| Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||
| NeuralConnection |
|
| 3.1578947368421053;3.158 |
| 1 | /* | |
| 2 | * This program is free software: you can redistribute it and/or modify | |
| 3 | * it under the terms of the GNU General Public License as published by | |
| 4 | * the Free Software Foundation, either version 3 of the License, or | |
| 5 | * (at your option) any later version. | |
| 6 | * | |
| 7 | * This program is distributed in the hope that it will be useful, | |
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 10 | * GNU General Public License for more details. | |
| 11 | * | |
| 12 | * You should have received a copy of the GNU General Public License | |
| 13 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | |
| 14 | */ | |
| 15 | ||
| 16 | /* | |
| 17 | * NeuralConnection.java | |
| 18 | * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand | |
| 19 | */ | |
| 20 | ||
| 21 | package weka.classifiers.functions.neural; | |
| 22 | ||
| 23 | import java.awt.Color; | |
| 24 | import java.awt.Graphics; | |
| 25 | import java.io.Serializable; | |
| 26 | ||
| 27 | import weka.core.RevisionHandler; | |
| 28 | ||
| 29 | /** | |
| 30 | * Abstract unit in a NeuralNetwork. | |
| 31 | * | |
| 32 | * @author Malcolm Ware (mfw4@cs.waikato.ac.nz) | |
| 33 | * @version $Revision: 8034 $ | |
| 34 | */ | |
| 35 | public abstract class NeuralConnection | |
| 36 | implements Serializable, RevisionHandler { | |
| 37 | ||
| 38 | /** for serialization */ | |
| 39 | private static final long serialVersionUID = -286208828571059163L; | |
| 40 | ||
| 41 | //bitwise flags for the types of unit. | |
| 42 | ||
| 43 | /** This unit is not connected to any others. */ | |
| 44 | public static final int UNCONNECTED = 0; | |
| 45 | ||
| 46 | /** This unit is a pure input unit. */ | |
| 47 | public static final int PURE_INPUT = 1; | |
| 48 | ||
| 49 | /** This unit is a pure output unit. */ | |
| 50 | public static final int PURE_OUTPUT = 2; | |
| 51 | ||
| 52 | /** This unit is an input unit. */ | |
| 53 | public static final int INPUT = 4; | |
| 54 | ||
| 55 | /** This unit is an output unit. */ | |
| 56 | public static final int OUTPUT = 8; | |
| 57 | ||
| 58 | /** This flag is set once the unit has a connection. */ | |
| 59 | public static final int CONNECTED = 16; | |
| 60 | ||
| 61 | ||
| 62 | ||
| 63 | /////The difference between pure and not is that pure is used to feed | |
| 64 | /////the neural network the attribute values and the errors on the outputs | |
| 65 | /////Beyond that they do no calculations, and have certain restrictions | |
| 66 | /////on the connections they can make. | |
| 67 | ||
| 68 | ||
| 69 | ||
| 70 | /** The list of inputs to this unit. */ | |
| 71 | protected NeuralConnection[] m_inputList; | |
| 72 | ||
| 73 | /** The list of outputs from this unit. */ | |
| 74 | protected NeuralConnection[] m_outputList; | |
| 75 | ||
| 76 | /** The numbering for the connections at the other end of the input lines. */ | |
| 77 | protected int[] m_inputNums; | |
| 78 | ||
| 79 | /** The numbering for the connections at the other end of the out lines. */ | |
| 80 | protected int[] m_outputNums; | |
| 81 | ||
| 82 | /** The number of inputs. */ | |
| 83 | protected int m_numInputs; | |
| 84 | ||
| 85 | /** The number of outputs. */ | |
| 86 | protected int m_numOutputs; | |
