| 1 | |
|
| 2 | |
|
| 3 | |
|
| 4 | |
|
| 5 | |
|
| 6 | |
|
| 7 | |
|
| 8 | |
|
| 9 | |
|
| 10 | |
|
| 11 | |
|
| 12 | |
|
| 13 | |
|
| 14 | |
|
| 15 | |
|
| 16 | |
|
| 17 | |
|
| 18 | |
|
| 19 | |
|
| 20 | |
|
| 21 | |
|
| 22 | |
package weka.classifiers.meta; |
| 23 | |
|
| 24 | |
import java.util.Enumeration; |
| 25 | |
import java.util.Random; |
| 26 | |
import java.util.Vector; |
| 27 | |
|
| 28 | |
import weka.attributeSelection.ASEvaluation; |
| 29 | |
import weka.attributeSelection.ASSearch; |
| 30 | |
import weka.attributeSelection.AttributeSelection; |
| 31 | |
import weka.classifiers.SingleClassifierEnhancer; |
| 32 | |
import weka.core.AdditionalMeasureProducer; |
| 33 | |
import weka.core.Capabilities; |
| 34 | |
import weka.core.Capabilities.Capability; |
| 35 | |
import weka.core.Drawable; |
| 36 | |
import weka.core.Instance; |
| 37 | |
import weka.core.Instances; |
| 38 | |
import weka.core.Option; |
| 39 | |
import weka.core.OptionHandler; |
| 40 | |
import weka.core.RevisionUtils; |
| 41 | |
import weka.core.Utils; |
| 42 | |
import weka.core.WeightedInstancesHandler; |
| 43 | |
|
| 44 | |
|
| 45 | |
|
| 46 | |
|
| 47 | |
|
| 48 | |
|
| 49 | |
|
| 50 | |
|
| 51 | |
|
| 52 | |
|
| 53 | |
|
| 54 | |
|
| 55 | |
|
| 56 | |
|
| 57 | |
|
| 58 | |
|
| 59 | |
|
| 60 | |
|
| 61 | |
|
| 62 | |
|
| 63 | |
|
| 64 | |
|
| 65 | |
|
| 66 | |
|
| 67 | |
|
| 68 | |
|
| 69 | |
|
| 70 | |
|
| 71 | |
|
| 72 | |
|
| 73 | |
|
| 74 | |
|
| 75 | |
|
| 76 | |
|
| 77 | |
|
| 78 | |
|
| 79 | |
|
| 80 | |
|
| 81 | |
|
| 82 | |
|
| 83 | |
|
| 84 | |
|
| 85 | |
|
| 86 | |
|
| 87 | |
|
| 88 | |
|
| 89 | |
|
| 90 | |
|
| 91 | |
|
| 92 | |
|
| 93 | |
|
| 94 | |
|
| 95 | |
|
| 96 | |
|
| 97 | |
|
| 98 | |
|
| 99 | |
|
| 100 | |
|
| 101 | |
|
| 102 | |
|
| 103 | |
|
| 104 | |
|
| 105 | |
|
| 106 | |
|
| 107 | |
|
| 108 | |
|
| 109 | |
|
| 110 | |
|
| 111 | |
|
| 112 | |
|
| 113 | |
|
| 114 | |
|
| 115 | |
|
| 116 | |
public class AttributeSelectedClassifier |
| 117 | |
extends SingleClassifierEnhancer |
| 118 | |
implements OptionHandler, Drawable, AdditionalMeasureProducer, |
| 119 | |
WeightedInstancesHandler { |
| 120 | |
|
| 121 | |
|
| 122 | |
static final long serialVersionUID = -5951805453487947577L; |
| 123 | |
|
| 124 | |
|
| 125 | 0 | protected AttributeSelection m_AttributeSelection = null; |
| 126 | |
|
| 127 | |
|
| 128 | 0 | protected ASEvaluation m_Evaluator = |
| 129 | |
new weka.attributeSelection.CfsSubsetEval(); |
| 130 | |
|
| 131 | |
|
| 132 | 0 | protected ASSearch m_Search = new weka.attributeSelection.BestFirst(); |
| 133 | |
|
| 134 | |
|
| 135 | |
protected Instances m_ReducedHeader; |
| 136 | |
|
| 137 | |
|
| 138 | |
protected int m_numClasses; |
| 139 | |
|
| 140 | |
|
| 141 | |
protected double m_numAttributesSelected; |
| 142 | |
|
| 143 | |
|
| 144 | |
protected double m_selectionTime; |
| 145 | |
|
| 146 | |
|
| 147 | |
protected double m_totalTime; |
| 148 | |
|
| 149 | |
|
| 150 | |
|
| 151 | |
|
| 152 | |
|
| 153 | |
|
| 154 | |
|
| 155 | |
