theory. Nevertheless, applica-
tions of DNA computing to some problems in game theory may lead to further
capabilities, insights, or inspiration.

Poker is too simple to fully stress computational capabilities. Likely, the
most challenging problems in game theory will involve the dynamic compet-
itive co-evolution of strategies for n-person non-zero sum games27. Analytic
and semi-analytic computer-aided techniques have not yet fully illuminated
such problems. Simulation can be used because of its generality, but it heavily
taxes resources and interpretation.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.18



DNA Computing Capabilities for Game Theory 19

The main advantages of DNA computing are the massive parallelism
and information storage available. If we are seeking behavioral strategies, we
do not at first know their encodings. They are just points in a gigantic search
space. The space of all encodings of DNA strands with 100 variable bases is
about 1060� Evolutionary computation typically maintains an evolving pop-
ulation of candidate strategies. The optimal population size depends on the
problem being solved, and is usually not known in advance.

Some situations may grant us surplus population capacity. In these cases
we can simultaneously simulate the evolutions of multiple populations. These
populations may also be allowed to interact to an adjustable extent, as was
discussed in Section 3.5. For problems of this type, we could obtain entire
distributions of evolutionary dynamics. This could, at minimum, bring DNA
computing speed and storage abreast or ahead of existing computers. And
further scaling up is possible.

In this paper we have matched DNA computational capability with as-
pects of game theory. Simple poker games have been used for illustrative
purposes only. Game theory problems could be used to benchmark the un-
precedented capabilities of DNA computing. Hopefully such benchmarks will
inspire even more interesting applications of DNA computing whether in
game theory or another problem area.

Notes

1 A classic reference on game theory is (Osborne and Rubinstein, 1994). A recent book
(Gintis, 2000) especially emphasizes evolving game strategies, as we do in this paper.

2 Nash equilibria for arbitrary games have two significant drawbacks. First, and most fun-
damental, no general tractable general method for finding Nash equilibria is known. The
existence of such a method is a noted open question (Papadimitriou, 2001). Second, Nash
equilibria need not be unique or even discrete. Consider the three-person poker game given
above. Nash and Shapley (1950) have shown that various ratios of anteing cost to betting
cost determine equilibria that are (1) unique or (2) depend on one parameter or (3) depend
on two parameters. Even for two-person games, merely determining if there is more than one
Nash equilibrium is intractable (Gilboa and Zemel, 1989). Also, counting the total number
of maximal connected sets of Nash equilibria is #P -hard (Conitzer and Sandholm, 2002,
Corollary 8).

3 Guaranteed interchangeability assumes there are only a finite number of pure strategies.
Three-person poker provides a counterexample (Nash and Shapley, 1950, p. 114).

4 This is a significant improvement over prior techniques which were exponentialin the
number of nodes. Computation of one Nash equilibrium for a simplified poker with about 105

nodes has been demonstrated. It is a sobering fact that five-card draw poker has about 10 25

nodes in its game tree (Koller and Pfeffer, 1997).
5 There is a famous analysis of a two-person simplified poker game (von Neumann and

Morgenstern, 1944, Chapter 19). (This game is is cited in the top line of Table7.) The analysis
demonstrates that bluffing is necessary for a player’s “good strategy” (what we call a Nash

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.19



20 David Harlan Wood

equilibrium strategy). The immediately following section (von Neumann and Morgenstern,
1944, §19.10.3) is perhaps too seldom cited:

“Incorrect bluffing causes no losses against an opponent playing the good strategy; but the
opponent could inflict losses by deviating appropriately from the good strategy. . . . hence
no permanently optimal strategy exists there.”

6 There is an excellent overview of computer poker up to 1995 (Billings, 1995). More recent
research has been summarized elsewhere (Kendall and Willdig, 2001).

7 Notations like
� 5

52

�
indicate that each player receives 5 cards from a deck of 52. We abuse

this notation by using
�1�2

2

�
to indicate one of 2 players is dealt one of 2 cards.