| 87 | ||
| 88 | /** The output value for this unit, NaN if not calculated. */ | |
| 89 | protected double m_unitValue; | |
| 90 | ||
| 91 | /** The error value for this unit, NaN if not calculated. */ | |
| 92 | protected double m_unitError; | |
| 93 | ||
| 94 | /** True if the weights have already been updated. */ | |
| 95 | protected boolean m_weightsUpdated; | |
| 96 | ||
| 97 | /** The string that uniquely (provided naming is done properly) identifies | |
| 98 | * this unit. */ | |
| 99 | protected String m_id; | |
| 100 | ||
| 101 | /** The type of unit this is. */ | |
| 102 | protected int m_type; | |
| 103 | ||
| 104 | /** The x coord of this unit purely for displaying purposes. */ | |
| 105 | protected double m_x; | |
| 106 | ||
| 107 | /** The y coord of this unit purely for displaying purposes. */ | |
| 108 | protected double m_y; | |
| 109 | ||
| 110 | ||
| 111 | ||
| 112 | ||
| 113 | /** | |
| 114 | * Constructs The unit with the basic connection information prepared for | |
| 115 | * use. | |
| 116 | * | |
| 117 | * @param id the unique id of the unit | |
| 118 | */ | |
| 119 | 0 | public NeuralConnection(String id) { |
| 120 | ||
| 121 | 0 | m_id = id; |
| 122 | 0 | m_inputList = new NeuralConnection[0]; |
| 123 | 0 | m_outputList = new NeuralConnection[0]; |
| 124 | 0 | m_inputNums = new int[0]; |
| 125 | 0 | m_outputNums = new int[0]; |
| 126 | ||
| 127 | 0 | m_numInputs = 0; |
| 128 | 0 | m_numOutputs = 0; |
| 129 | ||
| 130 | 0 | m_unitValue = Double.NaN; |
| 131 | 0 | m_unitError = Double.NaN; |
| 132 | ||
| 133 | 0 | m_weightsUpdated = false; |
| 134 | 0 | m_x = 0; |
| 135 | 0 | m_y = 0; |
| 136 | 0 | m_type = UNCONNECTED; |
| 137 | 0 | } |
| 138 | ||
| 139 | ||
| 140 | /** | |
| 141 | * @return The identity string of this unit. | |
| 142 | */ | |
| 143 | public String getId() { | |
| 144 | 0 | return m_id; |
| 145 | } | |
| 146 | ||
| 147 | /** | |
| 148 | * @return The type of this unit. | |
| 149 | */ | |
| 150 | public int getType() { | |
| 151 | 0 | return m_type; |
| 152 | } | |
| 153 | ||
| 154 | /** | |
| 155 | * @param t The new type of this unit. | |
| 156 | */ | |
| 157 | public void setType(int t) { | |
| 158 | 0 | m_type = t; |
| 159 | 0 | } |
| 160 | ||
| 161 | /** | |
| 162 | * Call this to reset the unit for another run. | |
| 163 | * It is expected by that this unit will call the reset functions of all | |
| 164 | * input units to it. It is also expected that this will not be done | |
| 165 | * if the unit has already been reset (or atleast appears to be). | |
| 166 | */ | |
| 167 | public abstract void reset(); | |
| 168 | ||
| 169 | /** | |
| 170 | * Call this to get the output value of this unit. | |
| 171 | * @param calculate True if the value should be calculated if it hasn't been | |
| 172 | * already. | |
| 173 | * @return The output value, or NaN, if the value has not been calculated. | |
| 174 | */ | |
| 175 | public abstract double outputValue(boolean calculate); | |
| 176 | ||
| 177 | /** | |
| 178 | * Call this to get the error value of this unit. | |
| 179 | * @param calculate True if the value should be calculated if it hasn't been | |
| 180 | * already. | |
| 181 | * @return The error value, or NaN, if the value has not been calculated. | |
| 182 | */ | |
| 183 | public abstract double errorValue(boolean calculate); | |