protected String defaultClassifierString() { |
| 156 | |
|
| 157 | 0 | return "weka.classifiers.trees.J48"; |
| 158 | |
} |
| 159 | |
|
| 160 | |
|
| 161 | |
|
| 162 | |
|
| 163 | 0 | public AttributeSelectedClassifier() { |
| 164 | 0 | m_Classifier = new weka.classifiers.trees.J48(); |
| 165 | 0 | } |
| 166 | |
|
| 167 | |
|
| 168 | |
|
| 169 | |
|
| 170 | |
|
| 171 | |
|
| 172 | |
public String globalInfo() { |
| 173 | 0 | return "Dimensionality of training and test data is reduced by " |
| 174 | |
+"attribute selection before being passed on to a classifier."; |
| 175 | |
} |
| 176 | |
|
| 177 | |
|
| 178 | |
|
| 179 | |
|
| 180 | |
|
| 181 | |
|
| 182 | |
public Enumeration listOptions() { |
| 183 | 0 | Vector newVector = new Vector(3); |
| 184 | |
|
| 185 | 0 | newVector.addElement(new Option( |
| 186 | |
"\tFull class name of attribute evaluator, followed\n" |
| 187 | |
+ "\tby its options.\n" |
| 188 | |
+ "\teg: \"weka.attributeSelection.CfsSubsetEval -L\"\n" |
| 189 | |
+ "\t(default weka.attributeSelection.CfsSubsetEval)", |
| 190 | |
"E", 1, "-E <attribute evaluator specification>")); |
| 191 | |
|
| 192 | 0 | newVector.addElement(new Option( |
| 193 | |
"\tFull class name of search method, followed\n" |
| 194 | |
+ "\tby its options.\n" |
| 195 | |
+ "\teg: \"weka.attributeSelection.BestFirst -D 1\"\n" |
| 196 | |
+ "\t(default weka.attributeSelection.BestFirst)", |
| 197 | |
"S", 1, "-S <search method specification>")); |
| 198 | |
|
| 199 | 0 | Enumeration enu = super.listOptions(); |
| 200 | 0 | while (enu.hasMoreElements()) { |
| 201 | 0 | newVector.addElement(enu.nextElement()); |
| 202 | |
} |
| 203 | 0 | return newVector.elements(); |
| 204 | |
} |
| 205 | |
|
| 206 | |
|
| 207 | |
|
| 208 | |
|
| 209 | |
|
| 210 | |
|
| 211 | |
|
| 212 | |
|
| 213 | |
|
| 214 | |
|
| 215 | |
|
| 216 | |
|
| 217 | |
|
| 218 | |
|
| 219 | |
|
| 220 | |
|
| 221 | |
|
| 222 | |
|
| 223 | |
|
| 224 | |
|
| 225 | |
|
| 226 | |
|
| 227 | |
|
| 228 | |
|
| 229 | |
|
| 230 | |
|
| 231 | |
|
| 232 | |
|
| 233 | |
|
| 234 | |
|
| 235 | |
|
| 236 | |
|
| 237 | |
|
| 238 | |
|
| 239 | |
|
| 240 | |
|
| 241 | |
|
| 242 | |
|
| 243 | |
|
| 244 | |
|
| 245 | |
|
| 246 | |
|
| 247 | |
|
| 248 | |
|
| 249 | |
|
| 250 | |
|
| 251 | |
|
| 252 | |
|
| 253 | |
|
| 254 | |
|
| 255 | |
|
| 256 | |
|
| 257 | |
|
| 258 | |
|
| 259 | |
|
| 260 | |
|
| 261 | |
|
| 262 | |
|
| 263 | |
|
| 264 | |
|
| 265 | |
|
| 266 | |
|
| 267 | |
|
| 268 | |
|
| 269 | |
|
| 270 | |
|
| 271 | |
|
| 272 | |
|
| 273 | |
|
| 274 | |
|
| 275 | |
public void setOptions(String[] options) throws Exception { |
| 276 | |
|
| 277 | |
|
| 278 | 0 | String evaluatorString = Utils.getOption('E', options); |
| 279 | 0 | if (evaluatorString.length() == 0) |
| 280 | 0 | evaluatorString = weka.attributeSelection.CfsSubsetEval.class.getName(); |
| 281 | 0 | String [] evaluatorSpec = Utils.splitOptions(evaluatorString); |
| 282 | 0 | if (evaluatorSpec.length == 0) { |
| 283 | 0 | throw new Exception("Invalid attribute evaluator specification string"); |