8 Some details of one particular approach to DNA implementation can be found in Wood
et al. (2001a).

9 The power of branching programs, which use only labels and Go TO commands is dis-
cussed by Winfree (1998) in the context of whiplash PCR. This interesting paper observes
that at a given node, whiplash PCR can also extract data, particularly addresses of previously
unreachable nodes. This implements we he calls write-once branching programs.

10 This is a big and sophisticated topic. See, for example, Wetmur (1997), for an introduction
and then go on to Rose et al. (2001), and SantaLucia (1998).

11 This varies with temperature. Roughly speaking, having fewer mismatches allows partial
binding at higher temperatures, but the location of mismatches also has an effect.

12 This approach is a variant of that found in Wood et al. (2001a).
13 Often, experiments can simulated (Garzon and Oehmen, 2002).
14 It is less clear how the variance of the two approaches might compare (fuzzy decisions

are said to be less “brittle”).
15 Many copies of any particular DNA strand are needed for reliable laboratory procedures,

of course. We will always assume this requirement is met.
16 Standard laboratory techniques can process about a milligram of DNA. A milligram of

DNA contains about 1018 DNA bases,which is roughly the same amount of data as a 1999
estimate of the size of the Internet (Lawrence and Giles, 1999)

17 Using adsorption of UV light, for example.
18 For example, single and double strands have different mobilities in gel electrophoresis.
19 A similar application of 2d TGGE to DNA computing is found in Chen et al. (2000).
20 Evolutionary computations can be designed in many ways. Aspects include selection

according to fitness and breeding using mutation and recombination (exchanging blocks of
structure, also called crossover). Additional issues include relative quantification of fitness,
criteria for selection, including allowing the elite (most fit) strategies to survive unchanged,
and many other aspects inspired by biological analogies.

21 We add to these the possibility of adjusting the redundancy in a population, as discussedin
subsection 3.4.2. Also, since an ideal strategy can successfully cope with all game situations,
we might want to favor versatile strategies. We could seek these by taking fuzzy intersections
of the sets of strategies that have been separated by payoffs.

22 Our computer is programmed by changing laboratory protocols without substantially
replacing the DNA involved. Contrast this with “stored program computers” which are pro-
grammed by computer instructions encoded in DNA. We have a hybrid system. Our finite state
machines are stored program (and data) type computers, but our evolutionary computations are
not directed by stored programs.

23 This could also be done with biochip of universal design (but larger size) for reading out
arbitrary graphs that are encoded in DNA in a special way. (Wood et al., 2003).

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.20



DNA Computing Capabilities for Game Theory 21

24 We are now saying a spot represents a node, instead of saying an edge. Since each edge
leads to a unique node, there is no contradiction.

25 For a specific example, consider node 29 in fig. 5 having children nodes 47 and 49. The
probabilities of branching left or right from node 29 are proportion to the quantities of colors
47 and 49 within node 29. They are also proportional to the quantities of colors 47 and 49
within nodes 47 and 49.

26 Of course, present day robots can carry out standard processes by manipulating materials
in the lab. Microfluidic devices offer specialized operations in an modular construction.

27 For zero-sum games with only a finite number of pure strategies, all Nash equilibria have
the same payoffs. This is not the case for non-zero games. Payoffs can be highly sensitive.
Suppose you are playing a high-payoff Nash equilibrium strategy. Your opponent may play a
non-equilibrium strategy that is slightly suboptimal for him or her but is disastrous for you.
Gintis (2000), §4.30, discuses a simple example.

Acknowledgements

I am grateful to my colleague Junghuei Chen for many very stimulating
discussions of DNA computing.

References

Ackermann, J., B. Wlotzka, and J. S. McCaskill: 1999, ‘In vitro DNA-based predator-prey
system with oscillatory kinetics’. Bulletin of Mathematical Biology60(2), 329–354.