| 184 | ||
| 185 | /** | |
| 186 | * Call this to have the connection save the current | |
| 187 | * weights. | |
| 188 | */ | |
| 189 | public abstract void saveWeights(); | |
| 190 | ||
| 191 | /** | |
| 192 | * Call this to have the connection restore from the saved | |
| 193 | * weights. | |
| 194 | */ | |
| 195 | public abstract void restoreWeights(); | |
| 196 | ||
| 197 | /** | |
| 198 | * Call this to get the weight value on a particular connection. | |
| 199 | * @param n The connection number to get the weight for, -1 if The threshold | |
| 200 | * weight should be returned. | |
| 201 | * @return This function will default to return 1. If overridden, it should | |
| 202 | * return the value for the specified connection or if -1 then it should | |
| 203 | * return the threshold value. If no value exists for the specified | |
| 204 | * connection, NaN will be returned. | |
| 205 | */ | |
| 206 | public double weightValue(int n) { | |
| 207 | 0 | return 1; |
| 208 | } | |
| 209 | ||
| 210 | /** | |
| 211 | * Call this function to update the weight values at this unit. | |
| 212 | * After the weights have been updated at this unit, All the | |
| 213 | * input connections will then be called from this to have their | |
| 214 | * weights updated. | |
| 215 | * @param l The learning Rate to use. | |
| 216 | * @param m The momentum to use. | |
| 217 | */ | |
| 218 | public void updateWeights(double l, double m) { | |
| 219 | ||
| 220 | //the action the subclasses should perform is upto them | |
| 221 | //but if they coverride they should make a call to this to | |
| 222 | //call the method for all their inputs. | |
| 223 | ||
| 224 | 0 | if (!m_weightsUpdated) { |
| 225 | 0 | for (int noa = 0; noa < m_numInputs; noa++) { |
| 226 | 0 | m_inputList[noa].updateWeights(l, m); |
| 227 | } | |
| 228 | 0 | m_weightsUpdated = true; |
| 229 | } | |
| 230 | ||
| 231 | 0 | } |
| 232 | ||
| 233 | /** | |
| 234 | * Use this to get easy access to the inputs. | |
| 235 | * It is not advised to change the entries in this list | |
| 236 | * (use the connecting and disconnecting functions to do that) | |
| 237 | * @return The inputs list. | |
| 238 | */ | |
| 239 | public NeuralConnection[] getInputs() { | |
| 240 | 0 | return m_inputList; |
| 241 | } | |
| 242 | ||
| 243 | /** | |
| 244 | * Use this to get easy access to the outputs. | |
| 245 | * It is not advised to change the entries in this list | |
| 246 | * (use the connecting and disconnecting functions to do that) | |
| 247 | * @return The outputs list. | |
| 248 | */ | |
| 249 | public NeuralConnection[] getOutputs() { | |
| 250 | 0 | return m_outputList; |
| 251 | } | |
| 252 | ||
| 253 | /** | |
| 254 | * Use this to get easy access to the input numbers. | |
| 255 | * It is not advised to change the entries in this list | |
| 256 | * (use the connecting and disconnecting functions to do that) | |
| 257 | * @return The input nums list. | |
| 258 | */ | |
| 259 | public int[] getInputNums() { | |
| 260 | 0 | return m_inputNums; |
| 261 | } | |
| 262 | ||
| 263 | /** | |
| 264 | * Use this to get easy access to the output numbers. | |
| 265 | * It is not advised to change the entries in this list | |
| 266 | * (use the connecting and disconnecting functions to do that) | |
| 267 | * @return The outputs list. | |
| 268 | */ | |