| 284 | |
} |
| 285 | 0 | String evaluatorName = evaluatorSpec[0]; |
| 286 | 0 | evaluatorSpec[0] = ""; |
| 287 | 0 | setEvaluator(ASEvaluation.forName(evaluatorName, evaluatorSpec)); |
| 288 | |
|
| 289 | |
|
| 290 | 0 | String searchString = Utils.getOption('S', options); |
| 291 | 0 | if (searchString.length() == 0) |
| 292 | 0 | searchString = weka.attributeSelection.BestFirst.class.getName(); |
| 293 | 0 | String [] searchSpec = Utils.splitOptions(searchString); |
| 294 | 0 | if (searchSpec.length == 0) { |
| 295 | 0 | throw new Exception("Invalid search specification string"); |
| 296 | |
} |
| 297 | 0 | String searchName = searchSpec[0]; |
| 298 | 0 | searchSpec[0] = ""; |
| 299 | 0 | setSearch(ASSearch.forName(searchName, searchSpec)); |
| 300 | |
|
| 301 | 0 | super.setOptions(options); |
| 302 | 0 | } |
| 303 | |
|
| 304 | |
|
| 305 | |
|
| 306 | |
|
| 307 | |
|
| 308 | |
|
| 309 | |
public String [] getOptions() { |
| 310 | |
|
| 311 | 0 | String [] superOptions = super.getOptions(); |
| 312 | 0 | String [] options = new String [superOptions.length + 4]; |
| 313 | |
|
| 314 | 0 | int current = 0; |
| 315 | |
|
| 316 | |
|
| 317 | 0 | options[current++] = "-E"; |
| 318 | 0 | options[current++] = "" +getEvaluatorSpec(); |
| 319 | |
|
| 320 | |
|
| 321 | 0 | options[current++] = "-S"; |
| 322 | 0 | options[current++] = "" + getSearchSpec(); |
| 323 | |
|
| 324 | 0 | System.arraycopy(superOptions, 0, options, current, |
| 325 | |
superOptions.length); |
| 326 | |
|
| 327 | 0 | return options; |
| 328 | |
} |
| 329 | |
|
| 330 | |
|
| 331 | |
|
| 332 | |
|
| 333 | |
|
| 334 | |
|
| 335 | |
public String evaluatorTipText() { |
| 336 | 0 | return "Set the attribute evaluator to use. This evaluator is used " |
| 337 | |
+"during the attribute selection phase before the classifier is " |
| 338 | |
+"invoked."; |
| 339 | |
} |
| 340 | |
|
| 341 | |
|
| 342 | |
|
| 343 | |
|
| 344 | |
|
| 345 | |
|
| 346 | |
public void setEvaluator(ASEvaluation evaluator) { |
| 347 | 0 | m_Evaluator = evaluator; |
| 348 | 0 | } |
| 349 | |
|
| 350 | |
|
| 351 | |
|
| 352 | |
|
| 353 | |
|
| 354 | |
|
| 355 | |
public ASEvaluation getEvaluator() { |
| 356 | 0 | return m_Evaluator; |
| 357 | |
} |
| 358 | |
|
| 359 | |
|
| 360 | |
|
| 361 | |
|
| 362 | |
|
| 363 | |
|
| 364 | |
|
| 365 | |
protected String getEvaluatorSpec() { |
| 366 | |
|
| 367 | 0 | ASEvaluation e = getEvaluator(); |
| 368 | 0 | if (e instanceof OptionHandler) { |
| 369 | 0 | return e.getClass().getName() + " " |
| 370 | |
+ Utils.joinOptions(((OptionHandler)e).getOptions()); |
| 371 | |
} |
| 372 | 0 | return e.getClass().getName(); |
| 373 | |
} |
| 374 | |
|
| 375 | |
|
| 376 | |
|
| 377 | |
|
| 378 | |
|
| 379 | |
|
| 380 | |
public String searchTipText() { |
| 381 | 0 | return "Set the search method. This search method is used " |
| 382 | |
+"during the attribute selection phase before the classifier is " |
| 383 | |
+"invoked."; |
| 384 | |
} |
| 385 | |
|
| 386 | |
|
| 387 | |
|
| 388 | |
|
| 389 | |
