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Duality—The Main Idea

Electric Sources Magnetic Sources
∇× H = ŷE + J −∇× E = ẑH + M
−∇× E = ẑH ∇× H = ŷE
H = 1

µ∇× A −E = 1
ε∇× F

E = −jω
[
A + 1

k2∇ (∇ · A)
]

H = −jω
[
F + 1

k2∇ (∇ · F)
]

A = µ
4π

∫∫∫
J(r)e−jk|r−r′|

|r−r′| dr′ F = ε
4π

∫∫∫
M(r)e−jk|r−r′|

|r−r′| dr′

These equations are almost the same.
By systematically replacing one quantity with another, we
can get to the right column from the left.
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Duality—The Replacements

Electric Sources Magnetic Sources
E H
H −E
J M
A F
ŷ ẑ
ẑ ŷ
k k
η 1

η

Why do we care?
There is no such thing as magnetic current, right?
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The First Reason

Where there is no “magnetic current” the solution provided
by the “electric vector potential” is a legitimate free space
solution to the Maxwell Equations.
We will see why this may need to be done later...

Consider:

E = EA + EF

H = HA + HF

Now

A(r) =
µ

4π

∫∫∫
J(r′)

e−jk |r−r′|

|r− r′|
dr′

F(r) =
ε

4π

∫∫∫
M(r′)

e−jk |r−r′|

|r− r′|
dr′
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The First Reason

As we have seen,

EA = −jωA +
1

jωµε
∇∇ · A

EF = −1
ε
∇× F

HA =
1
µ
∇× H

HF = −jωF +
1

jωµε
∇∇ · F

This is the most general solution to the Maxwell Equations in
free space.
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The Second Reason

Consider a loop of
Constant current I, and
Radius a.

We will compute the radiation of this loop for small a� λ.
The loop can be parameterized as

r′(φ′) = a cosφ′ux + a sinφ′uy

Clearly, the current will produce an azimuthally symmetric A,
and A will be azimuthally directed. We can therefore seek

Aφ = Ay (φ = 0)

and set
r(r , θ) = r sin θux + r cos θuz .
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Small Current Loops

Given this,

R =
(
r sin θ − a cosφ′

)
ux +

(
−a sinφ′

)
uy + (r cos θ) uz

Therefore

R2 =
(
r sin θ − a cosφ′

)2
+
(
a sinφ′

)2
+ (r cos θ)2

= r2 sin2 θ − 2ar sin θ cosφ′ + a2 cos2 φ′ + a2 sin2 φ′

+r2 cos2 θ

= r2 + a2 − 2ar sin θ cosφ′
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Small Current Loops

Now since

Ay = µuy ·
∫

J(r′)
e−jkR

4πR
dr′

we find the

Magnetic Vector Potential of a Current Loop

Aφ =
µIa
4π

∫ 2π

0

exp
(
−jk

√
r2 + a2 − 2ar sin θ cosφ′

)
√

r2 + a2 − 2ar sin θ cosφ′
cosφ′ dφ′

Let

f (R(a)) =
exp

(
−jk

√
r2 + a2 − 2ar sin θ cosφ′

)
√

r2 + a2 − 2ar sin θ cosφ′
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Small Current Loops

We are interested in small loops, so we can take the limit as
a→ 0. We expand f (R(a)) in a Maclaurin series:

f (R(a)) ≈ f (R(0)) + f ′(R(0))R′(0)a

Now

R(a) =
[
r2 + a2 − 2ar sin θ cosφ′

]1
2

R(0) = r

R′(a) = 1
2

[
r2 + a2 − 2ar sin θ cosφ′

]−1
2 [2a− 2r sin θ cosφ′

]
R′(0) = − sin θ cosφ′
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Small Current Loops

Similarly,

f (R) =
e−jkR

R

f (r) =
e−jkr

r

f ′(R) = −
(

jk
R

+
1

R2

)
e−jkR

f ′(r) = −
(

jk
r

+
1
r2

)
e−jkr

Therefore

f (R(a)) ≈ e−jkr

r
+

(
jk
r

+
1
r2

)
e−jkr sin θ cosφ′a
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Small Current Loops