| 269 | public int[] getOutputNums() { | |
| 270 | 0 | return m_outputNums; |
| 271 | } | |
| 272 | ||
| 273 | /** | |
| 274 | * @return the x coord. | |
| 275 | */ | |
| 276 | public double getX() { | |
| 277 | 0 | return m_x; |
| 278 | } | |
| 279 | ||
| 280 | /** | |
| 281 | * @return the y coord. | |
| 282 | */ | |
| 283 | public double getY() { | |
| 284 | 0 | return m_y; |
| 285 | } | |
| 286 | ||
| 287 | /** | |
| 288 | * @param x The new value for it's x pos. | |
| 289 | */ | |
| 290 | public void setX(double x) { | |
| 291 | 0 | m_x = x; |
| 292 | 0 | } |
| 293 | ||
| 294 | /** | |
| 295 | * @param y The new value for it's y pos. | |
| 296 | */ | |
| 297 | public void setY(double y) { | |
| 298 | 0 | m_y = y; |
| 299 | 0 | } |
| 300 | ||
| 301 | ||
| 302 | /** | |
| 303 | * Call this function to determine if the point at x,y is on the unit. | |
| 304 | * @param g The graphics context for font size info. | |
| 305 | * @param x The x coord. | |
| 306 | * @param y The y coord. | |
| 307 | * @param w The width of the display. | |
| 308 | * @param h The height of the display. | |
| 309 | * @return True if the point is on the unit, false otherwise. | |
| 310 | */ | |
| 311 | public boolean onUnit(Graphics g, int x, int y, int w, int h) { | |
| 312 | ||
| 313 | 0 | int m = (int)(m_x * w); |
| 314 | 0 | int c = (int)(m_y * h); |
| 315 | 0 | if (x > m + 10 || x < m - 10 || y > c + 10 || y < c - 10) { |
| 316 | 0 | return false; |
| 317 | } | |
| 318 | 0 | return true; |
| 319 | ||
| 320 | } | |
| 321 | ||
| 322 | /** | |
| 323 | * Call this function to draw the node. | |
| 324 | * @param g The graphics context. | |
| 325 | * @param w The width of the drawing area. | |
| 326 | * @param h The height of the drawing area. | |
| 327 | */ | |
| 328 | public void drawNode(Graphics g, int w, int h) { | |
| 329 | ||
| 330 | 0 | if ((m_type & OUTPUT) == OUTPUT) { |
| 331 | 0 | g.setColor(Color.orange); |
| 332 | } | |
| 333 | else { | |
| 334 | 0 | g.setColor(Color.red); |
| 335 | } | |
| 336 | 0 | g.fillOval((int)(m_x * w) - 9, (int)(m_y * h) - 9, 19, 19); |
| 337 | 0 | g.setColor(Color.gray); |
| 338 | 0 | g.fillOval((int)(m_x * w) - 5, (int)(m_y * h) - 5, 11, 11); |
| 339 | 0 | } |
| 340 | ||
| 341 | /** | |
| 342 | * Call this function to draw the node highlighted. | |
| 343 | * @param g The graphics context. | |
| 344 | * @param w The width of the drawing area. | |
| 345 | * @param h The height of the drawing area. | |
| 346 | */ | |
| 347 | public void drawHighlight(Graphics g, int w, int h) { | |
| 348 | ||
| 349 | 0 | drawNode(g, w, h); |
| 350 | 0 | g.setColor(Color.yellow); |
| 351 | 0 | g.fillOval((int)(m_x * w) - 5, (int)(m_y * h) - 5, 11, 11); |
| 352 | 0 | } |
| 353 | ||
| 354 | /** | |
| 355 | * Call this function to draw the nodes input connections. | |
| 356 | * @param g The graphics context. | |
| 357 | * @param w The width of the drawing area. | |
| 358 | * @param h The height of the drawing area. | |
| 359 | */ | |
| 360 | public void drawInputLines(Graphics g, int w, int h) { | |
| 361 | ||
| 362 | 0 | g.setColor(Color.black); |
| 363 | ||
| 364 | 0 | int px = (int)(m_x * w); |
| 365 | 0 | int py = (int)(m_y * h); |
| 366 | 0 | for (int noa = 0; noa < m_numInputs; noa++) { |
| 367 | 0 | g.drawLine((int)(m_inputList[noa].getX() * w) |
| 368 | , (int)(m_inputList[noa].getY() * h) | |