|
| 390 | |
|
| 391 | |
public void setSearch(ASSearch search) { |
| 392 | 0 | m_Search = search; |
| 393 | 0 | } |
| 394 | |
|
| 395 | |
|
| 396 | |
|
| 397 | |
|
| 398 | |
|
| 399 | |
|
| 400 | |
public ASSearch getSearch() { |
| 401 | 0 | return m_Search; |
| 402 | |
} |
| 403 | |
|
| 404 | |
|
| 405 | |
|
| 406 | |
|
| 407 | |
|
| 408 | |
|
| 409 | |
|
| 410 | |
protected String getSearchSpec() { |
| 411 | |
|
| 412 | 0 | ASSearch s = getSearch(); |
| 413 | 0 | if (s instanceof OptionHandler) { |
| 414 | 0 | return s.getClass().getName() + " " |
| 415 | |
+ Utils.joinOptions(((OptionHandler)s).getOptions()); |
| 416 | |
} |
| 417 | 0 | return s.getClass().getName(); |
| 418 | |
} |
| 419 | |
|
| 420 | |
|
| 421 | |
|
| 422 | |
|
| 423 | |
|
| 424 | |
|
| 425 | |
public Capabilities getCapabilities() { |
| 426 | |
Capabilities result; |
| 427 | |
|
| 428 | 0 | if (getEvaluator() == null) |
| 429 | 0 | result = super.getCapabilities(); |
| 430 | |
else |
| 431 | 0 | result = getEvaluator().getCapabilities(); |
| 432 | |
|
| 433 | |
|
| 434 | 0 | for (Capability cap: Capability.values()) |
| 435 | 0 | result.enableDependency(cap); |
| 436 | |
|
| 437 | 0 | return result; |
| 438 | |
} |
| 439 | |
|
| 440 | |
|
| 441 | |
|
| 442 | |
|
| 443 | |
|
| 444 | |
|
| 445 | |
|
| 446 | |
public void buildClassifier(Instances data) throws Exception { |
| 447 | 0 | if (m_Classifier == null) { |
| 448 | 0 | throw new Exception("No base classifier has been set!"); |
| 449 | |
} |
| 450 | |
|
| 451 | 0 | if (m_Evaluator == null) { |
| 452 | 0 | throw new Exception("No attribute evaluator has been set!"); |
| 453 | |
} |
| 454 | |
|
| 455 | 0 | if (m_Search == null) { |
| 456 | 0 | throw new Exception("No search method has been set!"); |
| 457 | |
} |
| 458 | |
|
| 459 | |
|
| 460 | 0 | getCapabilities().testWithFail(data); |
| 461 | |
|
| 462 | |
|
| 463 | 0 | Instances newData = new Instances(data); |
| 464 | 0 | newData.deleteWithMissingClass(); |
| 465 | |
|
| 466 | 0 | if (newData.numInstances() == 0) { |
| 467 | 0 | m_Classifier.buildClassifier(newData); |
| 468 | 0 | return; |
| 469 | |
} |
| 470 | 0 | if (newData.classAttribute().isNominal()) { |
| 471 | 0 | m_numClasses = newData.classAttribute().numValues(); |
| 472 | |
} else { |
| 473 | 0 | m_numClasses = 1; |
| 474 | |
} |
| 475 | |
|
| 476 | 0 | Instances resampledData = null; |
| 477 | |
|
| 478 | 0 | double weight = newData.instance(0).weight(); |
| 479 | 0 | boolean ok = false; |
| 480 | 0 | for (int i = 1; i < newData.numInstances(); i++) { |
| 481 | 0 | if (newData.instance(i).weight() != weight) { |
| 482 | 0 | ok = true; |
| 483 | 0 | break; |
| 484 | |
} |
| 485 | |
} |
| 486 | |
|
| 487 | 0 | if (ok) { |
| 488 | 0 | if (!(m_Evaluator instanceof WeightedInstancesHandler) || |
| 489 | |
!(m_Classifier instanceof WeightedInstancesHandler)) { |
| 490 | 0 | Random r = new Random(1); |
| 491 | 0 | for (int i = 0; i < 10; i++) { |
| 492 | 0 | r.nextDouble(); |
| 493 | |
} |
| 494 | 0 | resampledData = newData.resampleWithWeights(r); |