Given this, we compute Aφ

Aφ → µ
Ia
4π

∫ 2π

0

[
e−jkr

r
+

(
jk
r

+
1
r2

)
e−jkr a sin θ cosφ′

]
cosφ′ dφ′

= µ
Iπa2

4π2

(
jk
r

+
1
r2

)
e−jkr sin θ

∫ 2π

0
cos2 φ′ dφ′

= µ
Iπa2

4π

(
jk
r

+
1
r2

)
e−jkr sin θ

= µ
IS
4π

(
jk
r

+
1
r2

)
e−jkr sin θ

where S = πa2 is the area of the loop. The quantity m = IS is
known as the magnetic moment of the loop.
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Small Current Loops

Given this, we compute Aφ

Aφ → µ
Ia
4π

∫ 2π

0

[
e−jkr

r
+

(
jk
r

+
1
r2

)
e−jkr a sin θ cosφ′

]
cosφ′ dφ′

= µ
Iπa2

4π2

(
jk
r

+
1
r2

)
e−jkr sin θ

∫ 2π

0
cos2 φ′ dφ′

= µ
Iπa2

4π

(
jk
r

+
1
r2

)
e−jkr sin θ

= µ
IS
4π

(
jk
r

+
1
r2

)
e−jkr sin θ

where S = πa2 is the area of the loop. The quantity m = IS is
known as the magnetic moment of the loop.
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Small Current Loops

Once we have computed A, we can compute the fields. Here
we compare them to an electric dipole of moment p = I`.

Electric Dipole Magnetic Dipole

Er = p cos θ
2π e−jkr

(
η
r2 + 1

jωεr2

)
Hr = m cos θ

2π e−jkr
(

jk
r2 + 1

r2

)
Eθ = p sin θ

2π e−jkr
(

jωµ
r + η

r2 + 1
jωεr3

)
Hθ = m sin θ

2π e−jkr
(
− k2

r + jk
r2 + 1

r3

)
Hφ = p sin θ

4π e−jkr
(

jk
r + 1

r2

)
Eφ = ηm sin θ

4π e−jkr
(

k2

r −
jk
r2

)
These equations are duals using the

Magnetic Current—Dipole Duality

p = jkηm

In short, we can understand magnetic currents as small loops of
electric current.
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Why Bother With Uniqueness?

A uniqueness theorem tells us what information we need to
get an answer.
Under some circumstances, problems do not have unique
solutions. We want to know

Why, and
What it means.

By deploying the uniqueness theorem intelligently, we
might be able to come up with alternative formulations of
problems that are more useful for our purposes.
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The Uniqueness Theorem

Consider a region of space V ,
filled with linear matter
occupied by sources J and M, and
bounded by a surface S with outward normal un.

Suppose that two sets of fields (Ea,Ha) and (Eb,Hb) solve this
problem. Then:

−∇× Ea = ẑHa + M
∇× Ha = ŷEa + J
−∇× Eb = ẑHb + M
∇× Hb = ŷEb + J

Define δE = Ea − Eb and δH = Ha − Hb.
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The Uniqueness Theorem

The difference fields solve the source-free Maxwell Equations:

−∇× δE = ẑH
∇× δH = ŷE

We now apply Poynting’s Theorem to these equations to find
the

Uniqueness Theorem

©
∫∫

S
(δE× δH∗) · dS +

∫∫∫
V

(
ẑ|δH|2 + ŷ∗|δE|2

)
dv = 0

Huh??? How is this a uniqueness theorem???
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An Explanation

If we can show that

©
∫∫

S
(δE× δH∗) · dS = 0

then we can conclude that∫∫∫
V

(
ẑ|δH|2 + ŷ∗|δE|2

)
dv = 0

The real part of this equation is∫∫∫
V

[
Re(ẑ)|δH2|+ Re(ŷ)|δE2|

]
dv = 0

If we are in a lossy medium, Re(ẑ) > 0 and Re(ŷ) > 0, and we
can conclude

δE = δH = 0.
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More Explanation

So, for the moment, let’s assume a lossy medium. What does
the condition

©
∫∫

S
(δE× δH∗) · undS = 0

mean?