| 369 | , px, py); | |
| 370 | } | |
| 371 | 0 | } |
| 372 | ||
| 373 | /** | |
| 374 | * Call this function to draw the nodes output connections. | |
| 375 | * @param g The graphics context. | |
| 376 | * @param w The width of the drawing area. | |
| 377 | * @param h The height of the drawing area. | |
| 378 | */ | |
| 379 | public void drawOutputLines(Graphics g, int w, int h) { | |
| 380 | ||
| 381 | 0 | g.setColor(Color.black); |
| 382 | ||
| 383 | 0 | int px = (int)(m_x * w); |
| 384 | 0 | int py = (int)(m_y * h); |
| 385 | 0 | for (int noa = 0; noa < m_numOutputs; noa++) { |
| 386 | 0 | g.drawLine(px, py |
| 387 | , (int)(m_outputList[noa].getX() * w) | |
| 388 | , (int)(m_outputList[noa].getY() * h)); | |
| 389 | } | |
| 390 | 0 | } |
| 391 | ||
| 392 | ||
| 393 | /** | |
| 394 | * This will connect the specified unit to be an input to this unit. | |
| 395 | * @param i The unit. | |
| 396 | * @param n It's connection number for this connection. | |
| 397 | * @return True if the connection was made, false otherwise. | |
| 398 | */ | |
| 399 | protected boolean connectInput(NeuralConnection i, int n) { | |
| 400 | ||
| 401 | 0 | for (int noa = 0; noa < m_numInputs; noa++) { |
| 402 | 0 | if (i == m_inputList[noa]) { |
| 403 | 0 | return false; |
| 404 | } | |
| 405 | } | |
| 406 | 0 | if (m_numInputs >= m_inputList.length) { |
| 407 | //then allocate more space to it. | |
| 408 | 0 | allocateInputs(); |
| 409 | } | |
| 410 | 0 | m_inputList[m_numInputs] = i; |
| 411 | 0 | m_inputNums[m_numInputs] = n; |
| 412 | 0 | m_numInputs++; |
| 413 | 0 | return true; |
| 414 | } | |
| 415 | ||
| 416 | /** | |
| 417 | * This will allocate more space for input connection information | |
| 418 | * if the arrays for this have been filled up. | |
| 419 | */ | |
| 420 | protected void allocateInputs() { | |
| 421 | ||
| 422 | 0 | NeuralConnection[] temp1 = new NeuralConnection[m_inputList.length + 15]; |
| 423 | 0 | int[] temp2 = new int[m_inputNums.length + 15]; |
| 424 | ||
| 425 | 0 | for (int noa = 0; noa < m_numInputs; noa++) { |
| 426 | 0 | temp1[noa] = m_inputList[noa]; |
| 427 | 0 | temp2[noa] = m_inputNums[noa]; |
| 428 | } | |
| 429 | 0 | m_inputList = temp1; |
| 430 | 0 | m_inputNums = temp2; |
| 431 | 0 | } |
| 432 | ||
| 433 | /** | |
| 434 | * This will connect the specified unit to be an output to this unit. | |
| 435 | * @param o The unit. | |
| 436 | * @param n It's connection number for this connection. | |
| 437 | * @return True if the connection was made, false otherwise. | |
| 438 | */ | |
| 439 | protected boolean connectOutput(NeuralConnection o, int n) { | |
| 440 | ||
| 441 | 0 | for (int noa = 0; noa < m_numOutputs; noa++) { |
| 442 | 0 | if (o == m_outputList[noa]) { |
| 443 | 0 | return false; |
| 444 | } | |
| 445 | } | |
| 446 | 0 | if (m_numOutputs >= m_outputList.length) { |
| 447 | //then allocate more space to it. | |
| 448 | 0 | allocateOutputs(); |
| 449 | } | |
| 450 | 0 | m_outputList[m_numOutputs] = o; |
| 451 | 0 | m_outputNums[m_numOutputs] = n; |
| 452 | 0 | m_numOutputs++; |
| 453 | 0 | return true; |
| 454 | } | |
| 455 | ||
| 456 | /** | |
| 457 | * Allocates more space for output connection information | |
| 458 | * if the arrays have been filled up. | |
| 459 | */ | |
| 460 | protected void allocateOutputs() { | |
| 461 | ||
| 462 | 0 | NeuralConnection[] temp1 |