| 495 | 0 | } |
| 496 | |
} else { |
| 497 | |
|
| 498 | 0 | resampledData = newData; |
| 499 | |
} |
| 500 | |
|
| 501 | 0 | m_AttributeSelection = new AttributeSelection(); |
| 502 | 0 | m_AttributeSelection.setEvaluator(m_Evaluator); |
| 503 | 0 | m_AttributeSelection.setSearch(m_Search); |
| 504 | 0 | long start = System.currentTimeMillis(); |
| 505 | 0 | m_AttributeSelection. |
| 506 | |
SelectAttributes((m_Evaluator instanceof WeightedInstancesHandler) |
| 507 | |
? newData |
| 508 | |
: resampledData); |
| 509 | 0 | long end = System.currentTimeMillis(); |
| 510 | 0 | if (m_Classifier instanceof WeightedInstancesHandler) { |
| 511 | 0 | newData = m_AttributeSelection.reduceDimensionality(newData); |
| 512 | 0 | m_Classifier.buildClassifier(newData); |
| 513 | |
} else { |
| 514 | 0 | resampledData = m_AttributeSelection.reduceDimensionality(resampledData); |
| 515 | 0 | m_Classifier.buildClassifier(resampledData); |
| 516 | |
} |
| 517 | |
|
| 518 | 0 | long end2 = System.currentTimeMillis(); |
| 519 | 0 | m_numAttributesSelected = m_AttributeSelection.numberAttributesSelected(); |
| 520 | 0 | m_ReducedHeader = |
| 521 | |
new Instances((m_Classifier instanceof WeightedInstancesHandler) ? |
| 522 | |
newData |
| 523 | |
: resampledData, 0); |
| 524 | 0 | m_selectionTime = (double)(end - start); |
| 525 | 0 | m_totalTime = (double)(end2 - start); |
| 526 | 0 | } |
| 527 | |
|
| 528 | |
|
| 529 | |
|
| 530 | |
|
| 531 | |
|
| 532 | |
|
| 533 | |
|
| 534 | |
|
| 535 | |
|
| 536 | |
public double [] distributionForInstance(Instance instance) |
| 537 | |
throws Exception { |
| 538 | |
|
| 539 | |
Instance newInstance; |
| 540 | 0 | if (m_AttributeSelection == null) { |
| 541 | |
|
| 542 | 0 | newInstance = instance; |
| 543 | |
} else { |
| 544 | 0 | newInstance = m_AttributeSelection.reduceDimensionality(instance); |
| 545 | |
} |
| 546 | |
|
| 547 | 0 | return m_Classifier.distributionForInstance(newInstance); |
| 548 | |
} |
| 549 | |
|
| 550 | |
|
| 551 | |
|
| 552 | |
|
| 553 | |
|
| 554 | |
|
| 555 | |
|
| 556 | |
public int graphType() { |
| 557 | |
|
| 558 | 0 | if (m_Classifier instanceof Drawable) |
| 559 | 0 | return ((Drawable)m_Classifier).graphType(); |
| 560 | |
else |
| 561 | 0 | return Drawable.NOT_DRAWABLE; |
| 562 | |
} |
| 563 | |
|
| 564 | |
|
| 565 | |
|
| 566 | |
|
| 567 | |
|
| 568 | |
|
| 569 | |
|
| 570 | |
public String graph() throws Exception { |
| 571 | |
|
| 572 | 0 | if (m_Classifier instanceof Drawable) |
| 573 | 0 | return ((Drawable)m_Classifier).graph(); |
| 574 | 0 | else throw new Exception("Classifier: " + getClassifierSpec() |
| 575 | |
+ " cannot be graphed"); |
| 576 | |
} |
| 577 | |
|
| 578 | |
|
| 579 | |
|
| 580 | |
|
| 581 | |
|
| 582 | |
|
| 583 | |
public String toString() { |
| 584 | 0 | if (m_AttributeSelection == null) { |
| 585 | 0 | return "AttributeSelectedClassifier: No attribute selection possible.\n\n" |
| 586 | |
+m_Classifier.toString(); |
| 587 | |
} |
| 588 | |
|
| 589 | 0 | StringBuffer result = new StringBuffer(); |