Alspach, B.: 1998, ‘Poker computations’. http://www.math.sfu.ca/ alspach/computations.html.
Bäck, T., D. B. Fogel, and Z. Michalewicz (eds.): 1997, Handbook of Evolutionary Computa-

tion. Philadelphia: Institute of Physics Publishing.
Barone, L. and L. While: 1998, ‘Evolving Adaptive Play for Simplified Poker’. In: 1998 IEEE

International Conference on Computational Intelligence (ICEC ’98). IEEE publications,
pp. 108–113.

Barone, L. and L. While: 1999, ‘An Adaptive Learning Model for Simplified Poker Using
Evolutionary Algorithms’. In: 1999 Congress on Evolutionary Computation (CEC ’99).
IEEE publications, pp. 153–160.

Benenson, Y., T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro: 2001, ‘Pro-
grammable and autonomous computing machine made of biomolecules’. Nature414(1),
430–434.

Bi, H., J. Chen, R. Deaton, M. Garzon, H. Rubin, and D. H. Wood: 2002, ‘A PCR-based
protocol for in vitro selection of non-crosshybridizing oligonucleotides’. In (Hagiya and
Ohuchi, pear), Springer-Verlag.

Billings, D.: 1995, ‘Computer Poker’. M.Sc. Research Essay.
Billings, D., L. Peña, J. Schaeffer, and D. Szafron: 2002, ‘The challenge of poker’. Artifi-

cial Intelligence134(1-2), 201–240. Special Issue on Games, Computers and Artificial
Intelligence.

Breaker, R. R., A. Banerji, and G. F. Joyce: 1994, ‘Continuous in vitro evolution of
bacteriophage RNA polymerase promoters’. Biochemistry33(39), 11980–11986.

Chen, J., E. Antipov, B. Lemieux, W. Cedeño, and D. H. Wood: 2000, ‘In vitro selection for
a OneMax DNA Genetic Algorithm’. In: D. Gifford and E. Winfree (eds.): DNA Based

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.21



22 David Harlan Wood

Computers V: DIMACS Workshop, June 14-15, 1999, Vol. 54 of DIMACS series in Dis-
crete Mathematics and Theoretical Computer Science. Providence, pp. 23–37, American
Mathematical Society.

Chen, J. and D. H. Wood: 2000, ‘Computation with biomolecules’. Proceedings of the
National Academy of Sciences, USA97(4), 1328–1330. Commentary.

Conitzer, V. and T. Sandholm: 2002, ‘Complexity results about Nash equilibria’. Techni-
cal Report CMU-CS-02-135, Carnegie Mellon University Computer Science Department,
5000 Forbes Avenue Pittsburgh, PA 15213.

Deaton, R. J. and M. H. Garzon: 2001, ‘Fuzzy logic with biomolecules’. Soft Computing5(1),
2–9. Special issue on Biomolecular Approaches to Soft Computing.

Garzon, M. and R. Deaton: 1999, ‘Biomolecular computing and programming’. Transactions
on Evolutionary Computation3(3), 236–250.

Garzon, M. and C. Oehmen: 2002, ‘Biomolecular computation in virtual test tubes’. In
(Jonoska and Seeman, 2002), pp. 117–128, Springer.

Gilboa, I. and E. Zemel: 1989, ‘Nash and correlated equilibria: Some complexity considera-
tions’. Games and Economic Behavior1, 80–93.

Gintis, H.: 2000, Game Theory Evolving. Princeton, NJ: Princeton University Press.
Hagiya, M. and A. Ohuchi (eds.): to appear, ‘DNA Computing, 8th International Workshop on

DNA-Based Computers, DNA8, Hokkaido University, Japan, June 10-13, 2002, Revised
Papers’, Vol. 2568 of Lecture Notes in Computer Science. Berlin: Springer-Verlag.

Han, M., X. Gao, J. Z. Su, and S. Nie: 2001, ‘Quantum-dot-tagged microbeads for multiplexed
optical coding of biomolecules’. Nature Biochemistry19, 631–635.