Suppose we specify the tangential electric field un × E over S.
Then

un × δE = 0
(un × δE) · δH∗ = 0, and
(δE× δH∗) · un = 0
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Uniqueness So Far

Thus, if we are in a volume V bounded by a surface S which
contains some lossy matter, the solution is unique if we specify

The tangential electric field over S,
The tangential magnetic field over S, or
The tangential electric field over part of S and the
tangential magnetic field over the rest of S.

Infinite surfaces can be thought of as the limit of finite surfaces,
so there is really no problem there if we specify the field
vanishes (or is at least outward traveling) at∞.
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Uniqueness for Lossless Regions

Why do we need loss to prove uniqueness???
Consider an enclosed metal box. It resonates at certain
frequencies so...

An Ugly Fact

A field can be sustained inside without any excitation!

This field can be multiplied by an arbitrary constant and added
to any other solution inside the box!!
In general, we take the solution in lossless cases to be the limit
of the lossy case. Nonetheless, this bizarre fact causes
problem in computational electromagnetics...
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The Field of a Dipole in Free Space

We have seen that a z-directed dipole in free space radiates

Dipole Fields

Er =
I` cos θ

2π
e−jkr

(
η

r2 +
1

jωεr2

)
= fr (r) cos θ

Eθ =
I` sin θ

2π
e−jkr

(
jωµ

r
+
η

r2 +
1

jωεr3

)
= fθ(r) sin θ

Hφ =
I` sin θ

4π
e−jkr

(
jk
r

+
1
r2

)
Let us consider a dipole over a PEC plane.
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Image Theory

I�uz

d
I�uz

d

d
I�uz

Image theory states that the picture on the left may be replaced
by that on the right as far as the field above the plane is
concerned. This requires that the resultant field:

1 Solve Maxwell’s Equations above the plane, and
2 Satisfy the boundary condition on the PEC.
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Proof of Image Theory: Maxwell’s Equations

Refer to the source above the plane and the fields it
generates with the subscript “1”
Refer to the source below the plane and the fields it
generates with the subscript “2”
Subscript free fields are total fields.

Then above the plane the fields satisfy

∇× H1 = ŷE1 + J1

∇× H2 = ŷE2

Summing these equations gives

∇× H = ŷE + J1

The other equations are similar, so Maxwell’s equations are
satisfied.
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Proof of Image Theory: Boundary Conditions

I�uz

d

d

I�uz

r

r

uR1

uΘ1 uΘ2

uR2

−uR2

Θ1

Θ2

Now
Θ2 = π −Θ1

so

sin Θ2 = sinπ cos Θ1 − cosπ sin Θ1 = sin Θ1

cos Θ2 = cosπ cos Θ1 + sinπ sin Θ1 = − cos Θ1
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Proof of Image Theory: Boundary Conditions

I�uz

d

d

I�uz

r

r

uR1

uΘ1 uΘ2

uR2

−uR2

Θ1

Θ2

E1 = fr (r) cos Θ1uR1 + fθ(r) sin Θ1uΘ1

= auR1 + buΘ1

E2 = fr (r) cos Θ2uR2 + fθ(r) sin Θ2uΘ2

= −auR2 + buΘ2

Thus, the field is normal to the conductor.
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Image Theory Summary

d d

d

Of course, conductors and dielectrics are also imaged. Why?
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The Equivalence Principle

Very often we are interested in finding alternative sources
that produce a given field.
The uniqueness theorem provides a way to do this.

un un(E, H)

(E, H)

(E, H)

(0, 0)