| 463 | = new NeuralConnection[m_outputList.length + 15]; | |
| 464 | ||
| 465 | 0 | int[] temp2 = new int[m_outputNums.length + 15]; |
| 466 | ||
| 467 | 0 | for (int noa = 0; noa < m_numOutputs; noa++) { |
| 468 | 0 | temp1[noa] = m_outputList[noa]; |
| 469 | 0 | temp2[noa] = m_outputNums[noa]; |
| 470 | } | |
| 471 | 0 | m_outputList = temp1; |
| 472 | 0 | m_outputNums = temp2; |
| 473 | 0 | } |
| 474 | ||
| 475 | /** | |
| 476 | * This will disconnect the input with the specific connection number | |
| 477 | * From this node (only on this end however). | |
| 478 | * @param i The unit to disconnect. | |
| 479 | * @param n The connection number at the other end, -1 if all the connections | |
| 480 | * to this unit should be severed. | |
| 481 | * @return True if the connection was removed, false if the connection was | |
| 482 | * not found. | |
| 483 | */ | |
| 484 | protected boolean disconnectInput(NeuralConnection i, int n) { | |
| 485 | ||
| 486 | 0 | int loc = -1; |
| 487 | 0 | boolean removed = false; |
| 488 | do { | |
| 489 | 0 | loc = -1; |
| 490 | 0 | for (int noa = 0; noa < m_numInputs; noa++) { |
| 491 | 0 | if (i == m_inputList[noa] && (n == -1 || n == m_inputNums[noa])) { |
| 492 | 0 | loc = noa; |
| 493 | 0 | break; |
| 494 | } | |
| 495 | } | |
| 496 | ||
| 497 | 0 | if (loc >= 0) { |
| 498 | 0 | for (int noa = loc+1; noa < m_numInputs; noa++) { |
| 499 | 0 | m_inputList[noa-1] = m_inputList[noa]; |
| 500 | 0 | m_inputNums[noa-1] = m_inputNums[noa]; |
| 501 | //set the other end to have the right connection number. | |
| 502 | 0 | m_inputList[noa-1].changeOutputNum(m_inputNums[noa-1], noa-1); |
| 503 | } | |
| 504 | 0 | m_numInputs--; |
| 505 | 0 | removed = true; |
| 506 | } | |
| 507 | 0 | } while (n == -1 && loc != -1); |
| 508 | ||
| 509 | 0 | return removed; |
| 510 | } | |
| 511 | ||
| 512 | /** | |
| 513 | * This function will remove all the inputs to this unit. | |
| 514 | * In doing so it will also terminate the connections at the other end. | |
| 515 | */ | |
| 516 | public void removeAllInputs() { | |
| 517 | ||
| 518 | 0 | for (int noa = 0; noa < m_numInputs; noa++) { |
| 519 | //this command will simply remove any connections this node has | |
| 520 | //with the other in 1 go, rather than seperately. | |
| 521 | 0 | m_inputList[noa].disconnectOutput(this, -1); |
| 522 | } | |
| 523 | ||
| 524 | //now reset the inputs. | |
| 525 | 0 | m_inputList = new NeuralConnection[0]; |
| 526 | 0 | setType(getType() & (~INPUT)); |
| 527 | 0 | if (getNumOutputs() == 0) { |
| 528 | 0 | setType(getType() & (~CONNECTED)); |
| 529 | } | |
| 530 | 0 | m_inputNums = new int[0]; |
| 531 | 0 | m_numInputs = 0; |
| 532 | ||
| 533 | 0 | } |
| 534 | ||
| 535 | ||
| 536 | ||
| 537 | /** | |
| 538 | * Changes the connection value information for one of the connections. | |
| 539 | * @param n The connection number to change. | |
| 540 | * @param v The value to change it to. | |
| 541 | */ | |
| 542 | protected void changeInputNum(int n, int v) { | |
| 543 | ||
| 544 | 0 | if (n >= m_numInputs || n < 0) { |
| 545 | 0 | return; |
| 546 | } | |
| 547 | ||
| 548 | 0 | m_inputNums[n] = v; |
| 549 | 0 | } |
| 550 | ||
| 551 | /** | |
| 552 | * This will disconnect the output with the specific connection number | |
| 553 | * From this node (only on this end however). | |