Heller, M., C. Edman, and S. Esener: 1998, ‘Electric field assisted self-Assembly of DNA
structures: A potential nanofabrication technology’. Sixth Foresight Conference on
Molecular Nanotechnology.

Heller, M. J.: 2001, ‘Microelectronic array devices: New designs for DNA diagnostic, biomed-
ical research, and pharmacogenomic applications’. In: Lab-on-a-Chip and Microarrays.
Newton Upper Falls, MA. abstract only.

Herrera, F., M. Lozano, and J. Verdegay: 1994, ‘Generating fuzzy rules from examples us-
ing genetic algorithms’. Proc. IPMU’94 (5th Int. Conf. on Information Processing and
Management of Uncertainty in Knowledge-Based Systems)pp. 675–680.

Jonoska, N. and N. Seeman (eds.): 2002, ‘DNA Computing: 7th International Workshop on
DNA-Based Computers, DNA7, Tampa, FL, USA, June 10-13, 2001. Revised Papers’,
Vol. 2340 of Lecture Notes in Computer Science. Springer.

Kain, R. Y.: 1972, Automata Theory: Machines and Languages. New York: McGraw Hill.
Kendall, G. and M. Willdig: 2001, ‘An Investigation of an Adaptive Poker Player’. In:

Australian Joint Conference on Artificial Intelligence. pp. 189–200.
Klir, G. and T. Folger: 1988, Fuzzy sets, uncertainty and information. Prentice Hall

International.
Koller, D. and A. Pfeffer: 1997, ‘Representations and Solutions for Game-Theoretic Prob-

lems’. Artificial Intelligence94(1–2), 167–215.
Komiya, K., K. Sakamoto, H. Gouzo, S. Yokoyama, M. Arita, A. Nishikawa, and M. Hagiya:

2000, ‘Successive state transitions with I/O interface by molecules’. In (Winfree and
Gifford, 2000), pp. 21–30, American Mathematical Society.

Kuhn, H. W.: 1953, ‘Extensive games and the problem of information’. In: H. W. Kuhn and
A. W. Tucker (eds.): Contributions to the Theory of Games II, Annals of Mathematical
Studies. Princeton, NJ: Princeton University Press, pp. 193–216.

Lawrence, S. and C. Giles: 1999, ‘Accessibility of information on the web’. Nature400,
107—109.

McCaskill, J. S.: 2001, ‘Optically programming DNA computing in microflow reactors’.
Biosystems59(2), 125–138.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.22



DNA Computing Capabilities for Game Theory 23

McCaskill, J. S., R. Penchovsky, M. Gohlke, J. Ackermann, and T. Rucker: 2000, ‘Steady flow
micro-reactor module for pipelined DNA computation’. In (Winfree and Gifford, 2000),
pp. 239–246, American Mathematical Society.

Mills, Jr., A. P., M. Turberfield, A. J. Turberfield, B. Yurke, and P. M. Platzman: 2001, ‘Ex-
perimental aspects of DNA neural network computation’. Soft Computing5(1), 10–18.
Special issue on Biomolecular Approaches to Soft Computing.

Nanogen: 2002, ‘NanoChip Microarray’. http://nanogen.com/products/nanochip_micro.htm.
Nash, Jr., J. F.: 1996, ‘Motovation and interpretation’. In: J. F. Nash, Jr. (ed.): Essays on Game

Theory. Cheltenham, UK: Edward Edgar Publishing, Limited, pp. 31–33. Previously
unpublished appendix from Ph. D. Thesis.

Nash, Jr., J. F. and L. S. Shapley: 1950, ‘A simple three-person poker game’. In: H. W. Kuhn
and A. W. Tucker (eds.): Contributions to the Theory of Games I, Annals of Mathematical
Studies. Princeton, NJ: Princeton University Press, pp. 105–116.