J
M

J = un ×H

M = E× un

How do we know the fields outside the surface on the left are
identical to fields on the right?
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Aperture Antennas

Ea M = Ea × un

J = un ×H

un

J = un ×H

M = 0

J = un ×H

M = 0

Zero fields

We can simplify radiation from an aperture with the equivalence
principle.
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Aperture Antennas

M = Ea × un

J = un ×H

J = un ×H

M = 0

J = un ×H

M = 0

M = 2Ea × un

We can alter the zero-field region to
Apply image theory...
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Aperture Antennas

Thus, if we let
M = Ea × un

we can write

The Fields

F(r) =
ε0
2π

∫∫
a

M(r′)
e−jk |r−r′|

|r− r′|
dS

H(r) = − 1
ε0
∇× F(r)

E(r) = −jωF(r) +
1

jωµ0ε0
∇(∇ · F(r))
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The Induction Theorem

Consider a conductive (PEC) scatterer illuminated by a source.
Define the
Incident field, Ei as the field that would exist in the absence of

the scatterer.
Total field, E as the total field that exists in the presence of the

scatter.
Scattered field, Es as the field that must therefore be due to the

scatterer.
In short, the scattered field is defined to be

Scattered Field Definition

Es , E− Ei
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The Induction Theorem

The equivalence principle can be applied to this problem
resulting in the following picture.

un(E, H) (E, H)

(0, 0)

J = un ×H

Ji Ji

un

Here, we clearly see that Es is due to J.
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The Electric Field Integral Equation

Thus,
Es = −jωA(r)−∇φ(r)

where

A(r) =
µ

4π

∫∫
S

J(r′)
e−jk |r−r′|

|r− r′|
dS

φ(r) =
−1

4πjωε

∫∫
S
∇′ · J(r′)

e−jk |r−r′|

|r− r′|
dS

Now, on S, we must have

Satsifaction of Boundary Conditions

Ei = −Es
∣∣∣
Tan to S
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The Electric Field Integral Equation

Defining R = r− r′ and R = |R|, and noting

∇
(

e−jkR

R

)
= −e−jkR 1 + jkR

R2
R
R

we have the

Electric Field Integral Equation

Ei =
jωµ
4π

∫∫
S

J(r′)
e−jkR

R
dS

+
1

4πjωε

∫∫
S
∇′ · J(r′)e−jkR 1 + jkR

R2
R
R

dS
∣∣∣∣
Tan to S

This is the starting point for computational methods based on
integral equations.
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The Volume Equivalence Principle

The surface equivalence principle is only helpful where
homogeneous media are concerned.
This is because finding the radiation of a point source (the
Green’s Function) in inhomogeneous media is nearly
impossible.
To cope we introduce a volume equivalence principle.

Consider (recalling that ε and µ are functions of position):

∇× E = −jωµH−Mi

∇× H = jωεE + Ji
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The Volume Equivalence Principle

These equations can be rewritten as

∇× E = −jωµ0H− jω(µ− µ0)H−Mi

∇× H = jωε0E + jω(ε− ε0)E + Ji

or

∇× E = −jωµ0H−Meq −Mi

∇× H = jωε0E + Jeq + Ji

with

Equivalent Currents

Meq , jω(µ− µ0)H Jeq , jω(ε− ε0)E

The point of this is that these currents, radiating in free space,
create the same field as the scatterer.
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Volume Integral Equations

Consider an inhomogeneous scatterer in free space. Inside the
scatterer, we have

E = Ei + Es

Ei is known, by definition.
Es can be computed if the equivalent current Jeq is known.
E = Jeq

jω(ε−ε0)

Thus, the above is an integral equation for the equivalent
current.
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The Main Idea

Reciprocity theorems state that the response of a system
is unchanged when source and measurement are
exchanged.
More generally, they deal with the reaction of on set of
sources to the fields of another set.