| 590 | 0 | result.append("AttributeSelectedClassifier:\n\n"); |
| 591 | 0 | result.append(m_AttributeSelection.toResultsString()); |
| 592 | 0 | result.append("\n\nHeader of reduced data:\n"+m_ReducedHeader.toString()); |
| 593 | 0 | result.append("\n\nClassifier Model\n"+m_Classifier.toString()); |
| 594 | |
|
| 595 | 0 | return result.toString(); |
| 596 | |
} |
| 597 | |
|
| 598 | |
|
| 599 | |
|
| 600 | |
|
| 601 | |
|
| 602 | |
public double measureNumAttributesSelected() { |
| 603 | 0 | return m_numAttributesSelected; |
| 604 | |
} |
| 605 | |
|
| 606 | |
|
| 607 | |
|
| 608 | |
|
| 609 | |
|
| 610 | |
public double measureSelectionTime() { |
| 611 | 0 | return m_selectionTime; |
| 612 | |
} |
| 613 | |
|
| 614 | |
|
| 615 | |
|
| 616 | |
|
| 617 | |
|
| 618 | |
|
| 619 | |
public double measureTime() { |
| 620 | 0 | return m_totalTime; |
| 621 | |
} |
| 622 | |
|
| 623 | |
|
| 624 | |
|
| 625 | |
|
| 626 | |
|
| 627 | |
public Enumeration enumerateMeasures() { |
| 628 | 0 | Vector newVector = new Vector(3); |
| 629 | 0 | newVector.addElement("measureNumAttributesSelected"); |
| 630 | 0 | newVector.addElement("measureSelectionTime"); |
| 631 | 0 | newVector.addElement("measureTime"); |
| 632 | 0 | if (m_Classifier instanceof AdditionalMeasureProducer) { |
| 633 | 0 | Enumeration en = ((AdditionalMeasureProducer)m_Classifier). |
| 634 | |
enumerateMeasures(); |
| 635 | 0 | while (en.hasMoreElements()) { |
| 636 | 0 | String mname = (String)en.nextElement(); |
| 637 | 0 | newVector.addElement(mname); |
| 638 | 0 | } |
| 639 | |
} |
| 640 | 0 | return newVector.elements(); |
| 641 | |
} |
| 642 | |
|
| 643 | |
|
| 644 | |
|
| 645 | |
|
| 646 | |
|
| 647 | |
|
| 648 | |
|
| 649 | |
public double getMeasure(String additionalMeasureName) { |
| 650 | 0 | if (additionalMeasureName.compareToIgnoreCase("measureNumAttributesSelected") == 0) { |
| 651 | 0 | return measureNumAttributesSelected(); |
| 652 | 0 | } else if (additionalMeasureName.compareToIgnoreCase("measureSelectionTime") == 0) { |
| 653 | 0 | return measureSelectionTime(); |
| 654 | 0 | } else if (additionalMeasureName.compareToIgnoreCase("measureTime") == 0) { |
| 655 | 0 | return measureTime(); |
| 656 | 0 | } else if (m_Classifier instanceof AdditionalMeasureProducer) { |
| 657 | 0 | return ((AdditionalMeasureProducer)m_Classifier). |
| 658 | |
getMeasure(additionalMeasureName); |
| 659 | |
} else { |
| 660 | 0 | throw new IllegalArgumentException(additionalMeasureName |
| 661 | |
+ " not supported (AttributeSelectedClassifier)"); |
| 662 | |
} |
| 663 | |
} |
| 664 | |
|
| 665 | |
|
| 666 | |
|
| 667 | |
|
| 668 | |
|
| 669 | |
|
| 670 | |
public String getRevision() { |
| 671 | 0 | return RevisionUtils.extract("$Revision: 8034 $"); |
| 672 | |
} |
| 673 | |
|
| 674 | |
|
| 675 | |
|
| 676 | |
|
| 677 | |
|
| 678 | |
|
| 679 | |
|
| 680 | |
public static void main(String [] argv) { |
| 681 | 0 | runClassifier(new AttributeSelectedClassifier(), argv); |
| 682 | 0 | } |
| 683 | |
} |