| 554 | * @param o The unit to disconnect. | |
| 555 | * @param n The connection number at the other end, -1 if all the connections | |
| 556 | * to this unit should be severed. | |
| 557 | * @return True if the connection was removed, false if the connection was | |
| 558 | * not found. | |
| 559 | */ | |
| 560 | protected boolean disconnectOutput(NeuralConnection o, int n) { | |
| 561 | ||
| 562 | 0 | int loc = -1; |
| 563 | 0 | boolean removed = false; |
| 564 | do { | |
| 565 | 0 | loc = -1; |
| 566 | 0 | for (int noa = 0; noa < m_numOutputs; noa++) { |
| 567 | 0 | if (o == m_outputList[noa] && (n == -1 || n == m_outputNums[noa])) { |
| 568 | 0 | loc =noa; |
| 569 | 0 | break; |
| 570 | } | |
| 571 | } | |
| 572 | ||
| 573 | 0 | if (loc >= 0) { |
| 574 | 0 | for (int noa = loc+1; noa < m_numOutputs; noa++) { |
| 575 | 0 | m_outputList[noa-1] = m_outputList[noa]; |
| 576 | 0 | m_outputNums[noa-1] = m_outputNums[noa]; |
| 577 | ||
| 578 | //set the other end to have the right connection number | |
| 579 | 0 | m_outputList[noa-1].changeInputNum(m_outputNums[noa-1], noa-1); |
| 580 | } | |
| 581 | 0 | m_numOutputs--; |
| 582 | 0 | removed = true; |
| 583 | } | |
| 584 | 0 | } while (n == -1 && loc != -1); |
| 585 | ||
| 586 | 0 | return removed; |
| 587 | } | |
| 588 | ||
| 589 | /** | |
| 590 | * This function will remove all outputs to this unit. | |
| 591 | * In doing so it will also terminate the connections at the other end. | |
| 592 | */ | |
| 593 | public void removeAllOutputs() { | |
| 594 | ||
| 595 | 0 | for (int noa = 0; noa < m_numOutputs; noa++) { |
| 596 | //this command will simply remove any connections this node has | |
| 597 | //with the other in 1 go, rather than seperately. | |
| 598 | 0 | m_outputList[noa].disconnectInput(this, -1); |
| 599 | } | |
| 600 | ||
| 601 | //now reset the inputs. | |
| 602 | 0 | m_outputList = new NeuralConnection[0]; |
| 603 | 0 | m_outputNums = new int[0]; |
| 604 | 0 | setType(getType() & (~OUTPUT)); |
| 605 | 0 | if (getNumInputs() == 0) { |
| 606 | 0 | setType(getType() & (~CONNECTED)); |
| 607 | } | |
| 608 | 0 | m_numOutputs = 0; |
| 609 | ||
| 610 | 0 | } |
| 611 | ||
| 612 | /** | |
| 613 | * Changes the connection value information for one of the connections. | |
| 614 | * @param n The connection number to change. | |
| 615 | * @param v The value to change it to. | |
| 616 | */ | |
| 617 | protected void changeOutputNum(int n, int v) { | |
| 618 | ||
| 619 | 0 | if (n >= m_numOutputs || n < 0) { |
| 620 | 0 | return; |
| 621 | } | |
| 622 | ||
| 623 | 0 | m_outputNums[n] = v; |
| 624 | 0 | } |
| 625 | ||
| 626 | /** | |
| 627 | * @return The number of input connections. | |
| 628 | */ | |
| 629 | public int getNumInputs() { | |
| 630 | 0 | return m_numInputs; |
| 631 | } | |
| 632 | ||
| 633 | /** | |
| 634 | * @return The number of output connections. | |
| 635 | */ | |
| 636 | public int getNumOutputs() { | |
| 637 | 0 | return m_numOutputs; |
| 638 | } | |
| 639 | ||
| 640 | ||
| 641 | /** | |
| 642 | * Connects two units together. | |
| 643 | * @param s The source unit. | |
| 644 | * @param t The target unit. | |
| 645 | * @return True if the units were connected, false otherwise. | |
| 646 | */ | |
| 647 | public static boolean connect(NeuralConnection s, NeuralConnection t) { | |
| 648 | ||
| 649 | 0 | if (s == null || t == null) { |