To get a mathematical statement:
Call the two sets of sources Ja,Ma and Jb,Mb

Let the fields of each set of sources operating along be
Ea,Ha and Eb,Hb
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Reciprocity

∇× Ha = ŷEa + Ja ∇× Hb = ŷEa + Jb

−∇× Ea = ẑHa + Ma −∇× Eb = ẑHa + Mb

Dot
The first equation with Eb, and
The last equation with Ha

and subtract. This gives

−∇ ·
(

Eb × Ha
)

= ŷEa · Eb + ẑHa · Hb + Eb · Ja + Ha ·Mb

Switching a and b,

−∇ ·
(

Ea × Hb
)

= ŷEb · Ea + ẑHb · Ha + Ea · Jb + Hb ·Ma
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Reciprocity

Subtracting given the

General Reciprocity Theorem (Differential Form)

−∇ ·
(

Ea × Hb − Eb × Ha
)

= Ea · Jb−Ha ·Mb−Eb · Ja + Hb ·Ma

Integrating over an arbritrary volume gives the

General Reciprocity Theorem (Integral Form)

©
∫∫ (

Ea × Hb − Eb × Ha
)
· dS =∫∫∫ (

Ea · Jb − Ha ·Mb − Eb · Ja + Hb ·Ma
)

dv
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The Lorentz Reciprocity Theorem

Where there are no sources we have the

Lorentz Reciprocity Theorem

∇ ·
(

Ea × Hb − Eb × Ha
)

= 0

which becomes

Lorentz Reciprocity Theorem

©
∫∫ (

Ea × Hb − Eb × Ha
)
· dS = 0

in integral form.

There is no currently known use for this theorem.
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Whole Space Reciprocity

Far from all sources and matter, we have seen that the field has the
property

E = η0H× ur .

Consider applying reciprocity to a large sphere Sa of radius a. Now,

lim
a→∞

©
∫∫
Sa

(
Ea × Hb − Eb × Ha) · dS

= η0 lim
a→∞

©
∫∫
Sa

[
(Ha × ur )× Hb −

(
Hb × ur

)
× Ha] · dS

= η0 lim
a→∞

©
∫∫
Sa

[
ur
(
Ha · Hb)− Ha (ur · Hb)− ur

(
Ha · Hb)+ Hb (ur · Ha)

]
·dS

= 0
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Whole Space Reciprocity

Thus, considering all of space, we have

The Reciprocity Theorem

∫∫∫ (
Ea · Jb − Ha ·Mb

)
dv =

∫∫∫ (
Eb · Ja − Hb ·Ma

)
dv

We call this

Reaction

〈a,b〉 =

∫∫∫ (
Ea · Jb − Ha ·Mb)dv

and write

The Reciprocity Theorem

〈a,b〉 = 〈b,a〉
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Reciprocity and Circuits

For a current source b

〈a,b〉 =

∫
Ea · Ib dl = Ib

∫
Ea · dl = −V aIb

By similar reasoning, for a voltage source b

〈a,b〉 = V bIa

Consider now a two-port network. Such a network can be
characterized by a

Impedance Matrix[
V1
V2

]
=

[
Z11 Z12
Z21 Z22

] [
I1
I2

]

D. S. Weile Theorems



Reciprocity and Circuits

Let Vij bet the voltage at port i due to a source at port j with all
other ports open circuited. Then

Zij =
Vij

Ij

Now, we have seen that, in general

〈j , i〉 = −Vij Ii

Thus, we have

Symmetry of the Impedance Matrix

Zij = −〈j , i〉
Ii Ij

= −〈i , j〉
Ii Ij

= Zji
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More Important Applications of Reciprocity

Nothing on the previous slide restricted the result to
1 Two ports, or
2 “Circuits”

Indeed, our circuit might be composed of two antennas. Then
reciprocity tells us that if we put a current source in the
terminals of one antenna, and a voltmeter in the terminals of
the other, the reading on the voltmeter does not change if we
switch them.
Reciprocity also demonstrates that antennas next to perfect
conductors do not radiate. (Why?)

This is true no matter how
hard the military funding agencies wish otherwise.
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