Osborne, M. and A. Rubinstein: 1994, A Course in Game Theory. Boston: MIT Press.
Papadimitriou, C. H.: 2001, ‘Algorithms, games, and the Internet’. In: Proceedingsof the 33rd

Annual ACM Symposiumon Theoryof Computing: STOC’01, July 6–8, 2001, Hersonissos,
Crete, Greece. New York, pp. 749–753, ACM Press.

Pena-Reyes, C.-A. and M. Sipper: 2001, ‘Fuzzy CoCo: Balancing accuracy and interpretabil-
ity of fuzzy models by means of coevolution.’. IEEE Transactions on Fuzzy Systems9(5),
727–737.

Rose, J. A., R. J. Deaton, M. Hagiya, and A. Suyama: 2001, ‘The fidelity of the tag-antitag
system’. In (Jonoska and Seeman, 2002), pp. 138–149, Springer.

SantaLucia, Jr., J.: 1998, ‘A unified view of polymer, dumbbell, and oligonucleotide DNA
nearest-neighbor thermodynamics’. Proceedings of the National Academy of Sciences,
USA95(4), 1460–1465.

Schmitt, T. and N. Lehman: 1999, ‘Non-unity molecular heritability demonstrated by contin-
uous evolution in vitro’. Chemistry and Biology12(6), 857–869.

Stemmer, W. P. C.: 1995, ‘The Evolution of Molecular Computation’. Science270, 1510–
1510.

van Noort, D., F.-U. Gast, and J. S. McCaskill: 2002, ‘DNA computing in microreactors’. In
(Jonoska and Seeman, 2002), pp. 128–137, Springer.

VanDamme, E.: 1991, Nash Equilibrium. New York: Springer-Verlag.
Vartanian, J. P., M. Henry, and S. WainHobson: 1996, ‘Hypermutagenic PCR involving all four

transitions and a sizeable proportion of transversions’. Nucleic Acids Research24(14),
2627–2631.

von Neumann, J. and O. Morgenstern: 1944, Theory of Games and Economic Behavior.
Princeton, NJ: Princeton University Press.

Wetmur, J. G.: 1997, ‘Physical chemistry of Nucleic acid hybridization’. In: H. Rubin and
D. H. Wood (eds.): Preliminary Proceedingsof the Third Annual Workshopon DNA Based
Computers, held at the University of Pennsylvania, June 23-25, 1997. pp. 1–14.

Winfree, E.: 1998, ‘Whiplash PCR for O�1� computing’. In: L. Kari, H. Rubin, and
D. H. Wood (eds.): Preliminary Proceedings of the Fourth Annual Workshop on
DNA Based Computers. Piscataway NJ, pp. 175–188, DIMACS. Available from
http://www.dna.caltech.edu/~winfree/old_html/Papers/whiplash.ps.

Winfree, E. and D. K. Gifford (eds.): 2000, ‘DNA Based Computers V: DIMACS Workshop,
June 14-15, 1999’, Vol. 54 of DIMACS series in discrete mathematics and theoretical
computer science. Providence: American Mathematical Society.

Wood, D. H., H. Bi, S. O. Kimbrough, D. Wu, and J. Chen: 2001a, ‘DNA starts to learn poker’.
In (Jonoska and Seeman, 2002), pp. 92–103, Springer.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.23



24 David Harlan Wood

Wood, D. H., J. Chen, E. Antipov, B. Lemieux, and W. Cedeño: 2001b, ‘A design for DNA
computation of the OneMax problem’. Soft Computing5(1), 19–24. Special issue on
Biomolecular Approaches to Soft Computing.

Wood, D. H., C. L. T. Clelland, and C. Bancroft: 2003, ‘Universal biochip readout of directed
Hamiltonian path problems’. In (Hagiya and Ohuchi, pear), Springer-Verlag.

Wurmbach, E., T. Yuen, B. J. Ebersole, and S. C. Sealfon: 2001, ‘Gonadotropin-releasing
hormone receptor-coupled gene network organization’. Journal of Biological Chemistry
276(50), 47195–47201.

adaptiveDNAgames.tex; 12/01/2003; 23:57; p.24