| 650 | 0 | return false; |
| 651 | } | |
| 652 | //this ensures that there is no existing connection between these | |
| 653 | //two units already. This will also cause the current weight there to be | |
| 654 | //lost | |
| 655 | ||
| 656 | 0 | disconnect(s, t); |
| 657 | 0 | if (s == t) { |
| 658 | 0 | return false; |
| 659 | } | |
| 660 | 0 | if ((t.getType() & PURE_INPUT) == PURE_INPUT) { |
| 661 | 0 | return false; //target is an input node. |
| 662 | } | |
| 663 | 0 | if ((s.getType() & PURE_OUTPUT) == PURE_OUTPUT) { |
| 664 | 0 | return false; //source is an output node |
| 665 | } | |
| 666 | 0 | if ((s.getType() & PURE_INPUT) == PURE_INPUT |
| 667 | && (t.getType() & PURE_OUTPUT) == PURE_OUTPUT) { | |
| 668 | 0 | return false; //there is no actual working node in use |
| 669 | } | |
| 670 | 0 | if ((t.getType() & PURE_OUTPUT) == PURE_OUTPUT && t.getNumInputs() > 0) { |
| 671 | 0 | return false; //more than 1 node is trying to feed a particular output |
| 672 | } | |
| 673 | ||
| 674 | 0 | if ((t.getType() & PURE_OUTPUT) == PURE_OUTPUT && |
| 675 | (s.getType() & OUTPUT) == OUTPUT) { | |
| 676 | 0 | return false; //an output node already feeding out a final answer |
| 677 | } | |
| 678 | ||
| 679 | 0 | if (!s.connectOutput(t, t.getNumInputs())) { |
| 680 | 0 | return false; |
| 681 | } | |
| 682 | 0 | if (!t.connectInput(s, s.getNumOutputs() - 1)) { |
| 683 | ||
| 684 | 0 | s.disconnectOutput(t, t.getNumInputs()); |
| 685 | 0 | return false; |
| 686 | ||
| 687 | } | |
| 688 | ||
| 689 | //now ammend the type. | |
| 690 | 0 | if ((s.getType() & PURE_INPUT) == PURE_INPUT) { |
| 691 | 0 | t.setType(t.getType() | INPUT); |
| 692 | } | |
| 693 | 0 | else if ((t.getType() & PURE_OUTPUT) == PURE_OUTPUT) { |
| 694 | 0 | s.setType(s.getType() | OUTPUT); |
| 695 | } | |
| 696 | 0 | t.setType(t.getType() | CONNECTED); |
| 697 | 0 | s.setType(s.getType() | CONNECTED); |
| 698 | 0 | return true; |
| 699 | } | |
| 700 | ||
| 701 | /** | |
| 702 | * Disconnects two units. | |
| 703 | * @param s The source unit. | |
| 704 | * @param t The target unit. | |
| 705 | * @return True if the units were disconnected, false if they weren't | |
| 706 | * (probably due to there being no connection). | |
| 707 | */ | |
| 708 | public static boolean disconnect(NeuralConnection s, NeuralConnection t) { | |
| 709 | ||
| 710 | 0 | if (s == null || t == null) { |
| 711 | 0 | return false; |
| 712 | } | |
| 713 | ||
| 714 | 0 | boolean stat1 = s.disconnectOutput(t, -1); |
| 715 | 0 | boolean stat2 = t.disconnectInput(s, -1); |
| 716 | 0 | if (stat1 && stat2) { |
| 717 | 0 | if ((s.getType() & PURE_INPUT) == PURE_INPUT) { |
| 718 | 0 | t.setType(t.getType() & (~INPUT)); |
| 719 | } | |
| 720 | 0 | else if ((t.getType() & (PURE_OUTPUT)) == PURE_OUTPUT) { |
| 721 | 0 | s.setType(s.getType() & (~OUTPUT)); |
| 722 | } | |
| 723 | 0 | if (s.getNumInputs() == 0 && s.getNumOutputs() == 0) { |
| 724 | 0 | s.setType(s.getType() & (~CONNECTED)); |
| 725 | } | |
| 726 | 0 | if (t.getNumInputs() == 0 && t.getNumOutputs() == 0) { |
| 727 | 0 | t.setType(t.getType() & (~CONNECTED)); |
| 728 | } | |
| 729 | } | |
| 730 | 0 | return stat1 && stat2; |
| 731 | } | |
| 732 | } | |
| 733 | ||
| 734 | ||
| 735 | ||
| 736 | ||
| 737 | ||
| 738 | ||
| 739 | ||
| 740 | ||
| 741 | ||
| 742 | ||
| 743 | ||
| 744 |